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Abstract

Image reconstruction from undersampled k-space data has been playing an important role in fast 

MRI. Recently, deep learning has demonstrated tremendous success in various fields and has also 

shown potential in significantly accelerating MRI reconstruction with fewer measurements. This 

article provides an overview of the deep learning-based image reconstruction methods for MRI. 

Two types of deep learning-based approaches are reviewed: those based on unrolled algorithms 

and those which are not. The main structure of both approaches are explained, respectively. 

Several signal processing issues for maximizing the potential of deep reconstruction in fast MRI 

are discussed. The discussion may facilitate further development of the networks and the analysis 

of performance from a theoretical point of view.
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I. INTRODUCTION

Since its inception in the early 1970s, magnetic resonance imaging (MRI) has revolutionized 

radiology and medicine. However, MRI is known to be a slow imaging modality, and many 

techniques have been developed to reconstruct the desired image from undersampled 
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measured data to improve the imaging speed [1]. In past decades, compressed sensing (CS) 

has become an important strategy for fast MR imaging based on the sparsity prior. However, 

it takes a relatively long time for the iterative solution procedure to achieve high-quality 

reconstruction, and the selection of the regularization parameter is empirical. Although some 

numerical methods, such as Stein’s Unbiased Risk Estimation (SURE) [2], have been 

proposed to optimize the free parameters in MR imaging, these methods are burdened with 

high computational complexity. Additionally, most approaches only exploit prior 

information, either directly from the to-be-reconstructed images or with very few reference 

images involved.

Recently, deep learning has demonstrated tremendous success and has become a growing 

trend in general data analysis [3, 4]. Inspired by such success, deep learning has been 

applied to computational MRI and has shown the potential to significantly accelerate MR 

reconstruction [5–28]. In contrast to compressed sensing and other constrained 

reconstruction methods, deep learning avoids complicated optimization-parameter tuning 

and performs superfast online reconstruction with the aid of offline training using enormous 

data.

Deep learning-based MRI reconstruction methods can be approximately categorized as 

unrolling-based approaches [5–12] and those not based on unrolling [13–28]. The unrolling-
based approaches typically start from a posited optimization problem whose solution is the 

image to be reconstructed, and then unroll an iterative optimization algorithm to a deep 

network. Therefore, the network architecture of an unrolling-based method is constructed 

based on the steps resulting from the iterations. Parameters and functions in the 

reconstruction model and algorithm are learned through network training. While the 

methods not based on unrolling directly use the standard network architectures, which are 

designed for problems other than reconstruction, to learn the mapping from input to output, 

and may also incorporate some domain knowledge in MR imaging into the standard 

network.

The main purpose of this article is to give an overview of deep learning-based MR image 

reconstruction methods, with an effort to highlight their unique properties and similarities 

between them. We attempt not only to summarize the materials that are dispersed throughout 

the literature but also to present a discussion of the relationship among these methods. This 

article by no means includes a complete list of references of all contributions, as the field is 

fast-growing, but the methods introduced herein should serve as good examples for 

understanding the field.

The paper is organized as follows. Section II provides a brief introduction of deep learning 

and MRI reconstruction basics. The classical deep learning network architectures and the 

general formulation of CS-based MRI reconstruction (from undersampled measured data to 

image) are provided. Section III introduces unrolling-based deep networks, with a focus on 

how each of the popular iterative, CS-based reconstruction algorithms is unrolled to a 

network with its unique architecture. In particular, the regularization parameters, the 

regularization functions, and even the data consistency metrics are learned via training. 

Section IV introduces the approaches not based on unrolling. Networks with additional 
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domain knowledge are elaborated. Section V discusses some of the signal processing issues. 

Section VI provides some possible future directions and the concluding remarks.

II. BASICS OF DEEP LEARNING AND MRI RECONSTRUCTION

A. Deep learning

Deep learning is a class of machine learning algorithms that exploits many cascaded layers 

of nonlinear information processing units to learn the complex relationships among data. By 

going deeper (i.e., more layers), the network improves its capability of learning features 

from higher levels of the hierarchy that were formed by the composition of lower-level 

features. Such capability of learning features at multiple levels of abstraction allows the deep 

network to learn the complex functions that directly map the input to the output from data 

without depending on human-crafted features.

The core of deep learning is the deep neural network, which actually is a type of artificial 

neural network (ANN). Although the ANN was invented in the 1950s [29], and there were 

several earlier ANN trends, the latest trend in ANN, which is known as deep learning, fully 

exhibits its power in various fields. There are three key factors that contribute to the recent 

success of deep learning: a) the invention of optimization strategies (e.g., layerwise 

pretraining, mini-batch stochastic gradient descent (SGD), batch normalization, shortcut, 

activation function, etc.) enables training of high-dimensional, multivariate models; b) the 

availability of large datasets (Big Data) overcomes the overfitting issue; c) the ever-growing 

computational power of hardware (e.g., GPU and parallel computing) allows the training to 

be performed in finite time. In addition, the availability of open-source software libraries 

(e.g., TensorFlow, PyTorch, Caffe, MatCovNet) makes the development of deep learning 

methods more efficient. These techniques make it possible to extract substantial value out of 

data.

