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Abstract

Background: Cancer treatment is increasingly dependent on biomarkers for prognostication and treatment
selection. Potential biomarkers are frequently evaluated in prospective-retrospective studies in which biomarkers are
measured retrospectively on archived specimens after completion of prospective clinical trials. In light of the high
costs of some assays, random sampling designs have been proposed that measure biomarkers for a random sub-
sample of subjects selected on the basis of observed outcome and possibly other variables. Compared with a
standard design that measures biomarkers on all subjects, a random sampling design can be cost-efficient in the
sense of reducing the cost of the study substantially while achieving a reasonable level of precision.

Methods: For a biomarker that indicates the presence of some molecular alteration (e.g., mutation in a gene), we
explore the use of a group testing strategy, which involves physically pooling specimens across subjects and
assaying pooled samples for the presence of the molecular alteration of interest, for further improvement in cost-
efficiency beyond random sampling. We propose simple and general approaches to estimating the prognostic and
predictive values of biomarkers with group testing, and conduct simulation studies to validate the proposed
estimation procedures and to assess the cost-efficiency of the group testing design in comparison to the standard
and random sampling designs.

Results: Simulation results show that the proposed estimation procedures perform well in realistic settings and that
a group testing design can have considerably higher cost-efficiency than a random sampling design.

Conclusions: Group testing can be used to improve the cost-efficiency of biomarker studies.
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Background
Biomarkers and biomarker studies
A biomarker is “a characteristic that is measured as an
indicator of normal biological processes, pathogenic pro-
cesses, or responses to an exposure or intervention” [1].
Biomarkers play increasingly important roles in the
treatment of cancer and other disease conditions [2–4].

A biomarker is said to be prognostic if it is associated with
clinical outcomes in the absence of therapy or in the set-
ting of some therapy that most patients are likely to re-
ceive (e.g., standard of care). A biomarker is said to be
predictive if it is related to the effect of one treatment ver-
sus another. A predictive biomarker must be prognostic
for at least one of the two treatments being compared. On
the other hand, a prognostic biomarker does not need to
be predictive. Both types of biomarker are of great interest
in contemporary clinical research and practice.
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The prognostic or predictive value of a biomarker can
be evaluated in a variety of study settings with varying
levels of evidence [5]. The highest level of evidence is
attained by a fully prospective clinical study in which pa-
tients are prospectively enrolled, treated, and followed
for clinical outcomes, with specimens collected at base-
line and assayed in real time for marker values. Such a
study can be highly expensive and may take many years
to complete. By the time the study is completed, the bio-
marker may have become obsolete. A practical alterna-
tive to this fully prospective approach is a two-phase
prospective-retrospective (P-R) clinical study which dif-
fers from a fully prospective study in that baseline speci-
mens are archived after collection and assayed later for
specific biomarkers [5]. This P-R approach can save a
great deal of time for biomarker researchers by allowing
them to focus their efforts on assaying archived speci-
mens from completed clinical trials. This approach has
been used successfully to validate KRAS as a predictive
biomarker in colorectal cancer [6, 7] and is now com-
monly adopted for biomarker studies [5, 8].
P-R studies are time-efficient but can be rather costly

due to the high costs of some molecular assays such as
next generation sequencing [9]. To improve the cost-
efficiency of P-R studies, random sampling (RS) designs
have been proposed that measure biomarkers for a ran-
dom sub-sample of subjects selected on the basis of ob-
served outcome and possibly other variables. Examples
of RS designs include the case-cohort and nested case-
control designs [10, 11]. If the outcome of interest is an
infrequent event, it is generally advisable to over-sample
cases (i.e., subjects who had the event) for biomarker
measurement. The RS design has the potential to be
cost-efficient in the sense of attaining a higher level of
precision on a per-assay basis than the standard design
(for example, using 50% of the assays to produce 60% of
the precision as compared to the standard design). On
the other hand, it does not make use of all available
specimens, raising questions about the possibility of fur-
ther improvement.

