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Abstract

Breathing tracking is critical for the assessment of lung functions, exercise physiologies, and 

energy expenditure. Conventional methods require using a face mask or mouthpiece that is 

connected to a stationary equipment through a tube, restricting the location, movement, or even the 

posture. To obtain accurate breathing physiology parameters that represent the true state of the 

patient during different scenarios, a wearable technology that has less intervention to patient’s 

activities in free-living conditions is highly preferred. Here, we propose a miniaturized, reliable, 

and wide-dynamic ranged flow sensing technology that is immune to orientation, movement, and 

noise. As far as we know, this is the first work of introducing a fully integrated mask device 

focusing on breath tracking in free-living conditions. There are two key challenges for achieving 

this goal: miniaturized flow sensing and motion-induced artifacts elimination. To address these 

challenges, we come up with two technical innovations: 1) in hardware wise, we have designed an 

integrated flow sensing technique based on differential pressure Pneumotach approach and motion 

sensing; 2) in software wise, we have developed comprehensive algorithms based baseline 

tracking and orientation and motion compensation. The effectiveness of the proposed technology 

has been proven by the experiments. Experimental results from simulator and real breath 

conditions show high correlation (R2 = 0.9994 and 0.9964 respectively) and mean error within 

2.5% for Minute Volume (VE), when compared to values computed from reference methods. 

These results show that the proposed method is accurate and reliable to track the key breath 

parameters in free-living conditions.
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I. INTRODUCTION

BREATHING, or pulmonary ventilation, is a cardiopulmonary process, which is essential to 

the metabolism of human body. The primary role of the respiratory process is to support the 

gas exchange between the ambient air and the body by supplying O2 and removing CO2 

from the blood. Two processes are involved in the O2 and CO2 exchange pathway: 
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ventilation, a mechanical process that allows air move in and out of lung; and diffusion, a 

gas exchange process to transfer the O2 into and CO2 from alveoli, blood and cells.

The ventilation process carries rich health information, including pulmonary functions, 

breath biomarkers, and metabolic rate. Pulmonary function tests (PFTs) are used for lung 

disease diagnosis and spirometry is the most widely used PFTs method. By measuring 

breathing parameters such as vital capacity (VC), Forced vital capacity (FVC), Forced 

expiratory volume (FEV), Peak expiratory flow (PEF), and Tidal volume (TV) from breath 

patterns, lung diseases, such as Chronic Obstructive Pulmonary Disease (COPD) and 

asthma, can be diagnosed by spirometry [1]–[4]. The breath flow rate measurement is the 

key function of the spirometer [5]–[7].

Breath biomarkers are widely used for disease diagnosis [8]–[11]. Since the concentration of 

biomarkers can be influenced by the exhalation flow rate, in practice, breath analyzers are 

usually integrated with flow sensors. For example, it is recommended to measure fractional 

exhaled nitric oxide (FeNO) at exhalation flow rate of 50 ml/s [12]. Some breath biomarkers 

are required to be measured during the end of exhalation phase, i.e., the end-tidal region 

[13], [14]. Thus, breath flow rate tracking is also essential for accurately measuring the 

breath biomarkers concentration. As for metabolic rate or energy expenditure measurement, 

breathing tracking is the key for determining the minute ventilation and then the metabolic 

rate [15]–[17]. In summary, Breath flow rate monitoring is a key step in all of the above-

mentioned breath analysis based diagnosis techniques: spirometry, breath analyzers, and 

indirect calorimetry.

Measurement equipment itself can be an intervention to patient’s physical or psychological 

status. Maintaining a natural state in free-living condition is very important for measuring 

true physiology parameters. Wearable devices are considered to be the ideal solution for 

monitoring true physiology parameters in free living conditions since they provide 

unobtrusive sensing methods [18]–[20]. Smart watch, ring, glasses, and wrist band have 

been developed or even commercialized for monitoring heart rate, SpO2, or some 

biomarkers [21]–[27]. Since wearable devices can be easily deployed to a large population 

of users in their daily life, large scale epidemiologic studies can be performed. A recent 

study by analyzing the sleep patterns of millions of Fitbit users’ data provided insights of 

sleep and revealed how age, gender, and duration affect sleep quality [28].