Most existing deep learning algorithms use the ANN with supervised learning. In supervised 

learning, the weights and biases are learned from training data by minimizing a loss function 

(e.g., root mean square error, cross entropy, etc.). During training, a back-propagation 

algorithm is used to calculate the gradients of a loss function with respect to each weight/

bias. Those gradients are then used in optimization algorithms (e.g., SGD) to update the 

weights/biases in a direction that is opposite to the gradient. Updating the weights/biases 

multiple times in different training samples will eventually result in a properly trained neural 

network.

Classic types of deep neural networks include multilayer perceptron (MLP), convolutional 

neural networks (CNN), recurrent neural networks (RNN), and generative adversarial 

networks (GAN).

1) MLP—MLP is one of the simplest neural networks. MLP consists of an input layer, an 

output layer, and at least one hidden layer. In a network with fully connected nodes between 

the adjacent layers, each node, which is known as a neuron, uses a nonlinear activation 

function to operate on the sum of the biases and weighted outputs of connected nodes from 

the previous layer, thereby allowing the representation of complex functions.
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2) CNN—CNN has been mostly successful in image processing due to the capability of 

learning the position and scale-invariant structures of the data, which is important when 

working with images. This technique has achieved great success because it scales the data 

and model size and can be trained with back-propagation but with a fraction of the 

computational complexity of MLP.

An N-layer CNN CN = C(m0; Θ̂) with input m0 and output CN can be described as follows

C0 = m0
Cn = Hn(Kn * Cn − 1 + bn)
CN = HN(KN * CN − 1 + bN)

n ∈ {1, 2, …, N − 1}, (1)

where Kn eqdenotes the convolution kernel of size Kn−1 × wn × hn × kn, and bn denotes the 

kn dimensional bias with its element being associated with a filter. The CNN output is the 

output of the final layer. Here, Kn−1 is the number of the image features extracted at the 

layer n−1; wn × hn is the filter size, and these values could be equal; kn is the filter number at 

layer n; and Hn is the nonlinear mapping operator. Eq. (1) can be regarded as the forward 

pass of the CNN training, where the convolution kernel kn is used to extract the features, and 

Hn is the nonlinear activation function. For example, the widely used activation function, 

rectified linear units (ReLU), is given as:

H(x) = x, x ≥ 0
0, otherwise . (2)

Several advanced architectures have been integrated into CNN, such as U-net and ResNet, to 

aid in information preservation and network optimization.

3) RNN—RNN is a class of neural networks that makes use of the sequential information 

to process sequences of inputs. RNN maintains an internal state of the network by acting as 

a “memory,” which allows RNNs to lend themselves naturally to the processing of 

sequential data.

In Fig. 1(b), a portion of a neural network, E, takes some input mt and outputs the value ht. 

Each E loop allows information to be passed from one step of the network to the next. A 

recurrent neural network can be considered to be multiple copies of the same network, with 

each copy passing a message to a successor.

4) GAN—GAN has gained popularity due to its ability to infer photorealistic natural 

images. In GAN, there are two subnetworks, a generator G and a discriminator D . The 

generator can generate high perceptual quality images according to the discriminator, which 

is a very good classifier for separating realistic and generated images.

The training objective can be formulated as the following minimax problem:

min
G

max
D

L(G, D) (3)
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where D is trained to maximize the probability of assigning the correct true or false label to 

images; G is trained to minimize the difference between the generated and labeled image 

that the discriminator cannot distinguish. G tries to produce an image that can fool D, 

whereas D avoids being fooled. Such kind of training borrows the win-loss strategy that 

drives both terms to improve their performance.

The loss function L(G, D) is defined as

L(G, D) = E[1 − logD(G(m0))] + E[logD(mref)] (4)

where E[·] refers to the expectation operation; G tries to generate images m̄ = G(m0) that 

look similar to images mref, which are realistic images; and D aims to distinguish between 

m̄ and mref .

Although deep learning has gained much success in various applications, the selection of a 

network topology is still an engineering problem instead of scientific research. In most 

existing deep learning approaches, there is a lack of a theoretical explanation of the 

relationship between the network topology and performance. In addition, the generalizability 

of most networks is not understood. These are the common limitations of deep learning 

approaches.

