Table 2.
The proposed VGG19+CNN architecture.
| Layer (type) | Output Shape | Parameters |
|---|---|---|
| vgg19 (Functional) | (None, 7, 7, 512) | 20024384 |
| reshape (Reshape) | (None, 7, 7, 512) | 0 |
| conv2d (Conv2D) | (None, 7, 7, 128) | 1638528 |
| activation (Activation) | (None, 7, 7, 128) | 0 |
| conv2d_1(Conv2D) | (None, 7, 7, 128) | 409728 |
| activation_1 | (None, 7, 7, 128) | 0 |
| batch_normalization | ||
| (BatchNormalization) | (None, 7, 7, 128) | 512 |
| max_pooling2d | ||
| (MaxPooling2d) | (None, 2, 2, 128) | 0 |
| dropout (Dropout) | (None, 2, 2, 128) | 0 |
| flatten (Flatten) | (None, 512) | 0 |
| dense (Dense) | (None, 512) | 262656 |
| dropout_1 (Dropout) | (None, 512) | 0 |
| dense_1 (Dense) | (None, 4) | 2052 |
| Total parameters: 22,337,860 | ||
| Trainable parameters: 22,337,604 | ||
| Non-trainable parameters: 256 | ||