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ABSTRACT

The COVID-19 pandemic has driven numerous studies of airborne-driven transmission risk primarily through two methods: Wells–Riley
and computational fluid dynamics (CFD) models. This effort provides a detailed comparison of the two methods for a classroom scenario
with masked habitants and various ventilation conditions. The results of the studies concluded that (1) the Wells–Riley model agrees with
CFD results without forced ventilation (6% error); (2) for the forced ventilation cases, there was a significantly higher error (29% error); (3)
ventilation with moderate filtration is shown to significantly reduce infection transmission probability in the context of a classroom scenario;
(4) for both cases, there was a significant amount of variation in individual transmission route infection probabilities (up to 220%), local air
patterns were the main contributor driving the variation, and the separation distance from infected to susceptible was the secondary contrib-
utor; (5) masks are shown to have benefits from interacting with the thermal plume created from natural convection induced from body
heat, which pushes aerosols vertically away from adjacent students.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040755

I. INTRODUCTION

Currently, there are more than 62.2 � 106 COVID-19 cases and
nearly 1.5 � 106 deaths due to COVID-19.1 During the pandemic,
many school re-openings have occurred but, in general, remain well
below full capacity due to the concerns associated with increased
COVID-19 infections. The airborne transmission path has been evalu-
ated2,3 and recently recognized by the World Health Organization1

(WHO) and the Center for Disease Control and Prevention4 as a
mode of transmission of SARS-CoV-2. Improved insights and under-
standing of respiratory droplets describe a continuum that spans from
larger droplets that travel distances less than 6 ft (�2m)5,6 along with
smaller droplets that can travel much further in the buoyant gas clouds
produced from exhalation and weak ambient currents.7,8

Prevention of airborne transmission of SARS-CoV-2 demands
attention to the Heating, Ventilation, and Air Conditioning (HVAC)
systems. For example, a recent study evaluated the 2020 Presidential
debate9 including the effects of the HVAC system on transmission
risk. HVAC recommendations include ensuring HVAC systems are in
good working order and configure the systems such that they maxi-
mize fresh air within the limitations of the unit.10,11 The overall

suggestions imply that the system will dilute aerosols with this fresh
air to reduce the probability of transmission.

As the COVID-19 pandemic has progressed, there has been
increasingly widespread use of calculators for estimating airborne
exposure risk for indoor spaces. Most of these calculators are based on
the Wells–Riley equation, which calculates the probability of infection
from pathogens (such as SARS-CoV-2). These probabilities are a func-
tion of quanta (viruses released), exposure time, ventilation rate, room
volume, and other factors.12 Outside of the calculators’ practical use
cases, such calculations are being used to mathematically compare the
risk of typical indoor spaces.13,14 Other models have also been devel-
oped and studied for pathogen transmission.15

Wells–Riley and its derivatives are formulated on a basic model
that is simplified through a number of assumptions that demand veri-
fication in real-world settings. With respect to classical fluid dynamics,
Wells–Riley in the Gammaitoni and Nucci16 form can be described as
combining the application of Reynolds transport theorem while
including the probability of inhaling a given quantity of something
(e.g., an infection dose of SARS-CoV-2). Consider the control volume
as a room with an influx of quanta (with a specified concentration)

Phys. Fluids 33, 021904 (2021); doi: 10.1063/5.0040755 33, 021904-1

Published under license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0040755
https://doi.org/10.1063/5.0040755
https://doi.org/10.1063/5.0040755
https://doi.org/10.1063/5.0040755
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0040755
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0040755&domain=pdf&date_stamp=2021-02-24
https://orcid.org/0000-0002-7822-0789
https://orcid.org/0000-0001-8928-2814
mailto:aaron.m.foster@knights.ucf.edu
mailto:Michael.kinzel@ucf.edu
https://doi.org/10.1063/5.0040755
https://scitation.org/journal/phf


from a host breathing, influx of clean air that dilutes, along with filtra-
tion (a sink of quanta) from the HVAC. The overall model provides
temporal variation of quanta that can be linked to transmission proba-
bility. The Wells–Riley model relies on several key assumptions on air-
flow behavior. One assumption that is the transmission probability is
highly sensitive to is that the quanta are uniform or completely mixed
into the room. More recent implementations of the Wells–Riley calcu-
lation have included a “mixing factor” to represent incomplete mixing
of air in a space. This mixing factor17 represents the efficiency that the
ventilation system exchanges the complete volume of air in a space. A
low mixing factor value implies that the room is well mixed without
dead zones or short circuiting of flow; such factors are important as it
enables HVAC systems to filter pathogens and particulate from all the
air in the room, rather than a small portion. In general, this mixing
efficiency assumption is a limitation of the Wells–Riley model,
whereas Computational Fluid Dynamics (CFD) models capture many
additional and complex effects and allow a much more detailed inves-
tigation in the result space compared to test methods. These CFD
models have the potential to provide further insight into airborne dis-
eases transmission routes and guide us on proper use of the more
practical Wells–Riley models.