B. MRI reconstruction

In MRI, spatial information of the subject, such as the spin density and relaxation 

parameters, is encoded in the measured data in a variety of ways [30, 31]. Typically, a 

forward imaging model is a mathematical description of how the measured data is related to 

the spatial information (i.e., image). A linear imaging model is typically used after some 

approximation and can be written as

f = Am + ϵ, (5)

where A:ℂN ℂM is the encoding matrix, f ∈ ℂM is the acquired k-space data, m ∈ ℂN is 

the image to be reconstructed, and ϵ is the measurement noise, which can be well modeled 

as complex additive Gaussian white noise under the assumption that the noise equally affects 

the entire frequency (i.e., all the samples in k-space). For example, with the Fourier imaging 

model, A = Fu for the case of single-channel acquisition, A = Fu S for the case of 

multichannel acquisition where S denotes the coil sensitivities and Fu the Fourier transform 

with undersampling.

During data acquisition, the measured data f and the imaging model captured in the 

encoding matrix A are both known. The problem of image reconstruction is to recover the 

desired image m from the measurements f.

There are several methods of solving for m in Eq. (5), such as obtaining the least-squares 

solution directly or through an iterative procedure. For example, with the single-channel 

acquisition, the forward MR imaging model can be formulated as a Fourier encoding. If the 

acquired data (so-called k-space data) is sampled on a Cartesian grid and satisfies the 

Liang et al. Page 5

IEEE Signal Process Mag. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nyquist sampling criterion, the image can be reconstructed directly by applying a fast 

Fourier transform (FFT). Multichannel acquisition entails more complicated encoding 

matrices but can also be reconstructed by direct matrix inversion for Cartesian sampling. On 

the other hand, for sub-Nyquist sampling, iterative reconstruction is typically used to solve 

the underdetermined inverse problem. In such scenarios, additional prior information is often 

incorporated into the imaging model to facilitate the reconstruction, such as the 

spatiotemporal correlation in dynamic imaging or the quantitative model of MR parameters.

CS is one of the revolutionary approaches to reconstruction from sub-Nyquist sampled data. 

The method exploits some prior models, such as sparsity and low-rankness, and solves the 

underlying constrained optimization problem. Details can be found in other papers in this 

special issue. In general, the imaging model of the sub-Nyquist data can be written as

m = argmin
m

1
2‖Am − f‖2

2 + G(m), (6)

where G(m) denotes a combination of sparse, low-rank, or other types of regularization 

functions.

In CS, the sparsity prior is usually enforced by fixed sparsifying transforms or data-driven 

but linear dictionaries. In contrast, deep learning goes beyond CS by extending the key 

component of CS- the prior becomes data-adaptive and highly nonlinear. Although deep 

learning requires many computations for the training step, which is sometimes several orders 

of magnitude higher than what is necessary for CS to converge, the training is conducted off-

line, while the reconstruction (i.e., testing) step of deep learning can be computationally 

faster than that of CS.

III. UNROLLING-BASED DEEP LEARNING APPROACHES

A. Definition

Most existing unrolling-based deep learning methods extend upon a CS reconstruction 

algorithm. Specifically, a CS reconstruction algorithm starts with the inverse problem based 

on the imaging model (e.g., Fourier transform) and prior constraints (e.g., sparsity and low 

rankness), and then applies an optimization algorithm to solve the inverse problem and find 

the desired image from the measured data. The optimization algorithm is typically iterative 

in nature. In unrolling-based deep learning methods, such an iterative reconstruction 

algorithm is unrolled to a deep network in which all free parameters and functions can be 

learned through training. The training of the deep network can be performed through the 

back-propagation of the training data. In this way, the topology of the deep network is 

determined by the iterations of the algorithm. As a result, the unrolling-based deep learning 

reconstruction methods allow understanding of the relationship between the network 

topology and performance.

B. Examples

The major differences among the unrolling-based methods lie in the architectures of the 

networks, which are derived from different optimization algorithms. In this section, we will 
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review several key unrolling-based deep learning methods for fast MR imaging according to 

three different imaging models: 1) generalized CS reconstruction model; 2) denoising 

model; 3) general optimization model. A summary of these methods is given in Table 1.

1) Generalized CS reconstruction model—In the context of a CS MRI 

reconstruction model using Eq. (6), the regularization term can be expressed as

G(m) = ∑
l = 1

L
λlg(Dlm), (7)

where the regularization term is extended to L terms, and Dl is a transformation matrix (e.g., 

discrete wavelet transform for a sparse representation); g(·) is a nonlinear operator (e.g., lq-

regularizer (q ∈ [0,1]) to promote sparsity); and λl is the regularization parameter.

① ADMM-net: ADMM-net was designed by unrolling the alternating direction method 

of multipliers (ADMM) algorithm to learn the regularization parameters of CS-MRI 

reconstruction. The original network, denoted as the basic-ADMM-CSNet, was then 

generalized to Generic-ADMM-CSNet [5]. The improved network further learns the image 

transformations and nonlinear operators in the regularization function. operators in the 

regularization function.