Group testing
In this article, we explore the use of group testing (GT)
to further improve the cost-efficiency of P-R studies (be-
yond the RS design) when the biomarker of interest indi-
cates the presence of some molecular alteration (e.g.,
mutation in a gene). GT refers to the practice of physic-
ally pooling specimens across subjects and assaying
pooled samples for the presence of the molecular alter-
ation in the pool. For an assay with negligible error, a
positive test result for a pooled sample would indicate
that the molecular alteration is present in one or more
subjects in the pool, while a negative test result would
indicate the contrary. Since its introduction by Dorfman

[12] as a cost-efficient way of screening for syphilis, GT
has been applied to many different areas of biomedical
research including virology [13–15], genetics [16–19],
drug development [20], and most recently Covid-19
[21–23]. In particular, the feasibility and performance of
GT for detecting mutations in tumor have been investi-
gated with promising results [17–19]. Possible motiva-
tions for GT include cost-efficiency, statistical efficiency
[24, 25], limited availability of specimens, and confiden-
tiality concerns [26]. Some authors have considered the
use of GT in retrospective epidemiologic studies [25,
27], but the potential utility of GT in P-R biomarker
studies seems largely unnoticed.
This commentary provides a statistical investigation of

the potential utility of GT to improve the cost-efficiency
of P-R biomarker studies beyond that achieved by the
RS design. Efficiency comparisons will be made with or
without adjusting for the number of assays required. We
will consider a simple yet common situation with a di-
chotomous outcome, where GT is performed on a di-
chotomous biomarker in an outcome-dependent fashion,
under the assumption that assay error is negligible. We
extend the methods in References [25, 27] to this situ-
ation and develop simple procedures for estimating the
prognostic or predictive value of a biomarker measured
by GT. The main ideas are described in the text with
technical details provided in an online supplement.
Simulation studies are conducted to evaluate the pro-
posed estimation procedures as well as the statistical ef-
ficiency and cost-efficiency of the GT design in
comparison to the standard design and the RS design.

Study setting
The ideas will be illustrated using the ECOG-ACRIN
Cancer Research Group trial E1900 (NCT00049517), a
randomized clinical trial comparing high-dose (HD)
daunorubicin (90 mg/m2) with standard-dose (SD)
daunorubicin (45 mg/m2) for patients 17–60 years of age
with de novo untreated acute myeloid leukemia [28]. A
total of 657 patients were randomized in a 1:1 ratio and
followed for a median of 80.1 months. The trial demon-
strated significant benefits of HD versus SD with respect
to overall survival (hazard ratio 0.74; 95% CI 0.61–0.89;
P = 0.001) and complete remission (odds ratio 1.79; 95%
CI 1.27–2.52; P = 0.001). For illustration, we will use
complete remission as the dichotomous outcome of
interest, even though it was not the primary outcome of
the trial. The trial had several biomarkers of interest, in-
cluding the FLT3-ITD internal tandem duplication vari-
ant and mutation in DNMT3A, both of which were
present in 24% of the trial participants. Figure 1 shows
the observed complete remission rates for HD and SD in
each biomarker sub-group. Both biomarkers were
assayed using PCR amplification and bidirectional
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Sanger sequencing [29]. Because such assays have near-
perfect sensitivity and specificity [30], we will focus on
perfect assays in the main text and present estimation
methods and simulation results for less-than-perfect as-
says in the online supplement.