Previous studies have investigated the COVID-19 risk in similar
spaces using CFD. These studies have illustrated how supply and
return vent locations can create recirculation zones, which results in a
higher exposure risk.18,19 CFD is a powerful tool that can be continued
to be leveraged to understand which factors of a ventilation design can
affect the risk of airborne disease transmission. By combining CFD
modeling principles used in past studies with the principles of the
Wells–Riley model for disease transmission, we can develop a more
complete understanding of infection risk in a space. Additionally, we
can use CFD studies to determine more appropriate mixing factors to
be used in Wells–Riley calculations.

In the following, comparison studies of Wells–Riley and CFD are
developed. This paper initiates with the development of the mathemat-
ical formulation of modern forms ofWells–Riley along with equivalent
methods in the context of CFD. This paper then details the approach
to compute probability of transmission through airborne transmission
routes. We then develop a model classroom that is used to study the
effectiveness of Wells–Riley-based models. This scenario is used to
compare well ventilated and poorly ventilated rooms. The compari-
sons are then used to develop an understanding of the accuracy of
Wells–Riley models.

II. METHODS

In order to establish the methods, a summary of the mathemati-
cal and numerical models used in the present comparisons for patho-
gen exposure in the classroom setting is provided. The background
of the Wells–Riley calculations is reviewed, and the more recent

time-varying form by Gammaitoni and Nucci is presented for the
comparison. Finally, the CFD model equations, computational domain
and mesh, and assumptions are also described for completeness.

In the context of the present comparison studies, two scenarios
are considered and are summarized in Table I. The first case consid-
ered a classroom with no ventilation; this could be an example of a
moderate temperature day where the HVAC system is in low demand
and does not run for the length of a class period, or this could also rep-
resent a baseboard or radiator type heating case where there is little or
no mechanical ventilation occurring. The second scenario considers
the effects of forced mechanical ventilation at a rate of 3.4 Air Changes
per Hour (ACH). This represents the typical airflow into a classroom
of this size from a short survey of recent public-school classroom
plans. Both scenarios were analyzed with different levels of grid and
time step refinement to confirm grid and temporal independence of
the results.

A. Wells–Riley mathematical model for infection
probability

Short class durations drive a need to study time-varying infection
probability. Hence, for this study, we will use an adaption of
Wells–Riley developed by Gammaitoni and Nucci, which considers
the accumulation of particles as a time dependent calculation.16 This
calculation is based on a simple source-sink model, and the concentra-
tion portion of the calculation can be derived with an ordinary differ-
ential equation based on the rate of a source (infected individual) and
a sink (ventilation) in a closed volume. This updated form of the
Wells–Riley calculation also introduces the volume of the space being
considered.16

The model is given as follows:

P ¼ 1� e �
pIq
V

Ctþeð�CtÞ�1
C2

� �
: (1)

This equation directly calculates P, which is the probability of infection
(%). This probability relates to I, which is the number of infected per-
sons (assumed to be one for this study), p is the pulmonary ventilation
rate (m3/h) estimated to be20 800 L/h, q is the quanta generation rate
(h�1) estimated to be 100/h based on a previous study,13 C is the
equivalent ventilation rate (h�1), V is volume of the space (m3), and t
is time (s). In the context of this equation, it is important to under-
stand how it relates to a transmission event. According toWells, trans-
mission occurs 63% of the time (based on a Poisson distribution)
when one inhales a quantum of the pathogen, which can also be
described as an infection dose of viral particles inhaled.21 Hence, the
generation rate is the rate of quanta exhaled from the ill host. This ini-
tial form can be adapted to account for various other important
mechanisms.

TABLE I. Numerical and mathematical model cases.

