
REVIEW

Bioprosthetic heart valves (BPHVs) have fundamentally changed the treatment of valvular heart disease. Despite the continuous 
progress of BPHVs, from early valve designs for use in surgical replacement to the rapidly evolving use of transcatheter replacement 
techniques and designs, valve dysfunction and degeneration remain fundamental issues. Current guidelines and proposed standard 
definitions of BPHV dysfunction and degeneration outline the importance of imaging. Imaging plays a key role in understanding valve 
degeneration, including clinical imaging to identify transvalvular gradients, leaflet thickening, thrombosis, calcification, and restricted 
or reduced leaflet motion. Similarly, translational imaging approaches—including micro-CT, high-speed video, computational model-
ing, and high-resolution microscopy—and histologic analysis are crucial to understanding mechanisms of valve degeneration and fac-
tors that may contribute to valve dysfunction. This article provides an overview of valve dysfunction and degeneration and the role of 
imaging.

© RSNA, 2019

Valvular heart disease is associated with shortened life 
span, deterioration of quality of life, and economic 

burden and is estimated to impact 2.5% of the popula-
tion in industrialized countries. This percentage reflects a 
decreasing prevalence in rheumatic disease and increasing 
prevalence of degenerative disease, with mitral regurgita-
tion and aortic stenosis being the most common manifes-
tations. Notably, valvular heart disease is a societal health 
issue that will only grow as the population ages. For ex-
ample, with the number of people older than 75 years 
expected to double by 2050 in the United States alone 
and more than half of those aged 70 years or older having 
heart valve disease, the incidence of valvular heart disease 
is expected to rise (1–5). Furthermore, improving care 
for children with congenital and genetic valve defects has 
resulted in an increasing prevalence of adults living with 
congenital valve disease (6). While guidelines outline the 
complex management of patients with valvular disease, 
valve replacement has revolutionized treatment and im-
proved patient outcomes (7).

Valve replacements generally fall into two main cat-
egories based on procedure: surgical valve replacement 
and, more recently, transcatheter valve replacement. Al-
though replacements are used in various anatomic loca-
tions, much focus is placed on their use in surgical aortic 
valve replacement and transcatheter aortic valve replace-
ment. Figure 1 provides a brief overview of valves used in 
both transcatheter and surgical aortic valve replacements. 
First reported in 1960, surgical aortic valve replacement 
uses mechanical or bioprosthetic surgical heart valves 
(SHVs) including allografts, autografts, and xenografts 
made of pericardium or porcine leaflets or complete 
valves (8–10). Bioprosthetic SHVs serve as an alternative 

to mechanical valves that require lifelong anticoagulation 
and thus incur increased patient risk. The 2017 Ameri-
can College of Cardiology/American Heart Association 
guidelines (7) indicate reasonable use of bioprosthetic 
SHVs over mechanical valves in patients older than 70 
years or in patients aged 50–70 years based on risk factors 
and patient preference.

In 2002, transcatheter aortic valve replacement was 
introduced through a transvenous approach by using 
bioprosthetic transcatheter heart valves (THVs). This 
was followed by a transarterial approach, and it has 
rapidly become standard of care for patients consid-
ered to be at high or intermediate surgical risk (11–15). 
Although initial trials were performed in patients with 
clinically significant comorbidities and risk factors (ie, 
those at high risk for surgery or unable to undergo 
surgery), transcatheter aortic valve replacement is rap-
idly expanding to include patients at low risk, as well 
as valve-in-valve transcatheter aortic valve replacement 
procedures to place THVs inside of degenerated SHVs 
(16,17). THVs are predominately made with pericardial 
leaflets attached to a variety of frame designs that allow 
the THVs to be crimped onto a catheter and placed by 
using a transcatheter approach with either a balloon-
expandable or self-expanding design.

Both surgical and transcatheter bioprosthetic heart 
valves (BPHVs) (THVs and SHVs) are subject to dys-
function and degeneration owing to their bioprosthetic 
nature with a great deal of focus being placed on defin-
ing, monitoring for, and predicting valve degeneration. 
In addition, there is a growing need to better under-
stand the risk factors and mechanisms of degeneration. 
Valve degeneration is a particular point of focus as valve 
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thrombus, patient prosthesis mismatch, paravalvular leak, and 
valve positioning. Figure 2 shows factors associated with valve 
dysfunction and degeneration observable at the time of BPHV 
explant.