Methods
Evaluating a prognostic biomarker
Evaluation of a prognostic biomarker, say X, usually fo-
cuses on its association with an outcome variable, say Y,
for a given treatment, which is fixed in this section and
therefore suppressed from the notation. We assume that
X is a binary indicator of some molecular alteration (e.g.,
mutation); so X = 1 if the alteration is present and 0
otherwise. A patient is said to be “marker-positive” if
X = 1 and “marker-negative” if X = 0. For simplicity, we
assume here that Y is also binary (0 or 1) with Y = 1
representing treatment response (e.g., complete remis-
sion). A patient with Y = 1 is said to be a responder. In
this setting, the association between X and Y may be
assessed by comparing the marker-specific response
rates p1 and p0, where px = P(Y = 1| X = x), x = 0, 1. Com-
mon measures of association include the log-odds ratio
log[p1(1 − p0)/{p0(1 − p1)}], the log-ratio log(p1/p0), and
the difference p1 − p0 [31, 32]. Each of these can be writ-
ten as g(p1) − g(p0), where g is, respectively, the logit
function, the log function, or the identity function.
Suppose a clinical trial has been completed to yield

outcome data for a random sample of n subjects (either
in a one-arm trial or in one arm of a multi-arm trial), to-
gether with archived specimens available for biomarker
studies. As shown in Fig. 2a, a standard P-R study of the
biomarker X would entail assaying all specimens of indi-
vidual subjects and measuring the biomarker for each in-
dividual subject. From such data it is straightforward to
estimate p1 (p0) as the proportion of responders among

the marker-positive (negative) subjects, which can then
be substituted into any measure of association. For illus-
tration, the upper portion of Table 1 shows point esti-
mates and standard errors of the three association
measures mentioned earlier for the two biomarkers
(FLT3-ITD and DNMT3A) in the two treatment groups
(HD and SD) of the E1900 trial.
Under the RS design, subjects are selected randomly,

typically in an outcome-dependent manner, for measure-
ment of X, as illustrated in Fig. 2b. Let n1 (n0) denote
the total number of responders (non-responders) in the
trial, and let m1 (m0) denote the number of responders
(non-responders) to be selected for measurement of X. If
treatment response is rare (i.e., n1 is very small), it is
common to select all responders (i.e., m1 = n1) and a
comparable number of non-responders. Similar consid-
erations apply to the opposite situation where treatment
non-response is rare and n0 is very small. The RS design
permits direct estimation of the prevalence of marker-
positives among responders and non-responders, for-
mally defined as the conditional probabilities qy = P(X =
1| Y = y), y = 0, 1. Specifically, q1 (q0) is estimated by the
proportion of marker-positives among the m1 re-
sponders (m0 non-responders) selected for biomarker
measurement. These estimates alone are sufficient for
estimating the odds ratio for X and Y. For other mea-
sures of association, Bayes’ theorem can be used to ob-
tain estimates of p1 and p0, which can then be
substituted into any measure of association. These and
other technical details are provided in the online
supplement.
The GT design is a generalization of the RS design

which allows more subjects to be assayed, though not
necessarily on an individual basis. Figure 2c gives an ex-
ample GT design for the same P-R study with the same
numbers of assays for responders (m1) and non-

Fig. 1 Observed complete remission rates by treatment and marker status for two biomarkers (FLT3-ITD and DNMT3A) in the E1900 trial
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responders (m0) as required by the RS design in Fig. 2b.
Compared to the RS design, the GT design allows assay-
ing twice as many responders and non-responders with
the potential to produce more information. In general,
the GT design is a stratified (by outcome) pooling de-
sign, and the pool sizes (i.e., number of subjects in a
pool) for responders and non-responders may or may
not be the same. If the pool size is equal to 1 in both
strata, the GT design reduces to the RS design. In each
stratum of the GT design, the marker prevalence qy can
be estimated with pooled assay data using a maximum

likelihood approach [20]. These estimates can be used in
the same manner as in the RS design to estimate any
measure of association between X and Y.
These designs are compared in a simulation study

mimicking the E1900 trial. A separate simulation experi-
ment is conducted for each combination of treatment
group (HD or SD) and biomarker (FLT3-ITD or
DNMT3A). Each experiment consists of 10,000 replicate
trials in which T is fixed, X is generated randomly with
P(X = 1) ≈ 0.24 (observed proportion), Y is generated
conditionally on (T, X) according to the observed