Case Description Ventilation Filtration Flow time Supply temp Ambient temp

1 No ventilation 0.0 ACH N/A 3600 s (1 h) N/A 23.9 �C (75 �F)
2 Mechanical ventilation–heating 3.4 ACH MERVa 11 (72%) 3600 s (1 h) 32.2 �C (90 �F) 23.9 �C (75 �F)

aMinimum Efficiency Reporting Values.
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As previously mentioned, the equivalent ventilation rate
demands adaptions to account for mixing and other mechanisms. The
form used in this work is given as

C ¼ Q
K

gfilter
V
þ kdeposition: (2)

Here, Q is the ventilation rate (m3/h), K is the mixing factor, gfilter is
the equivalent filtering efficiency for the HVAC system, which
accounts for removal of respiratory droplet nuclei in the HVAC fil-
ter,22 and kdeposition is the deposition rate (h�1). The value of K nor-
mally used is 1, which implies perfect mixing; normally, a mixing
factor will vary from ideal mixing (K ¼ 1) to poor mixing17 (K > 10).
Finally, kdeposition refers to quanta that deposition surfaces due to set-
tling. As our focus is on small aerosols (<10 mm) in well mixed rooms,
this value is negligible. In the context of these assumptions, C can be
thought of as the percentage of the room volume that the ventilation
system exchanges with clean air per hour.

As many schools have mask mandates during the COVID-19
pandemic, it is important to consider such a scenario. In this work, we
consider mask filtration, which is assumed to be based on a surgical
mask with a gap fit that yields a filtration efficiency (gmask) of

23 44%.
Filtration is incorporated into the Wells–Riley calculation by assuming
that both the quanta and the inhaled air are filtered at the same rate,
which considered together becomes a factor of 1� gmaskð Þ2,

PðtÞ ¼ 1� e
�pIq 1�gmaskð Þ2

V
Ctþe �Ctð Þ�1

C2

� �
: (3)

The overall adaptation of the Wells–Riley model, hence, incorporates
effects of mixing, HVAC and its filtration, and filtration frommasks.

B. Numerical methods for infection probability

The numerical model was solved using a commercial CFD code
(Star-CCMþ), which utilizes the finite volume method for discretiza-
tion of the fluid flow equations that satisfy mass, momentum, and
energy conservation. In this context, an incompressible-ideal gas
model is used along with energy balance equations to capture buoy-
ancy effects of the warm exhaled air and the thermal plume effect
around the bodies of the occupants. The conservation of air mass (in
Cartesian tensor notation) is given as

@q
@t
þ @qVi

@xi
¼ 0: (4)

In the context of this formulation, only one gas species is assumed.
Additionally, q is the gas density, t is time, and Vi is the velocity in the
i-direction. The momentum equations in the context of a hybrid
Reynolds Averaged Navier Stokes (RANS)/Large Eddy Simulation
(LES) are solved. Specifically, a Detached Eddy Simulation (DES)24

was chosen to simulate aerosol dispersion in the context of turbulent
mixing. This model utilized a Spalart–Allmaras single equation25 tur-
bulence model in the DES model to calculate the unresolved turbu-
lence. Away from the walls, the Improved Delayed Detached Eddy
Simulation (IDDES) model captures large-scale eddies and turbulent
mixing; this model is similar to a LES model that captures these large
scales by solving filtered governing equations (incompressible
Navier–Stokes) directly rather than with an averaged velocity term in
RANS models. The momentum equations are solved as follows:

@ qVjð Þ
@t

þ
@ qViVjð Þ
@xi

¼ �
@pg
@xj
þ qgj þ

@ s ij

@xi
: (5)

Here, pg is the gauge pressure in the fluid, and gj is the gravity vector.
Additionally, the s ij term is the viscous-stress tensor, which can be
expressed as

s ij ¼ lm
@Vi

@xj
þ @Vj

@xi

 !
þ kq �

2
3
lm

� �
@Vl

@xl
dij; (6)

where lm is the modeled viscosity, which is defined as the sum of the
modeled turbulence viscosity provided by the IDDES model and the
viscosity of the gas (1.855 � 10�5 Pa s). The energy equation, used to
capture thermal plumes and buoyant effects in the context of the
HVAC, is provided as follows:

@ qeð Þ
@t
þ @ qeVið Þ

@xi
¼ �

@ pf Við Þ
@xi

þ
@Vi s l;ij

@xi
þ @

@xi
k
@T
@xi

� �
; (7)

where e is the internal energy of the gas (e ¼ cvTÞ, k is the thermal
conductivity, and T is temperature. The state equation couples energy
to the density through

q ¼ p0
RT

; (8)

where T fluctuates, p0 is the ambient pressure (101 000Pa), and R is
287 J/kg/K. Finally, in order to track the exhaled quanta in the context
of dispersion through the room and the HVAC system, a quanta dis-
persion equation (QDE) is solved as a one-way coupled convection
equation that represents the exhaled quanta that contain viral particles.
Others have shown that the small dehydrated respiratory droplets (less
2 lm) will follow the airflow and the QDE can represent the droplets
rather than a more computationally expensive discrete particle model
(DPM).26 This equation is given as follows:

@qQC

@t
þ @qViQC

@xi
¼ 0; (9)

where QC is the quanta concentration (i.e., quanta/m3).
In the context of these equations, second order numerical

discretization schemes (temporal and spatial) are utilized along with a
Semi Implicit Method for Pressure Linked Equations (SIMPLE) segre-
gated solver. This work used mesh generated in Star-CCMþ containing
1.9� 106 cells with a time step size of 0.5 s. These discretization param-
eters guided final results based on a series of mesh and time step size
studies, indicating that they sufficiently resolve the dynamics of interest.

1. Calculating infection probability

To compare the CFD results to the Wells–Riley equation, the
infection probability in each breathing zone is demanded. In the con-
text of groups, it is important to consider all occupants as potentially
being infectious. An infection-susceptibility model can be extracted
from a CFD simulation to investigate all possible transmission routes
and determine risk depending on both location and distance from an
infected individual. An example of this network for the present class-
room study is depicted in Fig. 1(a). Any space having a total of n per-
sons has n � 1 potential other routes that could infect that person,
leading to a total number of transmission routes of n(n � 1). In the
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context of the classroom, this leads to 10(9) or 90 transmission paths.
Using such a detailed model allows us to better understand “super-
spreading” events, infection probability, and the relationship of trans-
mission with respect to the distance from an infected individual. For
each transmission route, the QDE from a single source is tracked at
the location of a susceptible occupant breathing zone. It is also possible
to directly track the quanta inhaled; however, the concept of a
“breathing zone” allows for all transmission routes to be calculated
simultaneously, which leads to more efficient calculations.
Comparison studies for this model have shown the breathing zone
concept to closely represent the actual inhaled quanta.

In the context of the breathing zone, the concentration inhaled
for a susceptible person can be evaluated. A direct evaluation can be
developed through the temporal integration of the product of an
assumed breathing volume and the breathing zone concentration. The
result provides the total volume inhaled, which can then be used to
calculate the infection probability from the CFD analysis.

Transmission implies that one inhales an infection dose of
quanta exhaled from an infection person. We define this infectious
dosage in terms of a quanta volume, Vquanta(m

3), which is defined as

Vquanta ¼
p
q
¼

700 L
hr

100 1
hr

¼ 0:007m3: (10)

Recall that p is the pulmonary ventilation rate, which is equal to 700 L/h
for talking,20 and q is the quanta generation rate, which is estimated as
an average value of 100 h�1 from the work of Buonanno et al. for a rest-
ing activity level. Note that these values do not change for the different
scenarios studied and this can be calculated as a constant value. From
the CFD analysis, the exhaled concentration is directly computed and
varies as a function of time for each breathing zone. With these data, we
can calculate the inhaled volume over time in

Vinhaled tð Þ ¼
ðt
0
pQC tð Þ 1� gmaskð Þ2dt; (11)

where p is the pulmonary ventilation rate (m3/h), QC tð Þ is the CFD
concentration over time, and gmask is the mask filtering efficiency (%).
Note that in this study,QC tð Þ is the concentration for an assumed sin-
gle infected person in the classroom. This concentration could be used
to represent any number of infected individuals in the space by sum-
ming together multiple passive scalars from multiple infected individ-
uals. For this study, the current prevalence rates suggest that it is

unlikely that there would be multiple infected students in a small class-
room but would be a relevant comparison for larger venues.

From the quanta volume and inhaled volume, we can calculate
the fraction of an infectious dose and use the same Poisson’s distribu-
tion to make the result equivalent to the typical form of the
Wells–Riley calculation,

P tð Þ ¼ 1� e
�Vinhaled tð Þ

Vquanta

� �
; (12)

where P is the probability of infection (%) for a given duration of
time (t).

2. Geometry

The classroom configuration including the naming schema of the
students and teacher is shown below in Fig. 2. The classroom has a
floor area of 66m2, which is based on rectangular dimensions of 9.5m
long and 7.0m wide. The height of the classroom is 2.7m. On the ceil-
ing of this classroom is a single, centrally located inlet supply along
with a single, corner-located return supply. The inlet supply is mod-
eled after a common commercial, cone-style supply (Titus TMS-AA)
with a 0.5 m diameter inlet section. The return vent is a 0.6m square
section, which is recessed slightly above the ceiling plane. In the con-
text of this classroom, these HVAC ducts drive a flow consistent with
a standard room with commercial-grade venting (Fig. 3).