Current Definitions and Rates of BPHV Degeneration and 
Dysfunction
The most recent document detailing BPHV degeneration and 
dysfunction is endorsed by the European Association of Percu-
taneous Cardiovascular Interventions, the European Society of 
Cardiology, and the European Association for Cardio-Thoracic 
Surgery. Capodanno et al (18) propose a standard definition of 
structural valve degeneration (SVD) as permanent valve dys-
function resulting from those factors both intrinsic and extrin-
sic to the BPHV leading to degeneration and/or hemodynamic 
dysfunction. However, this proposed definition places endo-
carditis and valve thrombus in separate categories and notably 
differentiates hemodynamic valve deterioration from morpho-
logic deterioration. Furthermore, Capodanno et al propose use 
of the term bioprosthetic valve failure, which integrates SVD 
etiology and clinical consequences. The authors propose that 
this classification will help prevent placing too much emphasis 
on BPHV-related outcomes in asymptomatic patients. These 
definitions also align nicely with other proposed standard defi-
nitions of SVD including those recently outlined in the white 
paper by Dvir et al (9,18,19), which proposes three stages of 
SVD based on severity. Figure 3 summarizes key points of defi-
nitions by Capodanno et al and Dvir et al.

Reported rates of BPHV dysfunction and degeneration 
vary. Such variation may be linked to the differing defini-
tions of BPHV dysfunction and degeneration used in studies, 
as well as the varying patient populations and valve types. 
From prior meta-analyses, SVD in porcine and pericardial 
SHVs is noted to start at approximately 8 years following im-
plantation with SVD increasing greatly at 10 years following 
implantation (20–22). However, early SVD is an important 
clinical problem that has to date not been adequately quan-
tified in scope due to issues of defining SVD as discussed 
previously. Fortunately, there is growing awareness of the is-
sue and with the advent of transcatheter valve-in-valve thera-
pies, there is now a treatment strategy for even older patients 
with SVD. With the growing interest has come new data on 
the durability of THVs and SHVs. In the recently published 
NOTION (Nordic aortic valve intervention) trial (23), in-
vestigators evaluated the rates of valve failure and SVD in a 
low-risk population randomized between surgical aortic valve 
replacement and transcatheter aortic valve replacement and 
aimed to classify degeneration and valve failure according to 
current proposed standard definitions. The rates of valve fail-
ure were similar in SHVs and THVs (6.7% vs 7.5%) through 
6 years, but there was a significantly higher rate of SVD in 
SHVs compared with THVs (24.0% vs 4.8%).

Imaging of BPHVs
Imaging plays a central role in investigating valve function 
and pathology (Fig 4). Transthoracic echocardiography (24) 

replacement moves toward treatment of younger patients 
with greater life expectancies. Below, we provide an overview 
of BPHV dysfunction and degeneration and associated imag-
ing methods. While this generally includes endocarditis, in-
depth discussion of infection as well as acute complications 
following replacement are beyond the scope of the review. 
Instead, we aim to highlight clinical conundrums of BPHV 
degeneration and to present translational and fundamental 
science imaging approaches to understand mechanisms of de-
generation and develop new clinical approaches and imaging 
techniques.

Bioprosthetic Valve Degeneration and Dysfunction

Past Definitions of BPHV Degeneration and Dysfunction
BPHV degeneration has had many definitions but is generally 
defined as a permanent process causing hemodynamic dysfunc-
tion in the form of stenosis or regurgitation requiring reinter-
vention. Historically, the clinical definition of degeneration de-
pended on the need for surgical reintervention with outcomes 
of BPHVs reported as survival with freedom from reinterven-
tion (9,18). This approach has obvious flaws, because there are 
many patients with worsening BPHV function who are not 
candidates for redo surgery owing to comorbid illnesses. This 
historical approach has also failed to provide detailed clinical 
information needed for insight into the mechanism of degen-
eration. Such information is key because degeneration is a var-
ied and complex process constituting interplay of mechanical 
forces, patient anatomy, and biologic and cellular processes. To 
help meet this clinical need, new definitions of BPHV degen-
eration have been proposed and aim to evaluate known pro-
cesses in intrinsic BPHV degeneration—such as calcification, 
fibrosis, and leaflet tears—as well as external factors associated 
with dysfunction and/or degeneration including infection, 

Abbreviations
BPHV = bioprosthetic heart valve, SHV = surgical heart valve, 
SVD = structural valve degeneration, THV = transcatheter heart 
valve

Summary
Valve dysfunction and degeneration remain fundamental problems of 
bioprosthetic heart valves; key processes involved in dysfunction and 
degeneration and associated imaging findings are reviewed. 

