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Abstract

ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating 

leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular 

endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in 

response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce 

outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton 

following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master 

regulator of many essential cellular functions both at the onset and at the resolution of pathologic 

conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this 

review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution 

responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 

has been of clinical and therapeutic interest for some time now; however, several attempts at 

inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its 

beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark 

new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.
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1 | INTRODUCTION

Adhesion molecules are critical regulators of cellular function, tissue integrity, and 

homeostasis. These adhesive receptors not only mediate cell-to-cell interactions, but through 

association with the cell cytoskeleton and various adaptor proteins trigger intracellular 

signaling events in response to specific and local cues.1,2 As such, adhesion molecules help 

form endothelial and epithelial barriers via signal transduction and homotypic interactions at 
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cellular junctions, while providing structural support and binding scaffold for extracellular 

matrix (ECM), glycocalix, and many resident or recruited cell types via heterotypic 

interactions at the basal and apical membranes.2

ICAM-1 is a cell surface glycoprotein expressed at a low basal level in immune, endothelial 

(EC) and epithelial cells, but is up-regulated in response to inflammatory stimulation.3 The 

function of ICAM-1 has been best studied in leukocyte transendothelial migration (TEM), 

where ICAM-1 regulates leukocyte rolling and adhesive interactions with the vessel wall, 

and guides leukocyte crossing of the endothelial layer.4,5 More recently, functional studies 

identified several new roles of ICAM-1 in epithelial injury-resolution responses, innate and 

adaptive immune responses in inflammation, and tumorigenesis.6

Thus, ICAM-1 has emerged as a master regulator of many essential tissue functions both at 

the onset and the resolution of pathologic conditions. ICAM-1 has been of clinical and 

therapeutic interest for some time now; however, inhibition of ICAM-1 function has not 

yielded significant clinical impact in improving injury resolution.7–9 Perhaps, with a better 

understanding of its various roles in health and disease and new mechanistic insights into its 

function, the clinical value of ICAM-1 could be revisited for improvement of therapeutic 

strategies. This review will summarize the emerging aspects of ICAM-1 biology, its diverse 

functions in disease, and the potential diagnostic and therapeutic implications associated 

with this adhesion receptor.

2 | ICAM-1 STRUCTURE AND FUNCTIONAL IMPLICATIONS DURING 

HOMEOSTASIS AND PATHOGENESIS

2.1 | ICAM-1 structure, splice variants, and glycosylation

ICAM-1 belongs to the Ig superfamily and consists of five extracellular Ig domains, a 

transmembrane domain, and a short cytoplasmic domain.10 The molecular weight of 

ICAM-1 varies between 60 and 114 kDa, depending on the extent of glycosylation on the Ig 

domains.11 These glycosylated Ig domains mediate ICAM-1 interactions with its ligands. 

Upon ligation, ICAM-1 undergoes dimerization and clustering through homotypic binding 

between Ig domains 3 and 4,12 which significantly increases ICAM-1 binding affinity to its 

cognate ligands β2-integrins lymphocyte function-associated antigen 1 (LFA-1; CD11a/

CD18) and macrophage antigen 1 (Mac-1; CD11b/CD18).13,14 LFA-1 and Mac-1 are known 

to bind Ig domains 1 and 3, respectively.15

As with other Ig superfamily members, ICAM-1 is post-transcriptionally regulated by 

alternative splicing, which generates six membrane-bound variants and a secretable soluble 

protein (sICAM-1).16,17 Structural studies of ICAM-1 reported that all ICAM-1 isoforms 

consist of at least Ig domains 1 and 5, and the variable domains 2, 3, and 4, which define 

ICAM-1 binding specificity to its ligands.16 Thus, alternative splicing can dictate ICAM-1 

function in various pathologic conditions.18 Supporting this idea, disrupting different Ig 

domains of ICAM-1 to generate knockout (KO) mouse models can differentially impact 

disease outcomes. For example, Icam1tm1Jcgr mice with truncated Ig domain 3 showed 

impaired neutrophil (polymorphonuclear neutrophils [PMN]) recruitment and exhibited 
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resistance to endotoxic shock.18,19 In contrast, Icam1tm1Bay mice lacking isoforms with Ig 

domain 4 were highly susceptible to endotoxemia with undisturbed or even enhanced 

neutrophil infiltration.18,20

Intriguingly in experimental autoimmune encephalomyelitis (EAE), whereas ICAM-1 is up-

regulated by EC and many other cell types, disease symptoms were reduced in ICAM-1 null 

mice (Icam1tm1Alb) but were unexpectedly exacerbated in Icam1tm1Bay, possibly due to T-

cell dysfunction.18,21,22 As with endotoxemia, Icam1tm1Jcgr were resistant to EAE with less 

immune cell infiltration.18,21,23 The findings underscore the potentially distinct roles of 

ICAM-1 splice variants in immune disorders.