As for breathing tracking, we believe a wearable, lightweight, less flow resistant mask 

device will be a competitive candidate. Though using wearables for breath tracking is 

attractive, there are two technical challenges to overcome: 1)find an effective way to deal 

with the motion-induced artifacts; 2) find a miniaturized, reliable, and wide dynamic range 

flow sensing technology. Motion-induced artifact is an intrinsic challenge for wearable 

healthcare devices. Several approaches have been applied to address this issue on different 

wearable platforms, such as respiratory rate monitor, photoplethysmography (PPG) monitor, 

and heart rate monitor [29]–[33]. Typically, redundant sensors such as gyroscope and 

accelerator are implemented in the device together with the signal processing algorithms for 

compensation and correction [34].
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There are three common ways for breath flow rate measurement: turbine flow meter, 

ultrasonic flow meter, and differential pressure Pneumotach approach. In the turbine flow 

meter, the volumetric flow rate is determined by measuring the speed of the rotor [7]. This 

method has wide dynamic range and low flow resistance, but the accuracy and response time 

are compromised because of the inertial effect. The ultrasonic flow meter measures the gas 

flow rate by detecting the frequency shift of an ultrasonic wave transmitted through flowing 

gas due to the Doppler effect [35]. This method is reliable and requires less maintenance, but 

it is expensive and sensitive to temperature. The differential pressure Pneumotach approach 

quantifies the gas volume flow rate by measuring pressure difference created by the orifice 

in the flow channel [36]–[38]. This method is a simple and fast-response way for breath flow 

rate measurement. Since there is no breath passing through the pressure sensor, the 

contamination to the sensor is avoided, which is important to preserve the stability and 

accuracy of the sensor. This method has been widely used for breathing detection, such as 

spirometers and metabolic carts. Since the size of the MEMS based pressure sensor is tiny 

and the dimension of the mechanical orifice can be small, the entire flow measurement 

module could be miniaturized for wearable breathing tracking. Moreover, MEMS based 

pressure sensor has wide tolerance to humidity and temperature variance in breath condition 

and is less power-hungry, which makes it attractive for wearable platforms.

Here we have reported an integrated flow sensing method based on differential pressure 

Pneumotach approach, motion sensing, and smart data processing algorithms for breathing 

tracking in free-living conditions. Results show that this technology can be easily 

implemented in a face mask for wearable breathing tracking in free-living conditions. The 

reported technology can be widely used in the development of wearable healthcare devices 

for pulmonary function diagnosis, breath biomarkers detection, and metabolic rate 

measurement.

II. SYSTEM DESIGN AND SENSING PRINCIPLE

A. Design of Differential Pressure-Based Flow Measurement Module

As shown in Fig. 1 (a), the differential pressure-based flow measurement module consists of 

a miniaturized Venturi tube and a D6F-P MEMS flow sensor for breath flow rate 

measurement. The Venturi tube is widely used for fluid flow rate measurement, such as 

water meter, gasoline meter, and gas flow meter. Its geometry helps to build pressure change 

by varying the diameter along the flow channel. As shown in Fig. 1 (b) and (c), the face 

mask covers the nose and the mouth of the patient. The face mask uses one-way valves in 

two channels to separate inhalation and exhalation during breathing. The Venturi tube is 

connected to the exhalation channel of the mask. Thus, only the exhalation flow is 

monitored by the MEMS sensor and recorded by the circuit.

B. Sensing Principle

As for this application, the relationship between differential pressure and the flow velocity 

can be quantitatively described by the simplified Bernoulli equation, assuming the potential 

energy component to be zero:
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ΔP = 1
2 pV 2

(1)

where ΔP is the pressure difference, ρ is the breath density, and V is the flow velocity at the 

orifices. The volume flow rate can be determined from the flow velocity at the orifice and 

the area of the orifice cross section.

Fig. 1 (d) shows the typical exhalation flow pattern measured by the MEMS sensor. The 

peaks correlate with the flow rate profile of each exhalation cycle. The flat baselines 

between two consecutive peaks indicate that there is no back flow via the Venturi tube 

during inhalation cycles since the gas moves into the mask through the inhalation channel.