Key Points
nn Structural valve degeneration is a key issue in both surgical and 

transcatheter bioprosthetic valves.
nn Definitions of valve dysfunction and structural valve degeneration 

vary, but all detail processes such as thrombus and calcification 
that result in valve dysfunction.

nn Clinical imaging, including CT and echocardiography, are es-
sential to identifying valve degeneration, although controversies 
remain on the significance of associated findings such as leaflet 
thickening.

nn Translational imaging approaches provide insight into cellular 
mechanisms of valve degeneration and development of new imag-
ing techniques.
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Figure 1:  Image shows overview of 
bioprosthetic heart valves used in transcath-
eter aortic valve replacement (TAVR) and 
surgical aortic valve replacement (SAVR). 
Manufacturer information is as follows: 
MitroFlow (Sorin, USA), MagnaEase 
(Edwards Lifesciences, USA), Sapien 3 
and Sapien XT (Edwards Lifesciences), 
Epic (St. Jude Medical, USA), Core 
Valve (Medtronic, USA), and J-Valve (JC 
Medical, USA). PPM = patient prosthesis 
mismatch, SHV = surgical heart valve, THV 
= transcatheter heart valve. 

vular leak, embolization and dehiscence, patient prosthesis 
mismatch through measurement of effective orifice area, en-
docarditis, thrombosis, and pannus (7,19,26).

is standard for investigation of 
valve function with guidelines 
recommending transthoracic 
echocardiography performed 
after both surgical aortic valve 
replacement and transcatheter 
aortic valve replacement. Rec-
ommendations for timing of 
baseline and follow-up imaging 
vary depending on procedure 
type (transcatheter aortic valve 
replacement vs surgical aortic 
valve replacement), but allow for 
monitoring of transvalvular he-
modynamic changes suggestive 
of stenosis or regurgitation with 
detailed criteria for use of echo-
cardiography to define BPHV 
function outlined in current 
proposed definitions of BPHV 
degeneration (9,19,25,26). 
Recently, imaging-based defi-
nitions of valve degeneration 
have been introduced based on 
baseline echocardiographic gra-
dients and interval change in 
gradients, with a rise in gradi-
ent suggestive of SVD and SVD 
severity. For example, Dvir et al 
(19) outline 10 mm Hg and/
or an absolute gradient greater 
than 20 mm Hg to be suggestive 
of SVD with the severity of SVD 
defined based on the severity or 
worsening of the valvular gradi-
ent evaluated in combination 
with other echocardiographic 
parameters including Doppler 
velocity index, effective orifice 
area, peak flow velocity, acceler-
ation time, ratio of acceleration 
time to left ventricular ejection 
time, and characterization of the transvalvular flow envelope. 
In addition, echocardiography can also be used in the evalu-
ation of valve positioning including regurgitation, paraval-

http://radiology-cti.rsna.org


4� rcti.rsna.org  n  Radiology: Cardiothoracic Imaging Volume 1: Number 3—2019

Bioprosthetic Heart Valve Degeneration and Dysfunction

formation is followed by valve fibrosis and eventual calcifi-
cation at later time points of implantation that contributed 
to valve dysfunction (38–40). However, do these findings 
mean we should image more frequently to identify HALT? 
What is the significance? Can imaging provide more de-
tails on the nature of HALT and its potential implications? 
Can we differentiate fibrosis and thrombus and discern the 
potential of such thrombus as a nidus for calcification for 
cellular process that may degenerate the BPHV? Should pa-
tients with asymptomatic HALT undergo anticoagulation? 
Lack of anticoagulation at discharge was recently found to 
be a predictor of THV hemodynamic deterioration and no-
table ongoing trials seek to study this further. Conversely, 
risk is associated with anticoagulation, a point highlighted 
by the recent early halting of the GALILEO (global study 
comparing a rivaroxaban-based antithrombotic strategy to 
an antiplatelet-based strategy after transcatheter aortic valve 
replacement to optimize clinical outcomes) trial evaluating 
rivaroxaban in patients with transcatheter aortic valve re-
placement (27).