Glycosylation is another factor that can significantly affect ICAM-1 function.24 ICAM-1 is 

heavily glycosylated, and variations in glycosylation were shown to result in distinct 

biologic functions.25 It has been shown that N-glycans on the Ig domains of ICAM-1 are 

required for retention of the receptor on the cell surface.24,26 In the context of leukocyte 

trafficking, high-mannose form of ICAM-1 was found to be more efficient at regulating 

monocyte rolling and adhesion, whereas the complex N-glycan form of ICAM-1 was 

required for cytoskeletal changes in ECs and thus in the regulation of vascular permeability.
27 Furthermore, changes in protein glycosylation can alter cleavage by proteinases, thus 

impacting the release and the structure of sICAM-1.28 This will in turn impact ICAM-1 

function, as will be discussed in following sections.

3 | ICAM-1 EXPRESSION AND FUNCTION IN INFLAMMATION

ICAM-1 is expressed at low levels by EC, epithelial, and immune cells. ICAM-1 expression 

is highly induced by a variety of inflammatory cytokines; however, a degree of specificity 

among different cell types has been observed.3,29 For example, in ECs, ICAM-1 expression 

was induced by NFκB in response to TNFα or IL-1β stimulation,30 whereas in intestinal 

epithelial cells (IECs), ICAM-1 expression was induced by IFNγ, but not by TNFα or LPS 

treatment.31 In macrophages, IFNγ and LPS stimulation induced a robust up-regulation of 

ICAM-1 compared to relatively small effect of TNFα or IL-1β.32 ICAM-1 expression was 

also shown to be regulated by microRNA activity. MiR-141 in ECs was found to down-

regulate ICAM-1, thus decreasing leukocyte adhesion and attenuating myocardial ischemia-

reperfusion injury.33 Because ICAM-1 is induced in many cell types during inflammatory 

responses, it is not surprising that ICAM-1 has been implicated in many physiologic 

processes, including leukocyte trafficking, immune cell effector functions, pathogen and 

dead cell clearance, and T-cell activation. Figure 1 demonstrates the expression of ICAM-1 

on epithelial, EC, and immune cells in response to inflammation.

3.1 | ICAM-1 regulates leukocyte trafficking and effector function

ICAM-1 is best known for its role in regulating leukocyte trafficking and TEM.34,35 The role 

of ICAM-1 in leukocyte-EC interactions has been well studied and elegantly summarized in 

several recent reviews36–38 and will not be discussed in detail. However, it is worth noting 

that in addition to its well-established role in mediating leukocyte firm adhesion to ECs, 

ICAM-1 has been shown to also mediate slow PMN rolling and luminal crawling.39–41
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Intriguingly, in post-capillary venules, whereas expression of ICAM-1 was increased with 

inflammatory stimulus, high and low ICAM-1 expression regions along the vessel wall were 

observed.42 Not surprisingly, leukocyte interactions in these respective regions were 

increased or decreased accordingly.40 Moreover, ICAM-1 expression patterns varied among 

individual ECs and were also shown to actively redistribute and cluster around migrating 

leukocytes.43,44 ICAM-1 enrichment at the tricellular EC junction was also noted, marking 

these regions as preferred locations or “portals” of entry for PMN TEM.45

ICAM-1 contributions to immune cell effector function are also being increasingly 

recognized. For example, ICAM-1 expressed by dendritic or natural killer cells is important 

for T lymphocyte binding and formation of immune synapses.46–48 ICAM-1 expressed by T 

lymphocytes can deliver a co-stimulatory signal, which is required for T-cell activation,49,50 

as well as contribute to programming of memory CD8 T cells in response to secondary 

stimuli.51 We recently demonstrated that ICAM-1 expression was highly induced in 

inflammatory macrophages, where it served as a phagocytic receptor and mediated binding 

of macrophages and apoptotic cells, facilitating apoptotic clearance.32 Finally, ICAM-1 

expression was also induced on activated murine and human PMNs. In murine PMNs, LPS-

driven induction of ICAM-1 expression was associated with enhanced reactive oxygen 

species (ROS) generation and improved phagocytoses.52,53 Consistently, ICAM-1 

expression was also detected on PMNs from patients with bacterial peritonitis and in septic 

patients with elevated levels of endotoxin.53,54 ICAM-1 expression significantly improved 

PMN effector function in both murine models and human disease.