Fig. 2 Schematics for the standard (a), random sampling (b) and group testing (c) designs for evaluating a prognostic biomarker
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proportions in Fig. 1, and the sample size is the same as
the actual size of the treatment group (327 for HD; 330
for SD). Each simulated trial is used to assess the prog-
nostic value of X under the standard, RS and GT de-
signs. The RS design is implemented in two versions
which assay approximately one half (RS-2) or one third
(RS-3) of the trial participants and which attempt to
assay equal numbers of responders and non-responders
to the extent possible. Accordingly, the GT design is also
implemented in two versions which match the RS de-
signs in the number of assays and which attempt to use
a group size of 2 (GT-2) or 3 (GT-3) to the extent
possible.

Evaluating a predictive biomarker
We now consider the problem of evaluating a predictive
biomarker for choosing between an experimental treat-
ment (T = 1) and a standard treatment (T = 0) in a ran-
domized clinical trial. Let X and Y be defined as in the
last section and note that T is independent of X by
randomization. The predictive value of X can be quanti-
fied by the T- X interaction in a regression model relat-
ing Y to (T, X) . For a binary Y, such a regression model
may be specified as

g P Y ¼ 1jT ;Xð Þf g ¼ β1 þ βTT þ βXX
þ βTXTX; ð1Þ

where g is a specified link function which is commonly
chosen to be the logit, log or identity function. For any
link function, the interaction coefficient βTX can be
interpreted as a “difference in difference”:

βTX ¼ g P11ð Þ − g P10ð Þf g − g P01ð Þ − g P00ð Þf g; ð2Þ
where ptx = P(Y = 1| T = t, X = x), t, x = 0, 1.
Suppose a randomized clinical trial has been com-

pleted to produce treatment and outcome data on a ran-
dom sample of n subjects, together with archived

specimens available for measurement of X. A standard
P-R biomarker study would simply measure X for each
individual subject in the trial, which requires a total of n
assays. The resulting data can be used to fit model (1)
and estimate βTX using standard software. Alternatively,
one can estimate each ptx as the proportion of re-
sponders among subjects in the T = t treatment group
with marker status X = x, and substitute these estimates
into Eq. (2) to estimate βTX. These two approaches are
generally equivalent. The lower portion of Table 1 shows
the results (point estimates and standard errors) of esti-
mating βTX for the aforementioned three link functions
in the E1900 trial.
The RS design involves random selection of subjects

for measurement of X, which may be stratified on treat-
ment and outcome; this can be illustrated with two cop-
ies of Fig. 2b, one for each treatment group. Let nty
denote the total number of subjects available in the (T =
t, Y = y) stratum, and let mty denote the number of sub-
jects to be selected for measurement of X in the same
stratum. Conventional wisdom suggests that the mty ’s
should be made comparable to each other, which may
require over-sampling subjects in small strata. The RS
design permits direct estimation of the prevalence of
marker-positives in each treatment-outcome stratum,
formally defined as the conditional probabilities qty =
P(X = 1| T = t, Y = y), t, y = 0, 1. Specifically, each qty is
estimated by the proportion of marker-positives among
the mty subjects in the (T = t, Y = y) stratum who are se-
lected for biomarker measurement. For the logit link,
these estimates suffice for estimating βTX. For other link
functions, Bayes’ theorem can be used to combine these
estimates of qty ’s with the fully observed treatment and
outcome data to estimate all ptx ’s and hence βTX.
A GT design in this context is essentially a stratified