Conundrums of Current SVD Definitions
Although establishing standardized definitions of SVD is 
a step forward, it is important to note that these defini-
tions fail to incorporate the diverse biologic processes that 
cause SVD. Current proposed definitions of SVD aim to 
document clinical manifestations of valve failure but will 
not shed light on early aspects of these processes needed to 
determine cause and effect to potentially elucidate mecha-

MRI provides an alternative to echocardiog-
raphy for assessing valvular hemodynamics in 
patients with BPHVs and has been shown to 
be relatively safe for imaging at both 1.5-T and 
3.0-T for a number of valve types. MRI may be 
useful when echocardiography is limited by imag-
ing windows, although BPHVs can cause artifact 
on MR images. However, effective orifice area 
calculated from MRI has been shown to correlate 
to effective orifice area calculated by using echo-
cardiography in both normal and dysfunctional 
BPHVs (27–31).

The role of CT in the proposed criteria for de-
fining BPHV deterioration is more limited than is 
echocardiography. CT can potentially be used for 
depiction of restricted leaflet motion, endocar-
ditis, leaflet thickening, and calcification (7,19). 
Given the excellent spatial resolution, most advo-
cate for CT to be primarily used to identify leaflet 
thickening and/or calcification, with restriction 
being more easily and thoroughly characterized 
at echocardiography. Unfortunately, owing to the 
limited capacity for tissue characterization, CT 
is incapable of differentiating thrombus from fi-
brotic valve thickening but can be helpful in dif-
ferentiating these processes from pannus, which 
typically spares the leaflets and is circumferential 
below the valve level. These are commonly the 
three differential considerations in the setting of rising valve 
gradients. In clinical practice, CT should be considered in 
patients with rising gradients, with a trial of anticoagulation 
now recommended for those with findings of leaflet thick-
ening. However, should we consider CT to play a role in 
BPHV dysfunction as it relates to procedural planning? Fac-
tors such as evaluation of effective orifice area and patient 
prosthesis mismatch, device malpositioning, paravalvular 
leak, and embolization are factors to consider in BPHV 
dysfunction and/or degeneration. However, use of CT for 
preprocedural planning can reduce rates of such factors 
through providing annular sizing and guidance on device 
expansion and placement (32,33).

BPHV Thrombus and Leaflet Thickening
Current definitions of SVD exclude BPHV thrombus 
and/or thrombosis, and rates of BPHV thrombosis vary 
depending on the definition used. However, subclinical 
leaflet thrombus depictable at routine CT following valve 
replacement is thought to be more frequent. Recent data 
from noninvasive imaging suggest that BPHVs used in both 
surgical aortic valve replacement and transcatheter aortic 
valve replacement are prone to thrombus formation, which 
can be observed as hypoattenuating leaflet thickening, or 
HALT, on both porcine and pericardial BPHVs (34–37). 
HALT may cause impaired leaflet movement that can lead 
to hemodynamic compromise. Recent work on explanted 
transcatheter BPHVs shows that leaflet thickening results 
from a progressive pathologic process wherein thrombus 

Figure 2:  Images show examples of features of bioprosthetic heart valves (BPHVs) pathology 
seen at gross examination at explant. BPHV explants demonstrate, A, large amounts of fibrosis with 
areas of thrombus on aortic aspect of surgical heart valve (SHV) with pericardial leaflets; B, fibrosis 
on ventricular aspect on SHV with pericardial leaflets; and calcified SHVs with, C, leaflet tears in 
valves with porcine and, D, pericardial leaflets.
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SVD Insights from Translational and Fundamental 
Science Imaging