3. Boundary conditions

The boundary conditions are summarized in Table II below. The
thermal settings of the room were selected as isothermal walls to main-
tain a constant ambient temperature for the duration of the CFD anal-
ysis. In addition to the boundary conditions listed below, there was
also a special treatment of QC exiting through the air return, which is
then recirculated through the supply duct. Many real classroom air
handlers will typically supply several spaces; because of this, the aero-
sols exhaled by occupants are distributed to other spaces, which fur-
ther dilutes the amount being recirculated back into a given space. For
this study, it was assumed that all the air leaving the space through the
return vent is recirculated back to the supply duct and travels through
an air filter in the air handler unit. It was assumed that a MERV 11
(Minimum Efficiency Reporting Values) filter was being used, which
has a droplet nuclei weighted filtering efficiency (gfilter) of 72%

FIG. 1. CFD representation of transmission routes: (a) potential transmission routes and (b) breathing zone and QDE for one transmission route.
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according to a NAFA report.22 Hence, the filtering needed to be
accounted for in the CFD model through the custom function that fil-
ters the aerosols passing through the supply vent for each of the ten
passive scalars (representing nine students and one teacher). This is

performed using the mass-averaged quanta concentration computed
at the return vent, computed as

QC tð ÞjRetVent ¼
Ð
RetVentqQc tð ÞVidsiÐ

RetVentqVidsi
; (13)

which is returned into the supply vent decremented by 1 � gfilter. In
summary, these boundary conditions represent a school room with
ten persons exhaling, in the context of various HVAC conditions with
recycled air that is also filtered.

To represent current conditions in schools where masks are man-
dated (common practice in the pandemic), a simplified representation
of masks as a boundary condition is considered. Abkarian et al. dem-
onstrated that talking without a mask produces “puff-like” flow and
has an influence on the mixing of air, which could produce more
favorable results in this study due to increased mixing of the air.27 The
pulmonary flowrate p (m3/s) and the effective mask area Amask (m

2)
are used to calculate the mask outlet velocity. The assumed mask area
is 82 cm2 and approximated the actual effective area of a mask. The
exhaled flow behavior observed in the CFD model results agrees with
a study where schlieren imaging is utilized to demonstrate how the
exhaled air out of the mask is slow and follows the thermal plume ver-
tically rather than being projected forward,28

vmask ¼
p

Amask
: (14)

III. RESULTS AND DISCUSSION
A. Case 1: No ventilation

The first case evaluated considers the room in an unventilated
state, which implies that the filters are not functioning and the HVAC
does not drive flow throughout the classroom. The scenario represents
a classroom without HVAC, fans, and the windows closed. A sum-
mary of the results for this case are provided in Table III. From these
results, the mean infection probability from the numerical model
agreed well with the Wells–Riley mathematical model with a relative
error of 6%. Recall that the CFD model can elucidate 90 transmission

FIG. 3. Description of boundary conditions.

FIG. 2. CAD representation of a classroom.

TABLE II. Summary of boundary conditions.

Description Type Flow Pressure Temperature Quant concentration

Masks Velocity inlet
3:2� 10�4

m3

s
(0.67 cfm)

N/A 35 �C (95 �F) 100 quanta/h

Supply vent Velocity inlet
0:17

m3

s
(360 cfm)

N/A Case 1: N/A
Case 2: 32.2 �C (90 �F)

Case 1: N/A
Case 2: 1� 0:72ð ÞQC tð ÞjRetVent

Return vent Pressure outlet N/A p0 N/A N/A

Walls and ceiling Wall N/A N/A Case 1: 23.9 �C (75 �F)
Case 2: 21.1 �C (70 �F)

N/A

Bodies Wall N/A N/A 29.4 �C (85 �F) N/A

Heads Wall N/A N/A 33.3 �C (92 �F) N/A

Air initial condition Fluid N/A N/A 23.9 �C (75 �F) N/A
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routes. These 90 transmission routes are displayed, in comparison to
the Wells–Riley prediction. Figure 4(a) indicates predictions of the
probability of infection as a function of time, which increases due to
the increasing probability of inhaling a quanta from an infection per-
son. Figure 4(b) indicates the overall probability after 3600 s. The sta-
tistics of these 3600 s data are also indicated in Table III. In general,
Wells–Riley agrees with the mean CFD model prediction (�6%
underprediction) for the time duration considered.