III. MATERIALS AND METHODS

A. Materials

The lung simulator used ambient air for flow tests. Gas cylinder with breathing grade air 

(Praxair Certified Breath Air) was used to calibrate the flow module.

B. Apparatus

The D6F-P MEMS flow sensor from Omron Electronics Inc (Manufacturer Part number: 

D6F-P0010A2) was used as the differential pressure transducer to measure the pressure 

difference at the orifice of the flow channel in the configuration illustrated in Fig. 1. The 

D6F-P MEMS flow sensor is a compact (10 mm× 27 mm × 35 mm), light-weighted (8.5 g), 

high-accuracy (±5% FS) flow sensor with superior resistance to environments.

A low-power three-axis angular rate sensor, the MEMS Motion Sensor 3-Axis Digital 

Output Gyroscope from STMi-croelectronics (Manufacturer Part number: L3GD20H), is 

integrated in the circuit to measure the orientation change of the mask device during 

breathing monitoring and the its signal is used to compensate the baseline drift of the MEMS 

pressure sensor.

A home-made integrated circuit was built to provide input voltage to the D6F-P MEMS flow 

sensor, read the output voltage signal, perform signal processing, and wirelessly transmit the 

data from the circuit to a customized smart phone app.

Android & iOS-based applications were developed to wirelessly receive the data transmitted 

from the circuit, store the data, and perform further data processing and analysis.

A compact (5 mm × 30 mm × 35 mm) lithium ion polymer battery (3.7 V, 500 mAh) was 

used to provide the power to the entire circuit.

A miniaturized Venturi tube with the orifice diameter of 7.4 mm and length of 46 mm was 

machined and installed on the exhalation channel of a face mask.

A face mask with separated channels for inhalation and exhalation was used in the test. One-

way valves were used in the inhalation and exhalation channels.
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Sensirion flow sensor (SFM3000, Sensirion AG) is used as the reference flow meter for the 

flow module calibration.

A lung simulator from VacuMed was used to simulate breathing patterns with different tidal 

volume and breath frequency to test the accuracy of the differential pressure-based flow 

measurement module.

C. Methods

The face mask integrated with circuit, D6F-P MEMS flow sensor, battery, and Venturi tube 

was worn by subjects via a headgear during the measurement.

For the tests involving lung simulator, the integrated mask device was connected to the gas 

outlet of the lung simulator via a customized adaptor.

The differential pressure was obtained by connecting D6F-P MEMS flow sensor to the 

venturi in the bypass configuration to measure high flow rate, as depicted in Fig. 1 (a) [39]. 

The differential pressure was calculated from the pressure sensor signal using the following 

equation:

ΔP = Output flow − Output noflow /0.6 (2)

where Δ P is the differential pressure (in Pa), Output (no flow) and Output (flow) is the 

voltage measured on the output pin of the pressure sensor (in mV) during no flow and active 

flow through the venturi tube, respectively.

The flow calibration was performed by connecting the mask device in series with a 

Sensirion flow sensor (SFM3000, Sensirion AG) through a connector. Dry air from an air 

cylinder was introduced to the device through tubing. The flow rate was adjusted in the 

range of 0 - 150 L/min to calibrate the flow module of the mask device.

IV. RESULTS and DISCUSSION

A. Breathing Profile Monitoring

The breathing profile from a subject for 11 minutes measurement is shown in Fig. 2 (a). The 

exhalation flow pattern has been reliably detected by the MEMs sensor. since the MEMs 

sensor has a fast response time (a sampling rate of 25 ms has been used during the 

measurement), detailed dynamic features can be captured, as shown in zoom-in plots in Fig. 

2 (b) and (c). There are no obvious peaks during the first ~ 30 s because that is the time for 

the subject to wear the mask. By looking at the entire breath profile, we have noticed that it 

takes about 1 minute for the subject to stabilize their breathing. There are several high peaks 

in the middle of the test, which is correlated with the deep breath the subject has taken.

