Table 2.
The proposed VGG19+CNN architecture.
Layer (type) | Output Shape | Parameters |
---|---|---|
vgg19 (Functional) | (None, 7, 7, 512) | 20024384 |
reshape (Reshape) | (None, 7, 7, 512) | 0 |
conv2d (Conv2D) | (None, 7, 7, 128) | 1638528 |
activation (Activation) | (None, 7, 7, 128) | 0 |
conv2d_1(Conv2D) | (None, 7, 7, 128) | 409728 |
activation_1 | (None, 7, 7, 128) | 0 |
batch_normalization | ||
(BatchNormalization) | (None, 7, 7, 128) | 512 |
max_pooling2d | ||
(MaxPooling2d) | (None, 2, 2, 128) | 0 |
dropout (Dropout) | (None, 2, 2, 128) | 0 |
flatten (Flatten) | (None, 512) | 0 |
dense (Dense) | (None, 512) | 262656 |
dropout_1 (Dropout) | (None, 512) | 0 |
dense_1 (Dense) | (None, 4) | 2052 |
Total parameters: 22,337,860 | ||
Trainable parameters: 22,337,604 | ||
Non-trainable parameters: 256 |