3.2 | ICAM-1 regulates endothelial and epithelial barrier function

In addition to mediating leukocyte adhesion, ICAM-1 also serves as a signaling receptor to 

transduce outside-in signaling, linking leukocyte adhesive interactions with epithelial and 

endothelial function.37,55 Specifically, ICAM-1 signals through the association of its 

cytoplasmic domain with the actin cytoskeleton. These interactions are facilitated via 

adaptor proteins, including ezrin, radixin, and moesin (ERM),56 actinin,57 b-tubulin,58 

glyceraldehyde-3-phosphate dehydrogenase,59 cortactin,60 Grb2,61 SOS, and Shc.62 

ICAM-1 ligation by leukocytes or by crosslinking Abs, which effectively simulates 

leukocyte binding, has elucidated many signaling events that are induced downstream of 

ICAM-1. These include activation of Rho-GTPases,61 Src kinase and endothelial nitric 

synthase,63 MAP kinases,64 and protein kinase C (PKC)δ.65 By signaling through these 

effector molecules, ICAM-1 contributes to the regulation of critical barrier properties in ECs 

and epithelial cells. The various signaling pathways regulated by ICAM-1 are summarized in 

Table 1.

In ECs, ICAM-1 has been shown to regulate intracellular Ca2+ levels and lead to activation 

of myosin contractility, both of which are critical for maintaining a functional barrier.66–68 

Moreover, ICAM-1 has been shown to regulate EC permeability in healthy and inflamed 

tissue.44,69,70 Intriguingly, whereas in healthy tissue, ICAM-1 signaled through PKC 

activation to control barrier function, following inflammatory stimulation, ICAM-1 

engagement by circulating leukocytes led to Src kinase activation to increase solute 

permeability.44 ICAM-1 was also shown to activate JNK and lead to internalization of VE-
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cadherin,70 causing disruption of the EC junction and impairment of EC barrier function.64 

ICAM-1 could also modulate EC permeability by regulating cytokine production. ICAM-1 

antibody-crosslink in HUVECs increased production of IL-8 and CCL5,64,71,72 where both 

molecules have been shown to impair EC permeability.73–75

ICAM-1 is similarly up-regulated in epithelial cells under inflammatory conditions where it 

primarily localizes to the apical surface.31,76–78 In gut epithelium, ICAM-1 expression has 

been shown to be markedly increased in active inflammatory bowel disease (IBD) and in 

epithelial cells following inflammatory stimulation.31,79 Given its apical (luminal) 

localization, ICAM-1 has no direct role in mediating PMN migration across IECs as it does 

in endothelium; however, ICAM-1 promotes retention of transmigrated PMNs at the luminal 

epithelial surface.31 PMN ligation of ICAM-1 at the apical epithelial surface also triggered 

myosin light-chain kinase (MLCK)-dependent down-regulation of perijunctional F-actin, 

which increased intestinal epithelial permeability.31 In bronchial epithelial cells, ICAM-1 

activation by clustering induced local activation of ERK1/2 to modulate permeability.80

ICAM-1 can further impact IEC permeability by facilitating ligation of other apically 

localized proteins by retained PMNs. One such protein is CD44, which similarly to 

ICAM-1, can associate with ERM proteins to regulate the actin cytoskeleton.81,82 In 

addition, CD44 via recruitment of metalloproteinases (MMP7 and 9) impairs junction 

assembly and thus compromises epithelial barrier function.83

3.3 | Soluble ICAM-1 as an inflammatory biomarker

ICAM-1 can be also found as an sICAM-1 in numerous inflammatory disorders.84–87 

sICAM-1 is produced as a spliced isoform or as a result of proteolytic cleavage.18,88 The 

splice variant of sICAM-1 is truncated at the transmembrane domain whereas it retains all 

five extracellular Ig domains similarly to full-length ICAM-1 molecule. In contrast, 

enzymatically cleaved forms of sICAM-1 may differ in the composition of their Ig domains 

depending on proteases that catalyzed the cleavage. It has been suggested that common 

proteases including elastase, cathepsins, and metalloproteases can mediate cleavage of 

