
EDITORIAL

The use of coronary CT angiography in the assessment of 
coronary artery disease to improve diagnosis and clini-

cal outcomes is established (1). CT angiography is highly 
sensitive to the presence of both obstructive and nonob-
structive coronary artery disease, with a normal CT an-
giography result excluding coronary atherosclerosis with 
low event rates out to 10 years (2). CT angiography as an 
anatomic test is very good, with high sensitivity for the de-
tection of coronary artery disease and a high correlation 
to invasive coronary angiography. However, the specificity 
of CT angiography for a significant stenosis is nonethe-
less much lower than its sensitivity, with three false-positive 
findings for every false-negative finding (3). These anatom-
ic differences are further limited when compared against 
a functional reference standard to detect ischemia, which 
remains the basis for patient management decisions (4). 
Fractional flow reserve derived from CT angiography (FFR 
CT) is one potential solution to the issue of low specificity 
and the lack of functional assessment at CT angiography.

FFR CT uses the anatomic three-dimensional model 
of the coronary arteries produced at CT angiography to 
perform computational flow dynamics (CFD) to derive 
the expected relative pressures at any point within the 
coronary circulation. These noninvasive estimates of flow 
correlate well with invasive measures of fractional flow re-
serve (FFR), indicating that FFR CT is highly accurate for 
the detection of flow limiting stenosis (5,6). In the NXT 
(Analysis of Coronary Blood Flow Using CT Angiography: 
Next Steps) trial, the addition of FFR CT to CT angiog-
raphy correctly reclassified 68% of false-positive findings 
to true-negative findings when compared against invasive 
FFR, demonstrating its potential to remedy this limitation 
of CT angiography (7).

Impact on Patient Management
The improved diagnostic accuracy of FFR CT affects 
clinical decision making. The FFR CT-RIPCORD (Does 
Routine Pressure Wire Assessment Influence Manage-
ment Strategy at Coronary Angiography for Diagnosis of 
Chest Pain?) study showed the addition of FFR CT to 
CT angiography changed the anticipated patient man-
agement in 44% of patients. Of the cases referred to in-
vasive coronary angiography (ICA) on the basis of CT 
angiographic findings, 30% had this canceled. And in the 
38 patients in whom more information was felt to be re-
quired following CT angiography, all were reassigned to 
either ICA (26%) or optimal medical therapy (74%) (8). 

The ADVANCE (Assessing Diagnostic Value of Non-
invasive FFR CT in Coronary Care) registry, which in-
cluded 5083 patients from 38 international sites, showed 
a similar change in anticipated patient management in 
64% of cases with a 25% reduction in planned ICA, and 
in those in whom more information was felt to be re-
quired following CT angiography, only 5% required fur-
ther investigation following the provision of the FFR CT 
results, with 70% changed to optimal medical therapy 
and 25% to ICA (9).

In the PROMISE (Prospective Multicenter Imaging 
Study for Evaluation of Chest Pain) trial, this potential 
reduction in ICA referrals would have resulted in a lower 
rate of nonobstructive coronary artery disease (absence of 
stenosis  50%) at ICA from 28% using CT angiography 
alone, to 11% with CT angiography plus FFR CT (10). 
These benefits are more pronounced in high-risk patients 
where there is a higher prevalence of intermediate stenosis. 
In a single-center study performed in Aarhus, Denmark, 
FFR CT led to the cancellation of an additional 29% of 
ICA over CT angiography alone in high-risk patients, 
compared with 17% additional ICA cancellations in low-
to-intermediate–risk patients (11). The impact of this in-
creased prevalence of obstructive coronary disease at ICA 
following FFR CT is to increase the interventional yield of 
the catheterization laboratory, with high revascularization 
rates of 50%–77% reported (12,13). Importantly, given 
the high rates of ICA deferral following a negative FFR CT, 
such an approach has been demonstrated to be safe out to 
5 years, with event rates of 0.6% in those with an FFR CT 
greater than 0.8 at 1 year and 3.1% at 5 years (12–15).

