Skip to main content
. 2021 Mar 19;132:104348. doi: 10.1016/j.compbiomed.2021.104348

Table 2.

The proposed VGG19+CNN architecture.

Layer (type) Output Shape Parameters
vgg19 (Functional) (None, 7, 7, 512) 20024384
reshape (Reshape) (None, 7, 7, 512) 0
conv2d (Conv2D) (None, 7, 7, 128) 1638528
activation (Activation) (None, 7, 7, 128) 0
conv2d_1(Conv2D) (None, 7, 7, 128) 409728
activation_1 (None, 7, 7, 128) 0
batch_normalization
(BatchNormalization) (None, 7, 7, 128) 512
max_pooling2d
(MaxPooling2d) (None, 2, 2, 128) 0
dropout (Dropout) (None, 2, 2, 128) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 512) 262656
dropout_1 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 4) 2052
Total parameters: 22,337,860
Trainable parameters: 22,337,604
Non-trainable parameters: 256