ICAM-1, generating potentially structurally different forms of the protein.17,18 However, 

whether this also results in different biologic functions of sICAM-1 during inflammation is 

not yet determined.

sICAM-1 levels are elevated in animal disease models89–91 and in serum of patients with 

chronic obstructive pulmonary disease (COPD),92 asthma,93 sepsis,94 atherosclerosis,95 

coronary heart disease,96 or cancer.97–99 Increases in sICAM levels were correlated with 

inflammation and several clinical studies used sICAM-1 as a surrogate marker to monitor 

response to therapy (particularly in clinical studies of cancer patients, will be discussed in 

the following text) or for classifying patients with infectious versus noninfectious systemic 

inflammatory response syndrome,87 as well as a variety of inflammatory disorders.89–91

sICAM-1 has been shown to promote both pro- and anti-inflammatory responses. Low levels 

of sICAM-1 have been shown to trigger activation of NFκB and ERK, leading to the release 

of inflammatory cytokines macrophage inflammatory protein (MIP)-1a, MIP-2, TNFα, 

IFNγ, and IL-6 (summarized in37). In contrast, high levels of sICAM-1 enhanced EC 
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migration and angiogenesis,100,101 competitively inhibited leukocyte-EC interactions,102 and 

promoted the pro-repair activity of immune cells.103 Several emerging roles of sICAM-1 in 

resolution of inflammation will be discussed in the following section.

4 | ICAM-1 CONTRIBUTES TO RESOLUTION OF INFLAMMATION AND 

WOUND HEALING

Restoration of tissue homeostasis following pathogenic insult or injury initiates with 

inflammatory resolution, which involves clearance of inflammatory immune cells and 

reprogramming of tissue resident cells to pro-resolution phenotype.104,105 The subsequent 

tissue remodeling phase involves re-epithelization (restitution and regeneration of injured 

tissue), vascularization, and formation of new capillary networks.106 ICAM-1 function is 

typically associated with progressing inflammation; however, emerging evidence 

increasingly implicates ICAM-1 activity in resolution of inflammation and wound healing.

4.1 | ICAM-1 and immune cell effector function in resolution of inflammation

Macrophages are professional phagocytes in charge of wound debridement and clearance of 

apoptotic/dead cells by efferocytosis.107,108 As such, macrophages play an important role in 

timely resolution of inflammation and successful wound healing.109,110 We found that 

ICAM-1 expressed by inflammatory macrophages played an important role in efferocytosis 

(clearance of apoptotic/dead cells) of immune and epithelial cells.32 Efferocytosis also leads 

to cellular reprogramming in newly recruited inflammatory macrophages, which in turn 

suppress inflammatory response and increase production of pro-resolution cytokines, 

including IL-10, TGF-β, and PGE2.111,112 Furthermore, ICAM-1 was found to directly 

impact macrophage polarization and promote the pro-repair phenotype by positively 

modulating miR-124 expression.113 Thus, by enhancing macrophage efferocytosis and the 

pro-repair reprograming, ICAM-1 can contribute to inflammatory resolution and tissue 

healing. ICAM-1 expressed by T cells was found to function as a co-stimulatory molecule to 

promote T-cell activation,50 where activated regulatory T cells promote the pro-repair 

function of macrophage by increasing efferocytosis and production of IL-10.114 Finally, 

ICAM-1 improved PMN effector function (ROS generation and phagocytoses) in murine 

endotoxemia model and septic patients to facilitate inflammatory resolution.52–54

4.2 | ICAM-1 in epithelial and endothelial wound healing

ICAM-1 in epithelial cells has been implicated in regulating wound healing.115–117 In IECs, 

engagement of ICAM-1 by apically adherent PMNs induced Akt phosphorylation and Akt-

dependent transcriptional activation of β-catenin, leading to increased IEC proliferation and 

wound re-epithelialization.115 Whereas colon wound healing was impaired in ICAM-1 KO 

mice, an induction of epithelial ICAM-1 signaling at the wound bed by ICAM-1-targeted 

immune complexes significantly improved colon wound healing, supporting the role of 