Improved clinical practice may also be achieved through 
the use of simulated stent placement within FFR CT mod-
els. These approaches use the vessel diameter and length of 
stenosis to derive the stent that will be inserted and then 
determine the hemodynamics of this should an optimal 
positioning and expansion be achieved (16). In a single 
study, these models correlated well with postprocedural 
invasive FFR measures (17). Using FFR CT to determine 
revascularization strategy was explored in the SYNTAX 
(Synergy between PCI with TAXUS and Cardiac Surgery) 
III Revolution trial. In this trial, heart teams (composed 
of an interventional cardiologist, a cardiothoracic surgeon, 
and a radiologist) were randomized to assess and plan man-
agement strategy based on either CT angiography or ICA 
in patients with left main or three-vessel coronary artery 
disease (18). The agreement with final management was 
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71% in the CT angiography and FFR CT arm compared with 
78% in the ICA arm, with good agreement to the location and 
number of vessels to be revascularized (19). Future studies will 
explore the impact FFR CT can have in directing both percuta-
neous and surgical revascularization (Fig 1).

Clinical Integration and Interpretation
The clinical use of invasive FFR remains variable with only 
18% of intermediate stenosis undergoing invasive FFR prior 
to stent placement (20,21). Additionally, when performed, 
invasive FFR demonstrates errors in 21.6% of the measure-
ments (22). As CT angiography becomes the primary test for 
investigating angina, FFR CT has the potential to be better 
integrated into clinical practice and the decision-making pro-
cess surrounding revascularization than its invasive counter-

part. How to best incorporate FFR CT values into clinical 
care is an area of growing research. When one considers that 
the optimal invasive FFR threshold for treating symptoms is 
0.76 and 0.67 for reducing myocardial infarction (23), and 
that the benefit-risk ratio of stent placement in a stenosis is 
not dichotomous, it may be reasonable to trial medical ther-
apy before resorting to revascularization in those with less 
severe flow limitation. It has been proposed that those with 
“gray-zone” FFR CT values (0.76–0.80) can be treated medi-
cally in the first instance, with referral to ICA in the presence 
of persisting or worsening symptoms despite medical therapy 
(11). Indeed, in ADVANCE, 83% of patients with an FFR 
CT of 0.71–0.80 were treated medically, with only 7.1% of 
patients initially treated with optimal medical therapy requir-
ing subsequent revascularization at 1 year (9,24).

Figure 1:  CT angiographic images (left) and FFR CT models (right) show severe three-vessel dis-
ease with anatomically and functionally significant obstructive disease of the left main (LM), left an-
terior descending (LAD), left circumflex (LCx), and right coronary artery (RCA) (white arrowheads). 
Future developments may result in such patients being triaged straight to coronary artery bypass graft 
surgery without the need for further testing.
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While the level of evidence examining the use of FFR CT 
in clinical practice is currently limited to observational stud-
ies, two randomized control trials (FORECAST [Fractional 
Flow Reserve Derived from Computed Tomography Coro-
nary Angiography in the Assessment and Management of 
Stable Chest Pain] [NCT03187639] and PRECISE [Prospec-
tive Randomized Trial of the Optimal Evaluation of Cardiac 
Symptoms and Revascularization] [NCT03702244]) are on-
going and will further our understanding of the comparative 
effectiveness of a combined CT angiography and FFR CT 
strategy compared with current standard of care approaches.

CFD Models
Several challenges remain for FFR CT. The diagnostic accuracy 
of the technique has been established using several different 
models, yet the comparative effectiveness of these models has 
not been determined. The most comprehensive three-dimen-
sional models make the least assumptions and incorporate a 
greater number of pertinent variables into the simulation. Such 
models require substantial computing power and time often 
necessitating off-site analysis. Reduced-order one-dimensional 
and zero-dimensional models can be utilized on a standard 
workstation, but these involve a greater number of assump-
tions such as that pressure or flow are uniform across the length 
of the vessel (zero-dimensional) or that pressure and flow only 
change according to the length of the vessel (one-dimensional) 
(25). Preliminary assessments on small numbers of patients/
vessels demonstrate good agreement between the models; 
however, further analysis is warranted (26,27). An alternative 
solution is the use of machine learning algorithms trained on 
simulated coronary arteries and a reduced order CFD model. 
One multicenter study of 351 patients showed equivalent per-
formance of a machine learned FFR CT algorithm (28), but 
further work is needed to better understand the relative merits 
of the two approaches.