In basic-ADMM-CSNet, a set of independent variables z = {z1, z2, ⋯, zL} is introduced in the 

transform domain as zl = Dlm. The transform Dl aims to sparsify the image such that zl is 

sparse. Based on the model (6) and the regularization term (7), the ADMM iterations can 

thus be written as

argmin
m

1
2‖Am − f‖2

2 + ∑
1 = 1

L ρl
2 ‖Dlm + βl − zl‖2

2

argmin
zl

∑
l = 1

L
λlg(zl) + ρl

2 ‖Dlm + βl − zl‖2
2

βl βl + ηl(Dlm − zl)

. (8)

The solution is

M(n + 1):m(n + 1) =
[ATf + ∑l = 1

L ρlDl
T(zl

(n) − βl
(n))]

[ATA + ∑l = 1
L ρlDl

TDl]

Z(n + 1):zl
(n + 1) = S(Dlm(n + 1) + βl

(n); λl/ρl)

P(n + 1):βl
(n + 1) = βl

(n) + ηl
(n + 1)(Dlm(n + 1) − zl

(n + 1))

, (9)

where S( ⋅ ) is a nonlinear proximal operator of g(·) with parameters λl/ρl .

In Generic-ADMM-CSNet, the independent auxiliary variables z = {z1, z2,...,zL} are 

introduced in the image domain instead. The iterations of the ADMM algorithm become
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argmin
m

1
2‖Am − f‖2

2 + ρ
2‖m + β − z‖2

2

argmin
z

∑
l = 1

L
λlg(Dlz) + ρ

2‖m + β − z‖2
2

β β + η̃(m − z)

, (10)

thereby yielding the solution:

M(n + 1):m(n + 1) =
ATf + ρ(z(n) − β(n))

(ATA + ρI)
Z(n + 1):z(n + 1, i + 1) = μ1z(n, i) + μ2(m(n + 1) + β(n))

− ∑
l = 1

L
λ̃l

(n + 1)(Dl
(n + 1))THl

(n + 1)(Dl
(n + 1)z(n, i))

P(n + 1):β(n + 1) = β(n) + η̃(n + 1)(m(n + 1) − z(n + 1))

, (11)

Where H(·) refers to a nonlinear operation corresponding to the gradient of the regularizer 

g(·); i refers to the i-subiteration in each Z(n+1). In the original CS formulation, Dlz is made 

to be sparse. However, after the iterations are unrolled to a network, there is no explicit 

constraint to make Dlz sparse in the network.

In both Eqs. (9) and (11), the image m, auxiliary variables z, and multiplier β are iteratively 

updated. Although the computation performed in each iteration of both methods may be 

slightly different due to different representations of auxiliary variables, the data flow graph 

of the above two ADMM-nets is the same, which is illustrated in Fig. 2. As shown in Fig. 2, 

the n-th iteration in the data flow graph corresponds to the n-th iteration of the ADMM 

algorithm. Specifically, in each iteration of the graph, there are three types of nodes 

corresponding to three modules in ADMM: the reconstruction module (M), denoising 

module (Z), and multiplier update module (P). In basic-ADMM-CSNet, all parameters (ρl, 

λl, ηl) in the original ADMM algorithm are learnable, while Generic-ADMM-CSNet also 

learns the image transformation Dl, which is implemented linearly by convolving with 

kernels, and the nonlinear operator g(·), which is encoded by a piecewise linear function that 

is determined by a set of control points.

② Variational-net: To allow fast and high-quality reconstruction of clinical accelerated 

multichannel MR data, the variational network (Variational-net) [6] was developed. This 

network combines the mathematical structure of variational models for generalized CS 

reconstruction with deep networks to learn the regularization parameters, image 

transformations, and nonlinear operators.

In Variational-net, the solution to Eq. (6) is iteratively updated in the gradient decent 

direction as
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m(n + 1) = m(n) − ∑
l = 1

L
(Dl

(n))THl
(n)(Dl

(n)m(n))

− α(n)AT(Am(n) − f),
(12)

where Hl
(n) is the activation function corresponding to the first-order derivative of the 

nonlinear operator gl; transformation Dl
(n) can be modeled as a convolution with filter kernels 

of Kl; and α(n) is the step size of the gradient decent. The parameter λl in (7) is implicitly 

contained in the activation functions. Here, the encoding matrix A consists of sub-Nyquist 

sampled Fourier transform and coil sensitivities.

Variational-net is obtained by unfolding the iterations of Eq. (12), which is depicted in Fig. 