ICAM-1 in this process.115 Similarly, ICAM-1 has been shown to promote skin wound 

healing, where the loss of ICAM-1 has been linked to impaired keratinocyte migration, 

granulation tissue formation, and overall inhibition of wound healing. However, in this 

setting, impaired wound repair was associated with ICAM-1-dependent reduction in 

infiltrating neutrophils and macrophages.116 ICAM-1 in corneal epithelium has been shown 
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to promote corneal wound repair by facilitating the recruitment and retention of γ/δ T cells, 

which are important mediators of resolution of inflammation and wound healing. With the 

loss of corneal epithelial ICAM-1, T-cell recruitment was impaired, as was epithelial cell 

division and subsequent re-epithelialization.118

Finally, ICAM-1 has also been implicated in EC migration and repair,101 which is critical 

for neovascularization of resealing wounds and restoration of tissue homeostasis.109,110 

ICAM-1 has been shown to regulate EC migration by activating Akt and endothelial nitric 

synthase.101 Besides, EC ICAM-1 has been also shown to mediate recruitment of bone 

marrow-derived endothelial progenitor cells (EPCs) in ischemic hearts to promote 

angiogenesis following injury.119 Similarly, sICAM-1 has been shown to stimulate EC 

migration and tube formation.100 Because de novo production or generation of sICAM-1 by 

cleavage is elevated in inflammation,17,120–122 sICAM-1 may facilitate resolution of 

inflammation and enhance wound healing by promoting neovascularization.

5 | ICAM-1 ACTIVITY IMPACTS TUMOR DEVELOPMENT AND METASTASIS

Cellular constituents of tumor microenvironment (TME) include tumor and stromal cells, 

blood and lymph vessels, as well as infiltrating and resident immune cells.123,124 Expression 

of ICAM-1 has been documented in most, if not all, cell types in the TME.125,126 As such, 

in lung adenocarcinoma, ICAM-1 was shown to be induced in transformed alveolar 

epithelial cells, ECs, pulmonary lymphocytes, and fibroblast.127–129 In melanoma, thin pre-

cancerous lesions expressed a negligent amount of ICAM-1; however, analyses of 

multilayered melanoma lesions revealed heightened ICAM-1 expression at the basal layer.
130,131 ICAM-1 expression has been similarly induced in tumor-associated macrophages, 

and was involved in their polarization.113,132 As with the primary tumor site, ICAM-1 up-

regulation was also documented during metastasis.133,134 Studies in experimental liver 

metastasis model revealed elevated ICAM-1 levels on liver sinusoid ECs, hepatocytes, 

Kupffer cells, and interstitial fibroblasts.125,135 An induction of ICAM-1 expression by 

tumor resident and infiltrating cells both at the primary and secondary sites indicates an 

important role of this receptor during tumorigenesis.

5.1 | ICAM-1 confers aggressive phenotype to cancer cells of the primary tumor niche

ICAM-1 expression has been correlated with aggressive and invasive tumor phenotypes. For 

example, transcriptional profiling of several triple-negative breast cancer (TNBC) cell lines 

identified ICAM-1 as one of the top differentially expressed genes compared to other breast 

cancer cells.136 ICAM-1 was constitutively expressed in basal-like, TNBC cancer cells 

(most aggressive breast cancer subtype associated with poor prognosis) whereas only 

inducible in human epidermal growth factor receptor 2 and luminal B cancer subtypes, and 

was completely absent in luminal A (less aggressive) subtype of breast cancer. As with 

breast cancer, ICAM-1 expression is significantly induced in nonsmall cell lung carcinoma 

(NSCLC), which is an aggressive and highly metastatic type of lung cancer, whereas was 

found to be constitutively expressed at relatively low levels by small cell lung carcinoma 

(SCLC) cells.137,138
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Given its putative properties, ICAM-1 expressed by tumor cells can impact tumor 

development either by promoting tumor-immune cell adhesive interactions or by relaying 

outside-in signaling to regulate tumor cell function. Supporting the idea of ICAM-1-

dependent retention of immune cells, histologic analyses of breast cancer tissue correlated 

high ICAM-1 expression in TNBC with the presence of tertiary lymphoid structures (TLS).
139 These T-cell-rich regions are closely associated with invasive and highly immunogenic 

tumors. Similarly, ICAM-1 expressed by tumor and stromal cells in a melanoma xenograft 

model was found to promote T-cell aggregation and retention at the tumor niche through 

binding to β2 -integrin LFA-1.140 Although T-cell recruitment and retention due to ICAM-1 

on one hand may improve the immunosurveillance and potentially restrict tumor 

development, T-cell aggregation within the tumor tissues has been shown to impair the 

effector function of infiltrating T cells, allowing tumor cells to evade immune recognition 

and killing.

