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Abstract

Methods for measuring of eating behavior (known as meal microstructure) often rely on manual 

annotation of bites, chews, and swallows on meal videos or wearable sensor signals. The manual 

annotation may be time consuming and erroneous, while wearable sensors may not capture every 

aspect of eating (e.g. chews only). The aim of this study is to develop a method to detect and count 

bites and chews automatically from meal videos. The method was developed on a dataset of 28 

volunteers consuming unrestricted meals in the laboratory under video observation. First, the faces 

in the video (regions of interest, ROI) were detected using Faster R-CNN. Second, a pre-trained 

AlexNet was trained on the detected faces to classify images as a bite/no bite image. Third, the 

affine optical flow was applied in consecutively detected faces to find the rotational movement of 

the pixels in the ROIs. The number of chews in a meal video was counted by converting the 2-D 

images to a 1-D optical flow parameter and finding peaks. The developed bite and chew count 

algorithm was applied to 84 meal videos collected from 28 volunteers. A mean accuracy (±STD) 

of 85.4% (±6.3%) with respect to manual annotation was obtained for the number of bites and 

88.9% (±7.4%) for the number of chews. The proposed method for an automatic bite and chew 

counting shows promising results that can be used as an alternative solution to manual annotation.
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I. INTRODUCTION

Study of eating behavior of individuals is important for researchers to understand the eating 

patterns of people suffering from obesity and eating disorders. In order to understand the 

complex process of dietary habits, it is necessary to track the dynamic process of eating 
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episodes which are known as meal microstructure [1]–[3]. Meal microstructure combines 

factors of food intake behavior such as total eating episode duration (start of the food intake 

to the end including pauses), true ingestion duration (time spent in chewing), eating event 

number (a bite which is potentially followed by a segment of chewing and swallowing), 

ingestion rate, frequency and efficiency of chewing, and size of bite [4]. As the meal 

microstructure is used to characterize the eating behavior of an individual, studies of meal 

microstructure may provide new insights and findings in the treatment of obesity. In [5], the 

authors claimed that a reduction in bite-rate results in the lower intake. Other studies have 

shown that there is a clear relationship between food intake rate and energy intake [6]–[9]. 

In [9], the authors suggested that to fight against obesity, interventions to improve chewing 

activity could be a necessary tool. In [6], the authors claimed that eating rate feedback can 

be helpful to aid in intervention in eating disorder treatment. Health researchers are applying 

the number of chews and the rate of chewing as variables in their models for estimation of 

ingested mass and energy intake. Counts of chews and swallows were used to develop the 

energy intake estimation model (CCS) in [10]. In [11] authors concluded that for solid food, 

recordings of chewing sound can be used to predict bite weight.

Recently, many health researchers are exploring several wearable devices to monitor food 

intake behavior and record meal microstructure in eating episodes [12]. Different sensor 

modalities such as acoustic sensors [11], [13], accelerometers [14], [15], surveillance video 

cameras [16], smartphone cameras [17], piezoelectric sensors [18], [19], motion sensors [5], 

hand gesture sensors [20] are being explored in development of these wearable devices. To 

train and validate sensor-based models, most of the studies of food intake monitoring 

systems [6]–[8], [10], [19], [21]–[24] apply manual annotation of chew count by either 

participants or the investigators. Although video observation and manual annotation is an 

accepted gold standard for these studies, the manual chew count can be inaccurate, time-

consuming and a burden to the investigators when the data size is large. In [25], the authors 

used both manual annotation of videos and sensor-driven features to quantify energy intake. 

They mentioned that manual analysis is not realistic on a large scale. Hence an algorithm to 

make the annotation automatic in feeding studies is necessary.

Little work has been done so far to make the annotation from eating episode videos 

automatic. In [26], the authors used face detection and a variable-intensity template 

modeling to track changes in luminance of the left and right cheeks and chin areas during 

chewing. They achieved an accuracy of 83% on a small dataset (480 chews) and detected 

faces only from the front on a limited number of foods, whereas chewing depends upon food 

type. In [16], the authors used visual quasi-periodicity in chewing to detect chewing events 

from videos using support vector machines. This model worked only to detect chewing 

events (classification) while not counting the number of chews. Recently, in [27] authors 

developed a deep network using features from both face and body to detect bite instances 

and count the number of bites, but did not count the number of chews in the eating episodes. 

A novel deep learning based algorithm named “Rapid Automatic Bite Detection” (RABid) 

[28] was developed by the authors that extracts and processes skeletal features from videos 

of eating episodes to measure meal duration and bites using long short-term memory 

(LSTM) network. None of the above-mentioned methods can be used as a fully automatic 
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alternative to human meal-video annotations for the experimental analysis of human eating 

behavior, as they don’t calculate bites and chews of the meal together.

In this paper, we propose a novel contactless bite and chew counting method from video 

based on object detection, image classification, and optical flow. The proposed method 

combines automatic face detection, and bite and chew counting to provide a fully automatic 

approach for annotation of food consumption documented on video.