(by treatment and outcome) pooling design and can be
thought of as two copies of Fig. 2c, one for each treat-
ment group. Compared with an RS design with the same
number of assays (mty) in each treatment-outcome
stratum, a GT design with pool size 2 allows twice as
many subjects to be assayed (though not on an individ-
ual basis) in an attempt to produce more information. In
general, a GT design may prescribe pooling in some or
all treatment-outcome strata, and the pool size may or
may not vary across strata. The RS design can be seen as
a special type of GT design in which the pool size is
equal to 1 in each stratum. In each treatment-outcome
stratum of a general GT design, the marker prevalence
qty can be estimated with pooled assay data using a max-
imum likelihood approach [20]. These estimates can be
used in the same manner as in the RS design to estimate
βTX for any link function.
These designs are compared via simulation in the setting

of the E1900 trial, with a separate simulation experiment

Table 1 Point estimates (standard errors) of various measures of
association and interaction in the E1900 trial

Parameter Type Treatment Measure/link FLD3-ITD DNMT3A

Association HD log-OR −0.06 (0.31) 0.63 (0.33)

log-ratio −0.02 (0.09) 0.16 (0.08)

difference −0.02 (0.06) 0.12 (0.06)

SD log-OR −0.58 (0.25) 0.18 (0.26)

log-ratio −0.26 (0.12) 0.07 (0.11)

difference −0.14 (0.06) 0.04 (0.06)

Interaction logit 0.52 (0.39) 0.46 (0.41)

log 0.24 (0.15) 0.09 (0.13)

identity 0.13 (0.09) 0.08 (0.08)

OR Stands for odds ratio
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for each biomarker (FLT3-ITD or DNMT3A). Each experi-
ment consists of 10,000 replicate trials in which T and X
are independently generated with P(T = 1) = 0.5 and P(X =
1) ≈ 0.24, Y is generated conditionally on (T,X) according
to the observed proportions in Fig. 1, and the sample size is
the same as the actual size of the trial (657). Each simulated
trial is used to assess the predictive value of X under the
standard, RS and GT designs. The RS design is imple-
mented in two versions which assay approximately one half
(RS-2) or one third (RS-3) of the trial participants and
which attempt to perform the same number of assays in
each stratum defined by (T,Y). Accordingly, the GT design
is also implemented in two versions which match the RS
designs in the number of assays and which attempt to use a
group size of 2 (GT-2) or 3 (GT-3) in each stratum.

Measures of performance
The performance of various designs is assessed in terms
of relative efficiency and relative cost-efficiency, both of
which are relative to the standard design, for estimating
the association/interaction measure of interest. The rela-
tive efficiency of a non-standard design is defined as the
ratio of the estimation variance for the standard design
to that for the non-standard design in question. A GT-2
design with a relative efficiency of 0.85, for example, re-
tains 85% of the information (i.e., precision) with half of
the assays required by the standard design. The relative
cost-efficiency of a non-standard design is defined as its
relative efficiency multiplied by the ratio of the number
of assays for the standard design to that for the non-
standard design in question. For example, a GT-3 design
with a relative cost-efficiency of 2 yields twice as much
information as does the standard design on a per-assay
basis.

Choosing a pool size
Implementing the GT design requires choosing a pool
size for each pooling stratum (based on outcome and
possibly treatment). While we do not attempt to answer
this question in full in this article, we provide some stat-
istical insights here on how to choose a pool size to
maximize cost-efficiency. As we explain in the online
supplement, the statistical efficiency for estimating an
association/interaction measure depends on the amount
of available information (known in statistics as Fisher in-
formation) about the prevalence of the biomarker in
each pooling stratum. Assuming that a fixed number of
assays has been allocated to a given stratum with suffi-
cient subjects/samples for all realistic pool sizes, the
question then becomes how to choose a pool size to
maximize the Fisher information about marker preva-
lence in a single pooled assay result. This per-assay
Fisher information can be calculated analytically as a
function of the true prevalence for each candidate pool

size. This information, together with a preliminary esti-
mate of the stratum-specific marker prevalence, provides
a starting point for choosing a stratum-specific pool size,
which can then be validated or revised on the basis of
other considerations such as number of subjects, sample
availability, pooling feasibility, and assay performance.