Interestingly, analyses of tumor sections from patients with TNBC revealed that ICAM-1-

expressing tumor cells were localized to tumor invasive front, a region that was also heavily 

infiltrated by immune cells, particularly T lymphocytes.136,139 Similarly, in squamous cell 

oral carcinoma ICAM-1 was enriched at the invading basal layer, where accumulating T 

cells were observed and where immunogenic responses were driven by T-cell-dependent 

IFN-γ signaling.141 This suggests that tumor infiltrating immune cells via cytokine release 

may drive expression of ICAM-1 in tumor cells, and as such promote tumor-immune cell 

interactions and enhance directional cancer cell migration. Indeed, IFN-γ has been shown to 

induce ICAM-1 expression in cancer cells,142 and in turn, ICAM-1 has been implicated in 

promoting cancer cell migration.143,144

Although specific ICAM-1 signaling in tumor cells that may enhance migration has not been 

well defined, evidence from other biologic systems indicates several potential signaling 

pathways. For example, ICAM-1 through binding interactions with mucin 1 (MUC1), which 

is overexpressed in breast, ovarian, prostate, and gastric cancers, can activate the pro-

migratory MAPK/ERK signaling cascade in neighboring tumor cells.145–148 ICAM-1 can 

also interact with the ECM components such as fibrinogen to stimulate pro-migratory 

signaling.149,150 In ECs, engagement of ICAM-1 by immune cells triggered intracellular 

Ca2+ increases66 and activation of Src kinase63 and Ras-related C3 botulinum toxin substrate 

(Rac)/Cdc42 GTPases,151–153 all of which can promote cell migration. ICAM-1 may 

similarly act in transformed epithelial and tumor cells to promote migratory and invasive 

pheno-types, yet this remains to be determined.

Finally, ICAM-1 up-regulation was also noted in hypoxic tissue,154 where HIF-1 and NFκB 

signaling axes are substantially activated. Interestingly, in HUVEC cultured under severe 

hypoxic condition, the induction of ICAM-1 expression was regulated in prolyl hydroxylase 

(PHD) and NFκB-dependent manner, and was independent of HIF-1 signaling.154 Because 

oxygen depletion and hypoxia are prominent features of many solid tumors, hypoxic 

activation of ICAM-1 is likely to govern ICAM-1 signaling and impact tumor viability and 

transformation.
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5.2 | ICAM-1 roles in the initiation and progression of tumor metastasis

Metastasis is a leading cause for cancer-associated mortality.155 Cancer cells spread to 

secondary organs by detaching from the primary tumor and subsequently entering the 

circulation. Circulating tumor cells (CTCs) then traverse to distal sites to form metastatic 

lesions.156,157 Although the number of CTCs compared to other blood cells is negligent, 

recent advances in CTC detection methods established CTCs at the forefront of cancer 

diagnosis, characterization, and therapeutics.158,159 Importantly, the strict correlation 

between the number of CTCs and increased risk of metastasis and poor patient survival has 

been demonstrated.160–162

Survival of CTCs in the bloodstream and homing to secondary organs is essential for 

metastases formation.163–166 Intriguingly, emerging evidence indicates a potential role of 

ICAM-1 in the regulation of both processes. Analyses of CTCs from breast cancer patients 

and mouse xenograft models revealed that in circulation, tumor cells tend to attached to each 

other, forming CTC clusters.164,167,168 Within these clusters, CTCs are protected from the 

harsh environment in the circulation and display increased proliferative capacity and 

metastatic potential.167 However, the mechanisms that drive CTC clustering are not yet 

defined. This raises intriguing questions of whether these clusters formed early upon cancer 

cells leaving the primary tumors, or assembled later in circulation due to hemodynamic 

factors. CTC clusters were further found to associate with immune cells, particularly with 