To convert the pressure signal into breathing flow rate, a flow calibration needs to be 

performed. By connecting the mask device in serial with a reference flow sensor, sensirion 

flow sensor (sFM3000, sensirion AG), and introducing air from an air cylinder to the 

system, the pressure reading at different flow rate can be measured and recorded. The flow 

rate is adjusted in the range of 0 - 150 L/min to calibrate the flow module of the mask 
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device. This flow range is chosen because it is a typical exhalation flow rate range for adults 

during resting condition.

According to Bernoulli equation (1), the flow rate is proportional to the square root of the 

differential pressure. By running the linear regression of the flow rate and the square root of 

the differential pressure, a slope can be obtained. This slope serves as the converting factor 

to translate differential pressure reading into exhalation flow rate. The differential pressure is 

defined at the difference between the-real time pressure reading and the pressure baseline. 

The pressure baseline is the pressure sensor reading when there is no gas passing through the 

Venturi tube. As shown in Fig. 3, the pressure profile (Fig. 3 (a)) can be reliably converted 

into flow rate profile (Fig. 3 (d)). This conversion is critical for determining key breathing 

parameters, such as peak flow rate, tidal volume, breath frequency, and minute ventilation. 

From the exhalation flow rate profile, the steady state of the breathing can be easily 

identified, which is important for determining whether the subject has reached a stable 

resting condition or not in resting metabolic rate measurement.

B. Algorithms for Robust Breathing Flow Rate Monitoring

It is well-known that MEMs pressure sensor are sensitive to gravity and mechanical 

movement. This is a key challenge for reliable and robust breathing flow rate monitoring in 

wearable devices, since the users can wear the devices and have different kinds of activities 

in the free-living conditions. The transducer inside the MEMs pressure sensor is a membrane 

which can deform under different pressure. Thus, when there is orientation change the 

gravity will cause the membrane to deform and result in signal drifting. if there is no 

mechanism to compensate or correct the non-flow-related signal, a high error is expected 

during the breathing tracking.

Two innovative strategies have been proposed to address this issue: the firmware approach 

and the hardware approach. The firmware approach is purely based on signal processing 

algorithm while the hardware approach involves the use of 3-axis digital output gyroscope to 

compensate the baseline drift of the MEMs pressure sensor.

The key concept of the firmware approach is to develop an algorithm that can automatically 

track the baseline of the MEMs pressure sensor for each breath cycle. if we zoom in the 

breath profile recorded by the MEMs pressure sensor, each breath cycle can be described in 

4 different phases: Baseline, Ramp-Up, Positive Flow, and Ramp-Down, as illustrated in Fig. 

4 (a). The algorithm can be explained in the steps below and illustrated in Fig. 4 (b).

1) Baseline: Indicates the end of current cycle/start of next cycle. This is the inhalation 

part of breathing process. it is important to keep track of this baseline to determine the rest 

of the phases. In this phase, the baseline required for computing flow rate is obtained using 

weighted average. It gives preference to the data points closer to the ramp-up phase so that 

the baseline is as precise as possible, but also has weightage for the history of baseline phase 

involved, so that it does not drift away with noise fluctuations.

2) Ramp-Up: Indicates the end of inhalation phase and the beginning of exhalation phase 

of current cycle. This phase acts as a bridge between baseline and positive flow. This is 
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determined by using a pattern of rise in pressure. An increasing/rising pattern of pressure 

data for a given window of points indicates start of exhalation or ramp-up phase.

3) Positive Flow: Indicates the exhalation part of the breathing process. The flow rate is 

positive during this phase, which is used to compute critical parameters like tidal volume 

and peak flow rate.

4) Ramp-Down: Indicates the end of exhalation part and end of current breath cycle. 

This phase acts as a bridge between positive flow and baseline. A decreasing/falling pattern 

of pressure data for a given window of points indicates end of exhalation or ramp-down 

phase.

As shown in Fig. 4 (c) and Fig. 4 (d), the mean noise at baseline is 0.25 L/min (S.D. = 1.0 L/

min). It is important to consider the noise at baseline to determine the right start of ramp-up 

phase or ramp-down phase. This is also an indicator of the lowest reliable flow rate that can 

be derived from the pressure signal.