Results
Evaluating a prognostic biomarker
Simulation results for evaluating a prognostic biomarker
are shown in Table 2. As expected, all five designs yield
nearly unbiased estimates of association measures (re-
sults not shown). For the RS and GT designs, Table 2
presents simulation results of relative efficiency and rela-
tive cost-efficiency. The RS and GT designs are expected
to have relative efficiency less than 1 because they use
fewer assays than the standard design. Comparing RS
and GT designs with the same number of assays, the GT
design is clearly and substantially more efficient than the
RS design. For studying DNMT3A in the SD group, the
GT-3 design achieves 70–71% of the precision level of
the standard design while requiring only one third of the
assays, and is more than twice as efficient as the RS-3
design with the same number of assays. The other sce-
narios follow the same pattern with slightly different
numbers. In Table 2, the relative cost-efficiency ranges
between 0.94 and 1.27 for the RS designs, indicating that
the RS designs are either similar or superior to the
standard design in cost-efficiency. It is worth noting that
the GT designs attain much higher levels of relative
cost-efficiency (1.65–1.79 for GT-2; 1.94–2.40 for GT-3).
In summary, the results in Table 2 indicate that RS and
GT designs are usually cost-efficient as compared to the
standard design, and that GT designs can achieve much
higher cost-efficiency than RS designs.

Evaluating a predictive biomarker
Simulation results for evaluating a predictive biomarker
are shown in Table 3. As in the case of evaluating a
prognostic biomarker, estimation bias is negligible for
each interaction measure in each design (results not
shown). Therefore, our comparison of designs is focused
on (cost-)efficiency. For the RS and GT designs, Table 3
presents simulation results of relative efficiency and rela-
tive cost-efficiency. In this setting, the RS designs are
largely similar in cost-efficiency to the standard design,
with relative cost-efficiency ranging from 0.89 to 1.13. In
contrast, the GT designs are highly competitive in terms
of relative cost-efficiency (1.72–1.75 for GT-2; 2.10–2.25
for GT-3). Thus, the simulation results in Table 3 dem-
onstrate that GT designs are much more cost-efficient
than the standard and RS designs for estimating an
interaction measure. This can be an important advantage
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when the cost of a biomarker study is driven by the cost
of assays.

Choosing a pool size
Figure 3 shows the per-assay Fisher information as a
function of the true prevalence for four different pool
sizes (1 through 4); the specific formula for any pool size
is provided in the online supplement. Under the previ-
ously stated assumptions, Fig. 3 suggests that the opti-
mal pool size among the four pool sizes with maximal
cost-efficiency is 1 (i.e., no pooling) if the true preva-
lence of the biomarker is above 0.67 in the given
stratum, 2 if the prevalence is between 0.48 and 0.66, 3
if the prevalence is between 0.37 and 0.47, and 4 or
more if the prevalence is below 0.37.

Discussion
To the best of our knowledge, this work is the first at-
tempt to explore the use of GT in P-R biomarker stud-
ies. Our simulations and theoretical calculations have
demonstrated that the GT design can be highly cost-
efficient compared to both the standard design and the
RS design, at least in some situations. Higher cost-

efficiency translates into more efficient use of resources,
which is desirable even as assay costs decline owing to
technological advances.
We have assumed in the main text that assay error is

negligible. While this assumption may be reasonable for
some assays (such as the PCR-based assay employed in
the E1900 trial), many assays have less-than-perfect ac-
curacy, which should be incorporated in statistical esti-
mation. In the online supplement, we provide estimation
methods to account for possible misclassification and re-
port an additional simulation study on the performance
of GT designs when the assay is subject to misclassifica-
tion. The additional simulation results indicate that GT
designs generally achieve higher cost-efficiency than the
standard and RS designs, consistent with the results in
Tables 2 and 3.
An additional complication in the GT design is the

well-known dilution effect, which may result in de-
creased sensitivity for pooled samples [33]. The magni-
tude of the dilution effect depends on assay specifics and
may be expected to increase with pool size [34]. This
issue has been considered by several authors in different
contexts. For example, McMahan et al. [35] proposed a