PMNs, and these associations were surprisingly diminished upon CTC cluster disassembly.
167 These exciting observations underscore a potential role of PMNs and likely other 

circulating immune cells in regulating CTC survival and motility, and as a result, metastatic 

properties. This of course merits extensive investigation in the future. Because many tumor 

cell subtypes and immune cells co-express ICAM-1 and various ICAM-1 ligands, including 

β2-integrins, MUC1, and CD44, it is possible that ICAM-1 plays an important role in the 

heterotypic clustering of CTCs and PMNs observed in these studies. Based on the above 

discussion, potential mechanisms by which ICAM-1 may facilitate tumor metastasis are 

illustrated in Fig. 2.

The process of CTC homing to secondary organs is also a topic of continued investigation. 

CTCs (likely in the case of CTC clusters) may become trapped in the post-capillary venules 

in the lung, spleen, or liver,169 and upon intraluminal proliferation can give rise to secondary 

tumors.170–172 CTCs may also hijack mechanisms governing leukocyte recruitment to 

extravasate from the circulation into the surrounding tissue. In this process, ICAM-1 

expressed by ECs will be a key regulatory player. Indeed, inhibition or KO of EC ICAM-1 

or CD18 subunit on melanoma, bladder, and breast cancer cells in vitro, significantly 

attenuated cancer cell adhesion to ECs and subsequent TEM.131,173 As a result of ICAM-1 

inhibition, tumor cell invasion and metastasis was similarly attenuated in vivo in several 

metastatic cancer models.174–178

In addition to capturing CTCs from the circulation, EC ICAM-1 may promote CTC 

diapedesis by modulating immune cell behavior. ICAM-1 mediates PMN adhesion to ECs, 

which leads to PMN degranulation179 and release of various proteinases, including elastase, 

MMPs, and cathepsins.180,181 Disruption of EC junctions by circulating proteinases may 

create optimal sites for CTC TEM to occur. Additionally, ligation of EC ICAM-1 by 
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interacting PMNs has been shown to induce MLCK-dependent cytoskeletal rearrangment 

and increase vascular permeability,80 creating endothelial barrier conditions advantageous 

for tumor cell TEM. Consistent with this idea, ICAM-1 is constitutively expressed on the 

sinusoid microvessels of lung and liver,135,182,183 both of which by far represent the most 

frequent organs of metastasis.

5.3 | ICAM-1 as a prognostic cancer marker

Although it is clear that ICAM-1 expression is highly induced in the TME, the prognostic 

value of ICAM-1 on clinical outcomes of cancer patient is still somewhat controversial. 

Most of the evidence (as discussed earlier) suggests the pro-tumorigenic function of 

ICAM-1. In many cancers, including oral squamous cell carcinoma, lung carcinoma, gastric, 

and breast cancers, ICAM-1 has been implicated in promoting cancer,136,141,184–186 whereas 

in colorectal and non-Hodgkin’s lymphoma, high levels of tumoral ICAM-1 was predictive 

of favorable clinical outcomes.187,188

In lung NSCLC (high ICAM-1 levels and highly invasive tumors), high serum level of 

sICAM-1 strongly correlated with poor response to chemotherapy and decreased patient 

survival, whereas this correlation was insignificant in SCLC.189–191 In addition, a phase III 

study for the approval of VEGF-A inhibitor bevacizumab (Avastin), where 878 lung cancer 

patients were randomized into paclitaxel/carboplatin (standard of care) with or without the 

addition of bevacizumab, has reported a strict correlation between low levels of sICAM-1 

and better response to chemotherapy.192 Specifically, the subgroup with low sICAM-1 had a 

response rate of 32% to bevacizumab + standard, whereas subgroup with high sICAM-1 had 

a diminished response rate of 14%. These clinical observations indicate the prognostic value 

of sICAM-1 in therapeutic response in distinct cancer subtypes.

ICAM-1 levels were also shown to be indicative of tumor grade and as such may have 

prognostic value in metastatic diseases. A prognostic study comparing 332 patients with 

benign lung diseases to 387 patients with lung cancer found that patients with advanced 

tumor stage (stage IV, high metastatic risk) had higher sICAM-1 levels than those with a 

lower stage.193 Specifically within stage IV subgroup, patients with detectable metastasis 

had significantly higher sICAM-1 levels compared to those with localized diseases. These 

observations support ICAM-1 contributions to metastatic progression, as has been observed 

in pre-clinical studies using animal models.