Additional evaluation of Fig. 4 indicates two important findings.
The general trend indicated in Fig. 4(b) is the CFD prediction of infec-
tion probability after 3600 s and the distance from the infected host.
The prediction has a coplot of linear regression of this trend. The
detailed CFD analysis indicated wide fluctuations in infection risk for
the different persons and a relatively weak correlation of risk reduction
with increased distance. One particular observation is that the highest
probability of transmission occurs at 4.5m (15 ft), which is further
than physical-distancing guidelines of 2m (6 ft). Additionally, at 6m
(20 ft), there are scenarios with similar infection probabilities. This
highlights that for an airborne pathogen, mask mandates, number of
occupants, and proper HVAC operation drive protection from air-
borne pathogens, while physical distancing, on the other hand, has
only a minor effect of reducing transmission. Additionally, referring
back to Table III, in order to capture these fluctuating probabilities

within two standard deviations, the mean CFD prediction (similar to
the Wells–Riley prediction) demands roughly 66% of the mean. These
effects are attributed due to local air patterns that affect aerosol con-
centration dynamics within the classroom. These detailed fluid
dynamics are not considered in the Wells–Riley model and can lead to
nonconservative estimations of infection probability, which, for this
scenario, may be reasonably accounted for with a 66% inflation factor
to increase the conservative nature of the prediction.

In this unventilated room, the mechanisms creating significant
air movement are driven by buoyancy from the exhaled air as well as
thermal plumes created from the heated body. The effect is clearly
indicated at t ¼ 35 s in Fig. 5. Here, the plume of each person is indi-
cated with an isosurface of the QC, which indicates that an upward
advection driven by thermal buoyancy. The Wells–Riley calculation
assumes complete mixing leading to a single prediction. Alternatively,
the CFD results capture actual aerosol concentrations driven by these
thermal currents that lead to a range of results (2.4%–9.9%) that are
not captured with the mathematical model.

Reflecting these results back to application of the Wells–Riley
model, there are some key points. One clear scenario where
Wells–Riley demands usage with caution is in the forensic investiga-
tions of super-spreading events. In such cases, Wells–Riley calculations
appear to underpredict the higher infection probability of position due

TABLE III. Case 1 result summary.

Calculation
method

Ventilation
rate

Mixing
factor

Mean
probability

Maximum
probability

þ/�2r Std.
deviation

Wells–Riley 0 ACH K ¼ 1 4.2% N/A N/A
CFD 0 ACH N/A 4.5% 9.9% þ/�3.0%

Relative error 6%

FIG. 4. Case 1 results: (a) infection probability vs time and (b) infection probability vs distance.
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to developing air patterns with respect to infected individuals.
Additionally, in risk assessment use, the mean value of all transmission
routes is considered to represent average risk for comparison to the
Wells–Riley calculation. One could consider the worst-case transmis-
sion route; however, this is likely overly conservative. Statistical repre-
sentations, such as those provided in these predictions, may provide
guidance on transmission risk reduction for the bulk of the persons in
the working environment. Additionally, it is interesting to note that
the mean infection probability decreases with the distance between the
occupants [Fig. 4(b)], which appears to capture the bulk of the trans-
mission paths. However, the large scatter of isolated events leads to a
peak infection probability at a distance of 4.5m. Such interactions
demand additional attention to the detailed flow physics.

B. Case 2: Mechanical ventilation

The second case considers the room with the addition of forced
ventilation through a ceiling supply vent; this case also adds filtration
and represents a portion of the QC returning through the supply vent
based on the amount escaping the return vent and the filtration rate. A
summary of these results is provided in Table IV. From these results,
there was less agreement with the Wells–Riley mathematical model
with the ideal mixing assumption than the first case with a relative
error of 29%. As previously discussed for case 1, 90 transmission
routes are also displayed, in comparison to the Wells–Riley prediction.
Figure 6(a) indicates predictions of the probability of infection as a
function of time, which increases due to increasing the probability of
inhaling a quanta from an infection person. Note that a corrected mix-
ing factor was also calculated (K ¼ 1.8) in the Wells–Riley method to
reach the same average probability as the CFD results. Note that this
factor accounts for both the ventilation mixing and the air pattern
exposure, which is unique to the CFD approach. Figure 6(b) indicates
the overall probability after 3600 s. The statistics of these 3600 s data
are also indicated in Table IV. In general, Wells–Riley provided a sig-
nificantly lower infection probability than the mean CFD model pre-
diction (29% underprediction).