Number of ramp-up or ramp-down phases encountered in a window of one minute indicates 

Breath Frequency (BF) of that window. The integral of flow rate over time i.e., Volume, for a 

window one minute indicates Minute Ventilation (VE). The average volume over the set of 

breath cycles in the window indicates the Tidal Volume (TV).

In Fig. 4 (b), transitions between phases with solid arrows indicates regular and repeated 

occurrence. The transitions with dotted arrows indicate influence of gravity or mechanical 

movement induced artifacts over the breath cycle. By identifying the artifacts though the 

analysis of the four phases, the true baseline of the MEMS pressure sensor for each breath 

cycle can be obtained.

The effectiveness of the baseline tracking algorithm has been verified by the data shown in 

Fig. 5. In the plot, the red curve is the real-time pressure sensor response and the green curve 

at the bottom is the simultaneous baseline data generated by the baseline tracking algorithm 

in a breathing test. As shown clearly in the zoom-in plot in Fig. 5 (b), the baseline of the 

MEMS pressure sensor keeps drifting because of the mask device orientation change during 

the 2 minutes breathing monitoring period. But the baseline tracking algorithm can precisely 

determine the baseline reading for each individual breathing cycle. The baseline reading is 

calculated by averaging the MEMS pressure sensor signal from the inhalation period 

(typically 1 – 2 seconds for most of the adult subjects) right before the exhalation period. In 

this way, the influence from the noise can be minimized. This algorithm ensures that only 

the true differential pressure signal generated by the gas flow will be used for breathing flow 

rate determination.

The hardware approach has also been used to eliminate the orientation induced artificial 

signal from the MEMS pressure sensor. This method is complementary to the baseline 

tracking algorithm mentioned above. The baseline tracking algorithm is capable of dealing 

with gradual drift in the baseline but may not be able to catch signal jump due to sudden and 

dramatic orientation change, which may cause the losing of baseline tracking. In this case, 
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the signal from gyroscope can provide the fast-response and quantitative information to 

compensate the baseline drift of the MEMS pressure sensor.

As shown in Fig. 6 (a) and (b), the responses of the MEMS pressure sensor and the 

gyroscope due to the orientation change correlate very well with each other. Because both 

sensors are fast-response, delay is not observed in the plots. This feature makes the signal 

synchronization between these two sensors easy and simple. The quantitative correlation 

between the pressure sensor response and the accumulated angle on Y-Axis of the gyroscope 

is potted in Fig. 6 (c). It’s clear that there is a linear relationship between these two 

responses and the correlation factor R square is as high as 0.9161. The response from Y-Axis 

of the gyroscope is chosen because it is the most sensitive component in our mask device 

configuration. Head and neck movements like forward chin touch and head back (up and 

down, or along the pitch axis of the mask device) correspond to the changes that show up in 

the Y-Axis of the gyroscope. Neck flexion towards shoulders, i.e., along other axes does not 

noticeably affect the response of the pressure sensors. The linear relationship between 

MEMS pressure sensor and gyroscope provides a solid foundation for the signal 

compensation algorithm in eliminating the orientation-induced artificial signal in our 

wearable breathing tracking device.

Fig. 7 shows the effectiveness of the gyroscope-assisted MEMS pressure sensor signal 

correction to keep track of the correct baseline. When there is a sudden orientation change in 

the middle of the measurement (~ 70 s), the firmware approach is unable to keep the correct 

baseline tracking (Fig. 7 (a)). But when the gyroscope signal compensation algorithm is 

applied, the correct baseline tracking can be achieved (Fig. 7 (b)).

Though the firmware and hardware approaches can effectively get rid of the orientation-

related artificial signals, in some rare cases, the permanently loss of baseline could possibly 

happen, as shown in Fig. 8 (a). This only happens when there is a sudden negative jump of 

baseline and then quickly recover to the original baseline right in the exhalation period. This 

is a very rare scenario. When this happens, the algorithm will consider the exhalation lasts 

forever and the positive flow phase will never come down to the baseline (Fig. 8 (a)). A 

simple remedy to this is to re-establish the baseline by exploiting the periodic pattern of the 

breathing. For normal breathing, the exhalation periods only last for a few seconds. Thus, if 

the positive flow phase is longer than a set time window (typically 15 seconds), it indicates a 

permanent loss of baseline. After the implementation of the window based positive flow 

checking algorithm, the baseline is corrected and continues to hold up well, as shown in Fig. 