Finally, there have been efforts to utilize ICAM-1 as a tumor-targeted molecule for 

therapeutic delivery and diagnostic purpose. As such, ICAM-1 was used to specifically 

target iron oxide nanoparticles to TNBC, which is currently lacking specific biomarkers and 

is challenging to diagnose.136 The deposition of these iron particles significantly enhanced 

signals of magnetic resonance imaging, and helped screening of TNBC in a timely and 

accurate manner. In another setting, ICAM-1 was engineered as a target moiety to deliver 

doxorubicin-conjugated liposomes to metastatic melanoma and enhanced drug uptake by 

these cancer cells.194
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6 | CONCLUDING REMARKS

In summary, ICAM-1 serves as an adhesion molecule and as a signaling receptor in many 

cells types to mount inflammatory responses, initiate resolution of inflammation and 

healing, and regulate tumor cell survival and dissemination. These concepts are summarized 

in Fig. 3. As such, although well studied, ICAM-1 remains the focus of continued 

investigations and may serve as a promising prognostic biomarker, and a potential target for 

emerging therapies.
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Abbreviations:

COPD Chronic obstructive pulmonary disease

CTCs Circulating tumor cells

DCs Dendritic cells

EAE Experimental autoimmune encephalomyelitis

ECM Extracellular matrix

ECs Endothelial cells

EPCs Endothelial progenitor cells

ERM Ezrin, radixin, and moesin

IBD Inflammatory bowel disease

IECs Intestinal epithelial cells

LFA-1 Lymphocyte function-associated antigen 1

Mac-1 Macrophage antigen 1

MIP-2 Macrophage inflammatory protein 2

MLCK Myosin light-chain kinase

MUC1 Mucin 1

NSCLC Nonsmall cell lung carcinoma

PKC Protein kinase C

PMNs Polymorphonuclear neutrophils

Rac Ras-related C3 botulinum toxin substrate
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ROS Reactive oxygen species

SCLC Small cell lung carcinoma

sICAM-1 soluble ICAM-1

TEM Transendothelial migration

TLS Tertiary lymphoid structures

TME Tumor microenvironment

TNBC Triple-negative breast cancer
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FIGURE 1. ICAM-1 expression on endothelial, epithelial, and immune cells.
Representative immunofluorescence images show ICAM-1 expression on the surface of 

intestinal epithelial cells, Caco2 (left, co-stained with the junctional molecule ZO-1), and on 

macrophages and endothelial cells in inflamed mouse colon tissue (right). Colon 

inflammation was induced by dextran sodium sulfate (DSS) treatment (3% weight/volume). 

Following 4 d of treatment colon tissue was extracted, sectioned, and stained using standard 

protocols. ICAM-1 expressing, F4/80 positive tissue MΦs shown by white arrows, (v) 

depicts blood vessels, the white dashed line separates the muscularis and mucosa layers. 

Scale bars represent 20μm

Bui et al. Page 23

J Leukoc Biol. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. Potential mechanisms of action by which ICAM-1 may promote tumor metastasis.
(1) Via binding to β2-integrins expressing tumor cells, ICAM-1 may support homotypic 

clustering of circulating tumor cells (CTCs). CTC clusters showed increased survival and 

metastatic potential. (2) Via β2-integrins expressed by immune cells, ICAM-1 can promote 

CTC-leukocyte clustering β2-integrin. Association of CTC clusters with polymorphonuclear 

neutrophils increased survival and proliferation of tumor cells. (3) ICAM-1 expressed by 

endothelial cells can facilitate capture and extravasation of β2-integrin-expressing tumor 

hijacking transendothelial migration mechanisms used by migrating leukocytes
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FIGURE 3. ICAM-1 function in tissue homeostasis and disease.
Schematic representation of key physiologic processes regulated by ICAM-1. These include 

leukocyte-endothelial cell interactions and TEM, regulation of leukocyte effector function in 

inflammation (ROS release by PMNs, T-cell priming and activation by dendritic cells, 

macrophage efferocytosis and polarization), tissue repair by promoting neovascularization 

and reepithelialization, and carcinogenesis by facilitating circulating tumor cell 

extravasation and survival
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