3. As the MR data are complex, the convolution includes a real part and an imaginary part. 

The transpose operation (Dl
n)T  in Eq. (12) can be implemented as a convolution with the 

filter kernels of Kl, but rotated by 180°. The parameters learned in Variational-net are the 

filter kernels Kl
n, the activation functions Hl

n, and the step size α(n).

It is worth noting that the coil sensitivities need to be precalculated and fed into the 

Variational-net.

③ ISTA-net: ISTA-net [7] aims to solve the general CS reconstruction problem with L1 

regularization g( . ) = ‖ ⋅ ‖1 in (7). It is an unrolled version of the iterative shrinkage-

thresholding algorithm (ISTA) to learn the image transformation and parameters that are 

involved in the original algorithm of ISTA. ISTA solves the optimization problem in Eq. (6) 

as

r(n + 1) = m(n) − ρAT Am(n) − f (13)

m(n + 1) = argmin
m

1
2‖m − r(n + 1)‖2

2 + λ‖Dm‖1, (14)

where ρ is the step size. It is difficult to obtain m(n + 1) if the transformation D is 

nonorthogonal or even nonlinear.

ISTA-net is an unrolled version of the traditional ISTA of Eq. (13) and Eq. (14) but 

overcomes the abovementioned drawback. With a general form of image transformation 

D(m), the m(n+1) module in Eq. (14) becomes

m(n + 1) = argmin
m

1
2‖D(m) − D(r(n + 1))‖2

2 + θ‖D(m)‖1, (15)

where θ is the merged parameter related to λ and D(·). The image can be obtained as

m(n + 1) = D(soft(D(r(n + 1)), θ)), (16)
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where D( ⋅ ) is the left inverse of D(·) and soft(·) denotes soft thresholding.

The architecture of the ISTA-net is illustrated in Fig. 4. Each iteration of ISTA-net consists 

of two modules: r(n+1) module and m(n+1) module. The r(n+1) module is the same as Eq. 

(13), except that the step size ρ is learnable in each iteration. In the m(n+1) module, D(·) is 

modeled as two convolutional operators that are separated by a ReLU operator, as depicted 

in Fig. 4; D( ⋅ ) exhibits a structure symmetric to that of D(·).

ISTA-net is designed for the general CS reconstruction problem, not for MR reconstruction 

only. Different from ADMM-net and Variational-net, ISTA-net adopts an l1-regularizer for 

the sparse prior, which is restricted by ISTA.

2) Denoising model: The denoising model enforces m to be well-approximated by the 

“denoised” image C(m) in which aliasing artifacts and noise are removed. The regularization 

term can be formulated as

G(m) = λ‖m − C(m)‖2
2 . (17)

With the alternating minimization algorithm (AM), the image can be reconstructed as

m(n + 1) = argmin
m

1
2‖Am − f‖2

2 + λ‖m − z(n)‖2
(18)

z(n + 1) = C(m(n + 1)) . (19)

The denoising in (19) can be achieved using a CNN unit. For the single-channel acquisition, 

the data consistency (DC) subproblem (18) has a closed-form solution:

m(n + 1) = (1 + λATA)−1(z(n) + λATf) . (20)

In DCCNN [9], a deep cascade of convolutional neural networks for dynamic MR 

reconstruction, iterations are unrolled that alternate between Eqs. (20) and (19). Another 

method, MoDL (model-based deep learning) [8], solves the DC subproblem (18) using the 

conjugate gradient (CG) algorithm to handle more complex forward models (e.g., 

multichannel MRI). The CG process does not need to be unrolled to a network, as there are 

no trainable parameters in it. In addition, DC is integrated as a layer into the network. Fig. 5 

shows the architecture of the unrolled network derived from a denoising model.

3) General optimization model—Noted that Eq. (6) is a special case of a more general 

model:

minF(Am, f) + G(m) (21)

if F(Am, f) = 1
2‖Am − f‖2

2 . Introducing an auxiliary dual variable d, the optimization problem 

in Eq. (21) can be solved by the primal-dual hybrid gradient algorithm (PDHG) as
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dn + 1 = proxα[F*](dn + αAm̄n)
mn + 1 = proxτ[G](mn − τA*dn + 1)
m̄n + 1 = mn + 1 + θ(mn + 1 − mn)

(22)

where α, τ and θ are the algorithm parameters, and prox is the proximal operator.

PD-net, the learnable primal-dual method proposed by Adler and Öktem for tomographic 

reconstruction [10], is the unrolled version of the primal-dual hybrid gradient algorithm and 

has been applied to MRI reconstruction [11]. In PD-net, the proximal operators are replaced 

with parameterized operators Γ and Λ whose parameters can be learned via training. In 

addition, the fixed variable combinations inside the operators Γ and Λ are also relaxed. 