Considering the effect of distance on the infection probability,
a similar trend is seen in Fig. 6(b) as the first case. The linear fit of
the results shows that, overall, there is less of an influence on the
distance with added ventilation; this further supports the idea that
the distance is not a main indicator of infection probability for
indoor spaces. It is seen, however, that the results follow more of a
distinct trend, and the highest probability is at a shorter distance of
2m (6 ft) and the lowest probability is at the furthest distance of
8m (27 ft).

Considering the effect of the forced ventilation on these results in
Fig. 6(a) reveals several interesting findings when compared to the no-
ventilation case. The reduced variation in the individual transmission
can be clearly seen; this is observed to be due to steady flow patterns
emerging with the forced ventilation. The no-ventilation case had a
very weak source for mixing from buoyant flow; in comparison, the
forced flow creates much stronger advection, which results in more
stable air patterns. Another observation is that the average infection
probability is much lower with the ideal mixing assumption. Although
the forced ventilation improved the consistency of the air patterns in
the room, which resulted in less variation overall, the average is much
higher than the Wells–Riley calculation result. This indicates that sta-
ble recirculation zones are affecting the flow in areas of the room; in
the CFD model, this is seen in areas near the walls where the laminar
ceiling flow becomes detached and creates eddies. The eddies trap
aerosols due to the decaying air velocity and circulating flow, these
effects allow QC to build concentration and result in higher exposure,
especially in the end of the room opposite the air return where the
mixing factor is higher (poor mixing).

The mechanisms creating air movement are significantly differ-
ent than the first case with the addition of ventilation. Rather than the
flow being directed primarily from buoyancy driven air currents, the
flow is now shown to be influenced mainly by the flow pattern from
the ceiling mounted supply and return duct. This effect can be seen for
t ¼ 35 s in Fig. 7. The upward advection driven flow is seen again and
similar to the first case, but it quickly becomes influenced by the venti-
lation flow air patterns from the supply vent flow, which creates an
attached flow to the ceiling. The paths that the exhaled air takes are
strongly influenced by the position in the room relative to the supply
vent; this is seen to determine the corner of the room where the high
concentration QC is directed. In Fig. 7, the R2C flow is shown to be
directed to the rear of the room, and R1C is directed to the front of the
room. The teacher is located near the return vent, which is seen to be
an advantageous location for reducing QC, which others in the room
are exposed to. The Wells–Riley calculation assumes complete mixing
leading to a single prediction. Alternatively, the CFD results capture
actual aerosol concentrations driven by these thermal currents that

FIG. 5. Initial thermal plumes and stratification created from the exhaled air at
t ¼ 35 s.

TABLE IV. Case 2 result summary.

Calculation
method

Ventilation
rate

Mixing
factor

Mean
probability

Maximum
probability

þ/�2r
Std. deviation

Wells–Riley 3.4 ACH K ¼ 1 2.1% N/A N/A
CFD 3.4 ACH N/A 2.8% 4.6% þ/�1.3%

Relative error 29%
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lead to a range of results (1.6%–4.6%) that are not captured with the
mathematical model.

These results again reinforce the same key points identified for
the first case. In addition to these points, with ventilation, there is a
stronger need to determine an appropriate mixing value for the space
to achieve a better correlation between the Wells–Riley calculation and
the average CFD results. There is an important distinction here
between the first case with no ventilation, which does not utilize the
mixing factor in the Wells–Riley equation due to the lack of a flow
source into the space. This implies that Wells–Riley calculations for
similar spaces with little or no ventilation will tend to agree better with
the detailed CFD results than cases with higher ventilation and ideal
mixing. Similar to case 1, we note that the mean infection probability
decreases with the distance between the occupants [Fig. 6(b)], which
appears to capture the bulk of the transmission paths. It is of note that
the distance vs infection probability correlation is even weaker with
the increased ventilation. However, the scatter is reduced and does fol-
low a more consistent trend than the no ventilation case.

The infection probability distribution of the 90 transmission
routes is shown below in Fig. 8 as a comparison between case 1 and
case 2 at t ¼ 3600 s. A normal distribution is shown for each case and
can be used to understand how each of the infection probabilities
varies as a function of transmission route probability. Case 1, for
example, can be seen to have a slight bias toward the lower infection

probabilities, while case 2 has a more even distribution and is a better
fit with a normal distribution. This distribution of transmission routes
could be extended to a modified Wells–Riley calculation to better
understand infection risks in a more probabilistic manner.
Additionally, since there is a base concentration that builds in the
space, which can be seen in the lower results in Fig. 8, a skewed distri-
bution could be used for scenarios where the infection probability is
increased.