Defining and determining mechanisms of BPHV degenera-
tion to improve patient outcomes and valve durability and 
provide insight to imaging conundrums is arguably limited by 
a number of factors, including available imaging modalities 
and their resolution. However, translational and fundamental 
scientific imaging approaches continue to provide invaluable 
insight and the basis on which to plan future investigations 
(Fig 5). For example, recent studies (38,41,42) outline a 
timeline for key features of THV pathology by using histo-
logic analysis and microscopic imaging approaches, includ-
ing confocal microscopy and scanning electron microscopy, 
to demonstrate the presence of early thrombus, followed by 
fibrosis and calcification of THVs around 4 years. These stud-
ies support current clinical imaging studies suggesting that 
valve thrombus detectable with clinical imaging may relate to 
long-term degeneration (including at later time points) such 
as calcification. Furthermore, micro-CT of explanted SHVs 

nisms and enable strategies to help prevent SVD onset. For 
example, while morphologic SVD can include leaflet thick-
ening and calcification, does calcification and/or thickening 
appreciable at CT necessarily equate to calcification grossly 
observed at autopsy or histologic analysis of explanted 
valves? Moreover, in defining morphologic thickening, what 
is the best approach—imaging or ex vivo analysis? Akin to 
imaging, no current guidelines for a threshold of pathologic 
thickening at explant at autopsy or surgery exist, and typical 
fixation of valves at explant makes in-depth leaflet function 
studies following explant a logistical challenge yet to be re-
ported in the literature.

From an imaging perspective, should we instead aim to 
use imaging modalities that help to detect calcification earlier 
or monitor more closely for factors that may promote calcifi-
cation such as thrombus? Furthermore, definitions of SVD are 
proposed to apply to all BPHVs and patients despite clear dif-
ferences including valve design, flow dynamics, leaflet composi-
tions, fixation processes, implantation procedures, risk factors, 
comorbidities, and sex.

Figure 3:   Definitions of bioprosthetic heart valve dysfunction and degeneration. EACTS = European Association for Cardio-Thoracic Surgery, EAPCI = European As-
sociation of Percutaneous Cardiovascular Interventions, ESC = European Society of Cardiology.
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combined with fluorine 18 sodium fluoride micro-PET/CT 
imaging, proposed to help detect areas of microcalcification 
indicative of tissue degeneration that occurs before the onset 
of the macrocalcification, correlates well with histologic evi-
dence of BPHV degeneration. Moreover, clinical application 
of this PET/CT imaging approach was able to increase ability 
to help detect calcification and enable prediction of forth-
coming hemodynamic dysfunction (43).

Bench studies of BPHVs may also help to understand 
cellular processes associated with valve dysfunction. Use of 
high-resolution imaging (eg, high-speed cameras, video, and 
micro-CT) and computational modeling have produced a 
more in-depth understanding of valve function and flow dy-
namics, which may impact BPHV pathology (eg, the identi-
fication of stagnation zones related to thrombus formation). 
Moreover, such bench studies of valve positioning, sizing and 
overexpansion, and device selection in valve-in-valve proce-
dures have shed light on how procedural factors may impact 
hemodynamics, leaflet geometry, and mechanical stresses 
placed on the valve—an important consideration given that 
typically mineralization (eg, calcification) is increased as sites 
of mechanical stress (44–50).

Conclusion
BPHVs have seen a relatively rapid evolution from initial 
surgical aortic valve replacement interventions in the 1960s 
to the rapid clinical integration of transcatheter aortic valve 
replacement and THVs starting in 2002. However, valve de-

generation remains a fundamental problem of all BPHVs. 
Definitions of degeneration including SVD vary but gener-
ally outline phenotypes of dysfunction observable clinically 
and relying on clinical imaging including CT, MRI, and 
echocardiography. While controversies remain on defin-
ing degeneration and the significance of imaging findings, 
translational and fundamental imaging techniques continue 
to provide in-depth analysis to establish timelines of SVD 
and elucidate mechanisms leading to degeneration, as well 
as insight into associated risk factors. Furthermore, new im-
aging modalities and approaches are aimed at reducing rates 
of degeneration and enabling prediction of degeneration 
and providing clinical insight into the complex associated 
biologic processes, which will ultimately improve patient 
outcomes. Therefore, overall, although BPHV degeneration 
is a key issue, multimodality imaging and thoughtful in-
vestigations are leading the way in helping to define, docu-
ment, and determine the mechanisms of degeneration that 
will ultimately lead to improved valve durability and im-
proved outcomes.
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Figure 4:  Image shows clinical imaging approaches for bioprosthetic heart valve (BPHV) degeneration and dysfunction. EOA = effec-
tive orifice area, PPM = patient prosthesis mismatch, SVD = structural valve degeneration.
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