8 (b).

C. Validation of the Performance of Differential Pressure-Based Flow Measurement 
Module

The breathing tracking performance of the algorithm-enhanced MEMS pressure sensor was 

validated by both bench test and usability test. The bench test is performed by using the lung 

simulator to generate breathing patterns with different tidal volume (TV, 225 – 450 ml) and 

breath frequency (BF, 8.5 – 36 breath/min) and then deliver the gas to the mask device, 

which is connected with the Sensirion flow sensor in serial. In this way the algorithm-

enhanced MEMS pressure sensor and the Sensirion flow sensor can measure the breathing 
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flow rate simultaneously. Fig. 9 (a) and (b) indicate that the flow rate profiles recorded by 

both sensors almost overlap with each other at different breathing conditions. The minute 

ventilation (VE) measured by both sensors shows very high correlation in the range of 3,000 

- 10,000 ml/min, with a slope of 0.9737 and R square of 0.9994. Further data analysis shows 

that the VE differences between these two sensors are within 2.5%, indicating a very high 

accuracy of the algorithm-enhanced MEMS pressure sensor.

The usability test is performed on 8 different subjects (IRB Approval: STUDY00006562). 

Similar to the bench test configuration, the mask device, which was connected with the 

Sensirion flow sensor in series, was worn by the subject to complete a measurement that 

involves 10 minutes of continuous breathing monitoring. The test results are summarized in 

Fig. 10. Fig. 10 (a) and (b) show the typical breath profiles measured by algorithm-enhanced 

MEMS pressure sensor and Sensirion flow sensor. It’s clear that though the shape of 

individual breath cycles is very different, the real time flow rate measured by both sensors 

correlates very well, even preserving the detailed features of the breath cycles. The minute 

ventilation (VE) measured by both sensors has a correlation factor (R2) of 0.9964 and the 

mean of VE differences between these two sensors is within 2.5%. Since the real breath 

profiles from subjects are very diverse and can have the influence of motion-induced 

artifacts during the breathing tracking, the accuracy of the algorithm-enhanced MEMS 

pressure sensor is considered to be far more adequate.

To evaluate the performance of the baseline tracking algorithms under the influence of 

orientational changes and different motions, the device has been tested in typical daily life 

scenarios, such as walking, climbing etc. This experiment result demonstrates the reliability 

of baseline tracking algorithms under different combination of motion and orientation 

variations. Robust baseline tracking algorithms guarantee the reliable and accurate flow rate 

computation of the wearable mask device.

Fig. 11 (a) shows the dynamic baseline under different daily life scenarios and Fig. 11 (b) 

shows the recorded gyroscope response. It should be mentioned that these scenarios involve 

a lot of head and neck movements, which introduces both orientation changes and motions. 

Since wearing the mask requires fastening and adjusting the mask device around the head, a 

lot of random spikes show up in the gyroscope signal. The baseline is quite stable when the 

subject is sitting idle. The random forward and backward head movement causes alternating 

up and down signal in the gyroscope response. Steady Walking does not show any 

considerable baseline changing since the pressure sensor is more sensitive to orientation 

changes rather than translatory motion. Climbing Stairs creates significant baseline 

alternation because of the entangled orientation and motion changes. Overall, the baseline 

tracking never gets lost and the algorithms are robust enough to handle the breath tracking 

under different daily life scenarios.

V. CONCLUSION

A miniaturized, reliable, and wide-dynamic ranged flow measurement module based on 

algorithm-enhanced MEMS pressure sensor has been developed. The dynamic baseline 

tracking algorithm and the gyroscope-assisted signal compensation algorithm are 
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implemented in the breathing flow measurement module. By integrating this flow module to 

a wearable mask device, accurate breathing tracking has been achieved on subjects in a 

wearable manner. The performance of the wearable flow measurement module has been 

validated by bench test and usability test. The flow measurement technology developed in 

this work can be used to track breathing in free-living conditions for the assessment of lung 

functions, exercise physiologies, and energy expenditure.
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Fig. 1. 
The differential pressure Pneumotach setup integrated on face mask. (a)flow module 

configuration, (b) mask device worn by subject, (c) integrated components, and (d) profile of 

breath signal.
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Fig. 2. 
Pressure signal of breathing profile from real breath. (a) the entire breathing profile recorded 

by the MEMS sensor for 11 minutes monitoring. (b) and (c) are the zoom-in plots of the 

profile at the beginning and the end of the measurement.