Modeling Assumptions
Modeling assumptions must be examined to provide confi-
dence in the accuracy of the model. One such assumption is 
that of microvascular resistance, with current models assigning 
a standardized value to the resistance at rest and stress (29). 
However, microvascular dysfunction is common in those with 
stable coronary artery disease (30) and varies by sex and body 
mass index (31). Another assumption is the fidelity of the 
three-dimensional anatomic model of the coronary arteries, 
which is contingent on the quality and resolution of the CT 
angiographic images (32). b-blockers and nitrates, which re-
duce motion artifacts and increase the diameter of the coronary 
arteries, respectively (33,34), are essential for the accuracy of 
FFR CT (35). However, only 50% of cases submitted for FFR 
CT analysis in a multicenter study achieved the recommended 
heart rate of less than 60 beats per minute (36,37). While CT 
technology has resulted in significantly improved temporal res-
olution, a rate-dependent relationship remains between heart 
rate and image quality (Fig 2) (37). As a result, in an analysis 
of 10 621 cases submitted for commercial FFR CT analysis, 
6.9% of scans were unable to undergo FFR CT analysis (37). 
The impact of technology on this is well evidenced with his-
toric studies using predominantly 64-slice technology report-
ing rates of an inability to perform FFR CT of 33%, while 
more recent studies utilizing wide-bore or dual-source technol-
ogy report rates of 2.9% (10,37). Thus, further improvements 
in both the accuracy and ability to perform FFR CT will likely 
be yielded through advances in CT technology with increased 
temporal resolution, higher resolution CT scanners, and spec-
tral imaging (38,39).

Future Directions
The ability of FFR CT to be measured at every point along the 
vessel and in relation to the stenosis offers the potential to im-
prove our understanding of lesion-specific ischemia. After ste-

Figure 2:  Bar graphs show rate of acceptance of coronary CT angiography for fractional flow analysis according 
to heart rate. Graphs are based on 10 621 clinical cases submitted to a central fractional flow reserve derived from CT 
angiography (FFR CT) core laboratory. The solid bars represent acceptance rates for FFR CT analysis while the dashed line 
represents the polynomial trendline of the association between heart rate and CT angiography acceptance (37).
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nosis, distal vessel and the change in FFR CT across the stenosis 
(FFR CT) are all potential measures of flow limitation (40,41). 
Currently, it is recommended to measure FFR CT 2 cm distal 
to the stenosis for the determination of lesion-specific ischemia, 
with more distal measurements associated with a high rate of 
false-positive findings (41,42). However, the FFR CT may 
provide for a more accurate measure of lesion-induced ischemia 
as it reflects the pressure drop attributable to a particular steno-
sis. Modeling of the effects of stent placement on a stenosis may 
yield more accurate results still (17). While the poststenosis FFR 
CT may provide for the best marker of lesion-induced ischemia, 
it may not provide the best marker of prognostic risk, which may 
be better reflected by the end-vessel values where the summative 
effect of all the upstream plaque and stenosis is captured (43). 
While FFR CT provides for useful lesion-specific determination 
of flow limitation, myocardial perfusion continues to provide 
useful information on prognosis and on the presence of micro-
vascular disease and globally reduced flow secondary to diffuse 
atherosclerosis (44,45). There is likely a complementary role be-
tween the techniques, and further work is required to best select 
which patients will benefit most from these tests (46).

One of the strengths of FFR derived from CT angiography 
is the availability of stenosis and plaque information available 
in addition to the FFR CT values. The EMERALD (Explor-
ing the Mechanism of Plaque Rupture in Acute Coronary Syn-
drome Using Coronary CT Angiography and Computational 
Fluid Dynamic) study demonstrated that stenosis, high-risk 
plaque features, and FFR CT all provided independent incre-
mental benefit in the identification of plaques at risk for rupture 
(47,48). Further work in understanding the interplay between 
plaque, stenosis, FFR CT, and risk may allow for better case se-
lection for intervention in future.

Conclusion
FFR CT augments the current anatomic assessment available 
at CT angiography with a modeled functional assessment. 
Currently, this reduces the number of patients requiring ad-
ditional functional diagnostic tests and reduces the number of 
people undergoing invasive angiography without revasculariza-
tion. Better understanding of the interplay between anatomic 
and functional markers of disease and clinical outcomes are 
needed to advance our knowledge of how best to integrate FFR 
CT into decision-making clinical practice, guided by further 
high-quality clinical effectiveness studies.
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