Therefore, the PD-net can be formulated as unrolled iterations alternating between primal 

updating (mn+1) and dual updating (dn + 1):

dn + 1 = Γ(dn, Amn, f)
mn + 1 = Λ(mn, A*dn + 1) . (23)

The architecture of the PD-net is shown in Fig. 6. It is worth mentioning that the data fidelity 

term in the PD-net is no longer the l2 norm of the estimated error at the sampled locations as 

in Eq. (6) but is implicitly learned from the training data instead, so is the regularization 

term. In particular, to ensure data fidelity, PD-net directly conveys the acquired data to the k-

space-based CNN as an input rather than using the model-based minimization as in (18).

IV. DEEP LEARNING APPROACHES NOT BASED ON UNROLLING

Most deep learning methods that are not based on unrolling employ certain standard neural 

networks to learn the mapping between input (undersampled k-space data or aliased images) 

and output (clean images). In this section, we start with deep learning methods that adopt 

standard networks only for fast MR imaging (some are summarized in Table 1) and then 

introduce methods that also incorporate additional MRI domain knowledge into the standard 

networks [13–28].

A. Standard networks for MR reconstruction

The idea of using CNN for MR imaging was first proposed by Wang et al. [13]. This method 

directly uses a standard CNN (1) to learn the network-based mapping between the aliased 

images and the clean images. In most existing works, the aliased image, which is the inverse 

Fourier transform from undersampled k-space data, is used as the network input, and the 

desired image from the fully sampled k-space data is used as output. The mapping is learned 

through standard networks, such as MLP, U-net, and ResNet. Due to its outstanding 

performance in image-to-image translation, GAN has been exploited in MRI reconstruction 

[16, 17] to correct the aliasing artifacts in the zero-filled reconstruction from undersampled 

MR data.
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RAKI [20] uses a 3-layer CNN to learn the k-space interpolation for parallel imaging, and 

then obtains the reconstructed image from the interpolated full k-space data. AUTOMAP 

[15] directly takes the k-space data as the network input and provides the reconstructed 

image as network output, which provides an end-to-end formation for image reconstruction. 

It uses fully connected layers to perform the Fourier transform, a global transform, followed 

by convolutional layers.

The deep networks are also used in the estimation of quantitative tissue parameters from 

recorded complex-valued data. Such as in MR quantitative parameter mapping [25, 26], 

quantitative susceptibility mapping [27], and magnetic resonance fingerprinting [28]. The 

networks can be designed by incorporating the physical model of the quantitative parameters 

to be mapped [26]. QSMnet [27] constructs a 3D CNN with the architecture of U-Net to 

generate high-quality susceptibility source maps from single orientation data. In addition, 

DRONE [28] adopts a 4-layer MLP to extract tissue properties and predict quantitative 

parameter values (T1 and T2) from 2D MRF data.

B. Domain knowledge from MRI

Although direct adoption of standard neural networks for MRI reconstruction has been the 

first attempt, further development with additional domain knowledge can improve the 

performance of standard networks.

1) Fourier transform—In the Cartesian sampling scenario, an image can be 

reconstructed from fully sampled k-space data directly by an inverse Fourier transform. 

Most existing deep learning approaches use the aliased image, which is the inverse Fourier 

transform of the undersampled k-space data, as the input of the network. By doing that, the 

methods take advantage of the knowledge that is unique to MRI.

2) Regularization term—In [13], Wang et al. proposed two options for applying the 

network-based approach with the CS-based approach. One option is to use the image that is 

reconstructed from the learned network as the initialization for the CS reconstruction 

method in Eq. (6). The other option is to use the image that is generated by the network as a 

reference image for regularization. The formulation of the latter option can be described as

m = argmin
m

1
2‖Am − f‖2

2 + G(m) + α‖C ATf; Θ − m‖2
2 , (24)

where α is the regularization parameter. This approach differs from the unrolling-based 

methods in that (24) is solved by the conventional CS algorithms with the parameters and 

the regularization term G(m) predefined, whereas in unrolling-based methods, (24) is solved 

by a deep network with the parameters and regularization term learned via training.

3) Cross-domain knowledge—In traditional image reconstruction approaches such as 

CS, data consistency in the k-space is one of the most critical constraints. Such cross-

domain prior information can also be very useful when being incorporated into standard 

networks. Since most learning methods use images as the input and output of the network, 

the images need to be transformed into the k-space to enforce data consistency. KIKI-net 
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[24] iteratively alternates between the image domain (I-CNN) and the k-space (K-CNN) 

where the data consistency constraint is enforced in an interleaving manner, as shown in Fig. 

7. Each K-CNN is trained to minimize a loss, which is defined as the difference between the 

reconstructed and fully sampled k-space data, thereby taking full advantage of the k-space 

measurements. KIKI-Net addresses the issues that some structures are already lost in the 

network input if CNN is only trained in the image domain with the aliased image as the 

input.