These results further emphasize the need for airborne transmis-
sion models to consider the detailed flow physics, and there is a need
to understand the distribution of infection probabilities of the potential
transmission routes.

FIG. 6. Case 2 results: (a) infection probability vs time and (b) infection probability vs distance.

FIG. 7. Initial air patterns created from the exhaled air at t ¼ 35 s (only teacher,
R1C, and R2C shown for clarity).

FIG. 8. Distribution of transmission routes vs Wells–Riley probability for both cases
at t ¼ 3600 s.
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IV. DISCUSSION AND RECOMMENDATIONS

From this comparison of the Wells–Riley infection probability
calculation to the more detailed CFD model, several important effects
were discovered, which should be considered when using tools such as
spreadsheets and calculators based on the Wells–Riley model. As
shown below in Table V, for case 1, the standard Wells–Riley calcula-
tion had good agreement on average with the CFD results for the
classroom scenario in this study. There was a larger error for the
mechanical ventilation case; this was considerable and should be con-
sidered in both risk evaluations and forensics work. For both cases,
there was a wide range of results when considering individual trans-
mission paths; this may be an important consideration depending on
risk tolerance of the habitants. Future work is needed to further
explore the effects of proximity, air patterns, room geometry, and ven-
tilation parameters on the Wells–Riley results to understand the limi-
tations of the mathematical model and to develop correction
techniques to further improve the results of these calculations.

Limitations of these modeling approaches should also be dis-
cussed. A view is emerging from the limited results presented that vari-
ous factors such as boundary condition assumptions, temperatures,
room layout, and ventilation type will have a large influence on the
resulting infection probabilities due to their influence on the flow
physics. There is a need to study these effects to determine which have
the greatest effect on the results and what can be expected for different
types of spaces. Additional effects, such as mixing from human move-
ment in the space,29 will likely add to this variation. Considering fur-
ther stochastic effects of SARS-CoV-2, humidity is believed to play an
important role in the viability of the virus;30,31 for these scenarios, low
indoor humidity was assumed and more detailed effects due to humid-
ity and evaporation have not been explored. Finally, the roles of fomite
and large droplet transmission are also not considered in this model
and add to the complex nature of determining overall infection proba-
bility of indoor spaces.

V. CONCLUSIONS

The infection probability in a typical classroom scenario was cal-
culated using both mathematical (Wells–Riley) and numerical (CFD)
methods. The Wells–Riley calculation had good agreement of infec-
tion probability when compared to the mean of the non-ventilated
CFD model with a relative error of 6%. The overall range of infection
probabilities was significant though and may be a contributor to the
lack of consistency in where COVID-19 infections spatially occur in
super-spreading events with poor ventilation present.

For the mechanical ventilation case, the Wells–Riley calculations
under-predict risk compared to average results of the more detailed
CFD models with a relative error of 29%. This case also had a wide
range of results, but the variation was significantly less than the non-
ventilated case. Ventilation in combination with filtration is shown to

reduce the infection risk significantly in both the mathematical (50%
reduction) and numerical (40% reduction) models even though only a
moderate filter type (MERV 11) was assumed in the calculations.

The local air patterns created a much larger range of infection
risk compared to the changes in risk from the source–receiver sepa-
ration distance in the model. The risk from airborne SARS-CoV-2
exposure does not appear to be strongly correlated with the dis-
tance, and many of the peak exposures were observed outside of
physical-distancing guidelines. This indicates that mask mandates,
well designed HVAC systems, and the combination of exposure
time with number of occupants are of increased importance com-
pared to physical distancing. Such procedures are particularly
important in the context of the newer, so called “super strains” of
SARS-CoV-2 that are possibly more contagious through airborne
routes. In the context of continuing operation, this work establishes
the validity of the application of Wells–Riley calculations for air-
borne risk reduction in indoor spaces. Although the Wells–Riley
mathematical model does not accurately capture the peak transmis-
sion events, it serves as a tool to estimate and rank the relative per-
formance of various mitigations methods (these are typically
exposure time, ventilation rate, filtration, and room size). These
conclusions should provide a better understanding with
Wells–Riley-based calculators when used to assess the infection risk
of similar indoor spaces.
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