Table 2 Simulation results for evaluating a prognostic biomarker in the setting of the E1900 trial

Biomarker Treatment Measure of
Association

Relative Efficiency Relative Cost-Efficiency

RS-2 RS-3 GT-2 GT-3 RS-2 RS-3 GT-2 GT-3

FLD3-ITD HD log-OR 0.61 0.38 0.87 0.76 1.22 1.13 1.75 2.29

log-ratio 0.57 0.34 0.87 0.76 1.15 1.03 1.74 2.26

difference 0.60 0.37 0.87 0.76 1.19 1.12 1.75 2.29

SD log-OR 0.50 0.33 0.82 0.65 1.01 0.98 1.65 1.94

log-ratio 0.49 0.31 0.83 0.66 0.98 0.94 1.65 1.97

difference 0.51 0.34 0.83 0.65 1.02 1.01 1.65 1.96

DNMT3A HD log-OR 0.64 0.41 0.89 0.80 1.27 1.23 1.79 2.40

log-ratio 0.60 0.39 0.89 0.78 1.20 1.17 1.78 2.33

difference 0.61 0.41 0.89 0.78 1.23 1.22 1.78 2.35

SD log-OR 0.50 0.33 0.85 0.71 1.00 1.00 1.70 2.13

log-ratio 0.50 0.33 0.85 0.70 0.99 0.99 1.70 2.11

difference 0.51 0.34 0.85 0.71 1.01 1.03 1.71 2.13

Table 3 Simulation results for evaluating a predictive biomarker in the setting of the E1900 trial

Biomarker Link for Relative Efficiency Relative Cost-Efficiency

Interaction RS-2 RS-3 GT-2 GT-3 RS-2 RS-3 GT-2 GT-3

FLD3-ITD logit 0.54 0.34 0.86 0.70 1.08 1.01 1.72 2.10

log 0.50 0.30 0.86 0.71 0.99 0.89 1.72 2.13

identity 0.53 0.34 0.86 0.70 1.06 1.01 1.72 2.11

DNMT3A logit 0.56 0.35 0.88 0.75 1.13 1.05 1.75 2.25

log 0.52 0.32 0.86 0.73 1.04 0.97 1.72 2.19

identity 0.54 0.35 0.87 0.74 1.08 1.03 1.74 2.22
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mechanistic modeling approach in which pool testing
error rates are estimated from a rich set of low-level
assay data; Hung and Swallow [36] and Zhang et al. [37]
postulate that the pool testing error rates are known
functions of the pool size and the number of diseased in-
dividuals in the pool. Further research is warranted on
how to incorporate the dilution effect in GT designs of
P-R biomarker studies.
We have assumed in this article that the biomarker is

a binary indicator of the presence of some molecular al-
teration. If this is not the case, the relationship between
a pooled assay result and individual assay results may
become more complicated and more difficult to deal
with in statistical estimation. For some continuous bio-
markers, a pooled assay result may be plausibly assumed
to be a (weighted) average of individual assay results,
possibly with a random measurement error [38]. Novel
statistical methods are needed to analyze GT designs
with biomarkers that do not follow the pool-individual
relationship assumed here.
Other areas of future research include development of

statistical methods for GT designs with non-binary out-
comes such as censored survival outcomes, which are
commonly encountered in oncology trials, and

optimization of GT designs for various combinations of
outcomes and biomarkers.

Conclusions
It has been demonstrated that group testing can sub-
stantially improve the cost-efficiency of prospective-
retrospective biomarker studies. Further research is war-
ranted to investigate the performance of the GT design
in a wider range of real-world applications and to extend
the statistical methods developed here to a greater var-
iety of estimation problems.
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