4) Spatio-temporal correlations—In dynamic MRI, the temporal correlation has been 

shown to improve the reconstruction quality of the CS-based methods. To take advantage of 

such domain knowledge, a residual U-net structure with 3D convolution has been proposed 

for dynamic MRI [22]. An alternative approach is to employ a convolutional RNN to jointly 

exploit the dependencies of the temporal sequences and iterations [12]. Another approach of 

exploiting spatiotemporal correlations uses data sharing, in which the k-space data are 

shared among neighboring frames along the temporal direction [9].

V. SOME SIGNAL PROCESSING ISSUES

A. Theoretical analysis

Unlike constrained reconstruction with sparsity or low-rank constraints, a theoretical 

analysis for deep reconstruction is largely unexplored. Reference [19] provided a 

preliminary theoretical rationale for some existing deep learning architectures and 

components. That study used the concept of a convolutional framelet to explain deep CNN 

for inverse problems. The study showed that deep learning is closely related to annihilating 

filter-based approaches, by which the lifted Hankel matrix usually results in a low-rank 

structure that can be decomposed by using both nonlocal and local bases. Based on the 

framelet framework, for the deep network to satisfy the perfect reconstruction condition, the 

number of channels should exponentially increase with the layer, which is difficult to 

achieve in practice; when an insufficient number of filter channels is used instead, the 

network is performing a low-rank based shrinkage. Therefore, the depth of the network 

depends on the rank of the signal and the length of the convolution filter. On the other hand, 

the unrolling-based deep learning methods originate from well-accepted imaging models 

and therefore might provide more information on the relationship between the network 

topology and performance.

B. Generalizability and transfer learning

Machine learning can only capture what it has seen. If there were a significant difference 

between the statistical features of the training data and that of the testing data, the trained 

network would fail for the testing case. For example, the training stage should be performed 

every time the condition changes between the training and testing sets. However, it is not 

always possible to include all the cases in training. Knoll et al. [33] studied the 

generalizability of the trained Variational-net in the case of deviation between the training 

and testing data in terms of image contrast, SNR, and image content. In particular, when the 

contrast and SNR of the training data are quite different from those of the testing data, deep 

learning-based reconstruction has a substantial level of noise or yields slightly blurred 
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images with some residual artifacts. In addition, a Variational-net trained from regular 

undersampled data is easily generalized to randomly undersampled data, although the other 

way would introduce residual artifacts. It is worth noting that the above conclusion is based 

on the empirical results from a specific variation network in [6]. In-depth studies on more 

generalized settings are still needed.

In the scenario of a minor mismatch occurring between the training and testing data, transfer 

learning can be a solution. Transfer learning is defined as adapting or transferring an existing 

network learned from one problem to another problem through further learning. For 

example, based on the similarity between projection MR and CT, Han et al. proposed to train 

the network by using CT data and then adapting the network parameter for MR 

reconstruction with fine-tuning [18]. In most cases of transfer learning, additional fine-

tuning is necessary to achieve a performance that is nearly identical to the performance of 

the network that is trained directly in the testing condition with a large size of data.

C. Relationship with other learning-based approaches

Before deep learning became popular in MRI reconstruction, there had already been quite a 

few learning-based reconstruction methods, where the prior models for CS reconstruction 

are learned from some training data (e.g., [34–37]). These methods differ from the deep 

learning-based methods in that 1) there is no network structure in learning, 2) the prior 

comes from a specific mathematical model, and 3) few training data are needed. For 

example, in CS reconstruction with dictionary learning [34, 35], a linear transformation is 

learned using training data (simulated data from a theoretical model or low-resolution 

image). In CS reconstruction with manifold learning [36, 37], a highly nonlinear low-

dimensional manifold is learned from training data. These methods can also be viewed as 

machine learning-based approaches (e.g., kernel principal component analysis and manifold 

learning are all well-known machine learning methods) and can also benefit from the 

availability of large numbers of training samples.

D. Other issues in deep learning approaches

As MR data are complex-valued, most works separate the real and imaginary parts into two 

channels, whereas [21] separately trains the magnitude and phase networks. Even so, the 

complex-valued issue is still to be addressed.

The multichannel acquisition is a standard technology in clinical scans. To handle the data 

from multiple channels, [6] and [8] apply the precalculated coil sensitivities as the network 

parameters, while [14] reconstructs the image using the multichannel data as the input of the 

network. Different from other studies, [20] learns the k-space interpolation from the 

autocalibration signal without additional training data.