Tipparaju et al. Page 13

IEEE Sens J. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Pressure signal to flow signal conversion. (a) the pressure response profile recorded by the 

MEMS sensor during breathing. (b) the response of pressure sensor (Differential Pressure) 

for various exhalation flow rates. (c) the linear relationship between Differential Pressure and 

flow rate. (d) the flow rate profile of the same breathing profile converted by applying the 

calibration factors to the pressure signal.
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Fig. 4. 
(a) A typical breath cycle with different phases (Baseline, Ramp-up, Positive Flow, Ramp-

down). (b) The relationship of various phases in a breath cycle. The arrows indicate all the 

valid transitions possible between phases. (c) The noise of pressure sensor response at 

baseline, along with the weighted average tracking. (d) The noise indicated in plot (c) 

converted to flow rate.
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Fig. 5. 
Dynamic baseline tracking on a cycle-by-cycle basis over time. (a) The pressure sensor 

response (red) and simultaneous baseline tracking (green) in a real breathing test. (b) The 

zoom-in of plot (a) to show the baseline tracking algorithm can accurately determining the 

baseline for each individual cycle when the pressure sensor signal is drifting.
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Fig. 6. 
The relationship between MEMS pressure sensor response and gyroscope response due to 

orientation change. (a) The change of pressure sensor response due to the orientation change 

of the mask device. (b) The accumulated angle measured by gyroscope due to the orientation 

change of the mask device. (c) The linear relationship between the pressure sensor response 

and the accumulated angle on Y-Axis of the gyroscope.
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Fig. 7. 
Gyroscope-assisted MEMS pressure sensor signal correction to keep track of the correct 

baseline for flow rate computation. (a) Baseline tracking without gyroscope correction. (b) 

The baseline tracking with gyroscope correction.
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Fig. 8. 
Baseline correction in the scenario of permanently lost baseline. If the positive flow phase 

lasts more than 15 seconds, the algorithm will re-establish the new baseline. (a) a sudden 

negative jump of baseline happened at ~ 30 s and then caused the permanently loss of 

baseline. (b) when the baseline checking algorithm is invoked periodically (every 15 sec), 

the new baseline can be re-established.

Tipparaju et al. Page 19

IEEE Sens J. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Comparison of flow rate measured by algorithm-enhanced MEMS pressure sensor with 

reference flow sensor using a lung simulator. The mask device and the Sensirion flow sensor 

were connected in serial in the setup. In this way, the gas from the lung simulator can pass 

through both sensors simultaneously. The breathing profiles were monitored by both sensors 

at different conditions. (a) tidal volume = 450 ml, breath frequency = 8.5 per minute; and (b) 

tidal volume = 225 ml, breath frequency = 14 per minute. (c) the correlation of minute 

ventilation (VE) between the readings of both sensors.
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Fig. 10. 
Comparison of flow rate measured by algorithm-enhanced MEMS pressure sensor with 

reference flow sensor for real breath test. The mask device and the Sensirion flow sensor 

were connected in serial in the setup. In this way, the breath from can pass through both 

sensors simultaneously. (a) Breath profile of subject-A: tidal volume = 1390 ml, breath 

frequency = 9 per minute; and (b) Breath profile of subject-B: tidal volume = 840 ml, breath 

frequency = 13 per minute. (c) the correlation of minute ventilation (VE) between the 

readings of both sensors.

Tipparaju et al. Page 21

IEEE Sens J. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
The performance of the baseline tracking algorithms under the influence of orientational 

changes and different motions. (a) The dynamic baseline tracked by the algorithms under 5 

different daily life scenarios using the baseline correction & gyroscope compensation. (b) 

Gyroscope response used for correction and compensation of pressure signal.
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