Cartesian sampling is commonly used in most deep learning MR reconstruction methods, as 

the transform can be performed efficiently through FFT. However, the non-Cartesian 

acquisition is less prone to motion artifacts and the aliasing pattern shows higher 

incoherence than Cartesian acquisition. There are only very few works that consider the non-

Cartesian scenario, due to the lack of implementation of the non-uniform FFT in any of the 

DL platforms (TensorFlow, PyTorch, etc.), and therefore, the training stage becomes very 

Liang et al. Page 14

IEEE Signal Process Mag. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



slow to converge. AUTOMAP [15] can reconstruct the image directly from the non-

Cartesian samples, as the forward operator non-uniform FFT is learned by the network. Han 

et al. provide an alternative approach to image reconstruction from a radial trajectory with 

the help of domain adaptation from CT projection [18].

Prospective validation is very important for evaluating a deep learning method in a real 

application. The works in [18], [20], and [6] provide the prospective experiment results. 

Nevertheless, most papers on deep learning reconstruction report their validation results on 

private data sets. As a result, it is difficult to achieve a clear benchmark and ranking among 

all methods for a given scenario.

VI. OUTLOOK

Although unrolling-based deep learning methods originate from the numerical algorithms, 

which have a convergence or asymptotic convergence guarantee, theoretic convergence is no 

longer valid for the unrolling-based methods due to naive unrolling (i.e., directly replacing 

functions by the network) and the dynamic nature of the network. Only a few works mention 

theoretic convergence and have analyzed the convergence behavior in theory [38]. Greater 

effort should be made to achieve rigorous mathematical derivations and analysis.

As introduced in Section III, rooted in the field of sparse coding [32], the unrolling-based 

deep learning methods have evolved gradually from learning the regularization parameters 

only to relaxing more constraints in the CS reconstruction formulation using learnable 

operators and functions. On the other hand, as introduced in Section IV, the deep learning 

reconstruction methods that are not based on unrolling has also evolved gradually from a 

“black box” of input to output using standard networks to well-designed networks that 

incorporate more domain knowledge. Relaxing more constraints in the unrolling-based 

approaches and incorporating more domain knowledge into standard networks are to be 

explored in parallel to improve the performance of MRI reconstruction.

Typically, the networks in MR reconstruction are trained in a fully supervised manner. Self-

supervised learning or even unsupervised learning could be exploited in the future. As some 

datasets are made publicly available, such as the fast MRI data that was released by NYU 

Langone Health and Facebook AI Research (https://fastmri.org/dataset), it becomes possible 

to benchmark and compare different networks in the same settings and to evaluate the 

performance of each network better.

Radiomics aims to extract extensive quantitative features from medical images by using 

data-mining algorithms and the subsequent analysis of these features for computer-aided 

diagnosis (CAD). With the emergence of deep learning, deep neural networks have been 

successfully utilized in radiomics for disease diagnosis [39]. On the other hand, as is 

discussed in the article, deep learning will significantly improve the quality of the 

reconstructed image, which will directly benefit CAD by making the features in the training 

and testing images more prominent. Another way to improve image quality is to optimize 

the data acquisition protocol. Deep learning can also contribute to this endeavor by learning 

the optimal acquisition protocol through training.
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Since images are not used for visual inspection in radiomics but are combined with other 

patient data to be analyzed by deep learning algorithms, it is conceivable that there is a 

synergistic opportunity to integrate deep reconstruction and radiomics for optimal diagnostic 

performance [40]. Deep learning can be applied to the entire end-to-end workflow from data 

acquisition, image reconstruction, radiomics, to the final diagnosis report. Such end-to-end 

workflow has significant potential to improve the diagnostic, prognostic, and predictive 

accuracy.

In conclusion, deep learning has demonstrated potential in MR image reconstruction. In only 

a few years, various networks have already been developed to take advantage of the unique 

properties of MRI. The overview of existing methods will inspire new developments for 

improved performance. Deep reconstruction will fundamentally influence the field of 

medical imaging.
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Figure 1. 
(a) Architecture of multilayer perceptron (MLP) with three layers. (b) Architecture of 

recurrent neural networks (RNN). (c) Architecture of generative adversarial networks 

(GAN).
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Figure 2. 
The data flow graph for the ADMM-nets. C: convolution; H, S : nonlinear operator; W: 

addition.
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Figure 3. 
Structure of Variational-net. Variational-net consists of N gradient decent steps. The 

undersampled k-space data, coil sensitivity maps and zero-filling image are fed into the 

network.

Liang et al. Page 22

IEEE Signal Process Mag. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Architecture of the ISTA-net. N denotes the iteration number. Each iteration has two 

modules that correspond to Eq. (13) and Eq. (16).
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Figure 5. 
Network architecture with the denoising model. DC is the layer of data consistency in Eq. 

(18).
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Figure 6. 
Architecture of PD-net. PD-net consists of two steps: dual step dn + 1 and primal step mn+1 

corresponding to Eq. (23).
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Figure 7. 
Architecture of KIKI-net.
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