II. METHODS AND MATERIALS

A. DATA COLLECTION PROTOCOL

A total of 28 volunteers were recruited (17 males and 11 females, average age 29.03 ± 12.20 

years, range 19–41 years, average body mass index (BMI) 27.87 ± 5.51 kg/m2, range 20.5 to 

41.7). Participants were asked to consume three free meals (breakfast, lunch, and dinner) in 

the laboratory where the eating was recorded on video. Participants were taken to on-campus 

food courts at the University of Alabama to self-select their meals. There was no restriction 

on the choice of food items. Several participants (up to 3) were invited to the laboratory at 

the same time to simulate social eating. This study was approved by The University of 

Alabama’s Institutional Review Board. Recruited participants did not show any medical 

conditions which would hinder their normal eating or chewing. All participants read and 

signed an Informed Consent before participating in the study. The meal episodes were 

recorded using an SJCAM SJ4000 Action Camera (Black).This camera takes 1080p video at 

30 frames per second. Fig. 1 shows the data collection setup in the laboratory. The cameras 

were positioned at 3 feet away from participants. The cameras were positioned to take video 

in the profile view to make the tracking of the jaw movement easier for manual annotation. 

The subjects were instructed to eat in a natural way which can include talking and gestures 

with a self-determined pace. The video dataset contained a total 19 Hours and 26 Minutes 

videos of 84 meals from 28 different subjects. Because the highest frequency of chewing is 

about 2Hz, the recorded videos were down-sampled into 6fps image frames. The dataset 

contained 419737 image frames, 2101 bites and 45581 chews that were counted using 

manual annotation of the video. The manual annotation process was performed using a 3-

button system and custom made LabView software as described in [29]. The three-button 

system shown in Fig. 2(a) contains dedicated buttons to count number of chews and bites. 

The meal video was played in a monitor with 5x slower speed and bite and chewing events 

were marked by pressing the button. One complete meal video annotation is shown in Fig. 

2(b) and a short sequence of a bite followed by chewing is shown in Fig. 2(c). All the 

computation and processing was performed offline in MATLAB 2018b (Mathworks Inc., 

Natick, MA, USA).

B. FACE DETECTION TO EXTRACT ROI

In the first step of processing, we converted the meal videos into 6 fps image frames. The we 

detected the region of interest (ROI) from the converted image frames of the videos. As the 

goal of this project is to automatically count bites and chews, only the face of the participant 

is the ROI. To detect the face from images, deep-learning based object detection algorithm 

was used. In recent years, deep Convolutional Neural Networks (CNNs) became very 
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popular in computer vision applications. For object detection, region-based CNN detection 

methods are becoming the primary choice for researchers. In order to bring more speed and 

accuracy in object detection, three generations of region-based CNN detection models, from 

the R-CNN [30], to the Fast R-CNN [31], and finally the Faster R-CNN [32], have been 

proposed within the space of few years. In this project, Faster R-CNN was used to detect 

faces in image frames. Fig. 3 shows the architecture of the Faster-RCNN object detection 

algorithm. Typically, any RCNN based object detection [33] algorithm consists of two 

stages: 1) a Region Proposal Network (RPN) consists of a fully convolutional network 

which is responsible for generation of specific region proposals for each image, and 2) a 

deep convolution network which is used for pooling of region proposals and object 

detection. As most of the computation of the RPN stage and object detection network stage 

is shared, a single deep network (e.g. CNN) can be trained to serve in both stages and 

produce high-quality proposals, pooling of the proposals, and object detection. Fig. 4 

represents the structure and layers of the trained object detection network. We used the 

transfer learning approach with a ResNet-50 network trained on ImageNet dataset to classify 

images into 1000 catagories which consists 50 convolution layers. To produce a fixed-size 

feature vector, the final layer of ResNet-50 was followed by a 3 × 3 convolutional layer [33]. 

The region proposal network produced 9 proposals with three different aspect ratios (1:1,1:2, 

2:1) and three different scales (32, 64 and 128 pixels), at each place which was 

parameterized relative to an anchor box called reference box. For classification and 

regression, the output was then passed to a 1 × 1 class score layer and regression layer. The 

regression layer provided a 4 × 9-dimensional output which included coordinates of the 

corner for all anchors of the bounding box. The class score layer provided a 2 × 9 

dimensional output which included a score for both the object and background. We used 

ResNet-50 trained on ImageNet dataset with 1000 classes. So the output of the CNN is 50. 

But the last fully connected layer, the softmax layer and classification layer were replaced by 

a fully connected layer, a softmax layer and a classification layer with two classes (Face and 

background).To predict the class and bounding box refinement, the region proposals 

generated by RPN and the convolutional features, both were passed into the ROI (region of 

interest) pooling layer. Fig. 4 represents the structure and layers of proposed face detector.

The meal videos were recorded with a resolution of 1920 × 1080. In order to remove the 

surroundings, the image frames were cropped with fixed coordinates to the size of 840 × 

760. To train the object detector, 300 image frames from recorded meal videos of each 

participant were randomly selected, which provided a total of 8400 training images. In order 

to label the training image, ImageLabeler API [34] was used on the image set and a human 

rater manually marked the boundary (the bounding box) of the face as the object to be 

identified. Fig. 5 represents the labeled training images. In the training stage, 4-fold cross-

validation method was implemented. The images of 21 subjects (6300 images) were used for 

training at once and the rest of the 7 subject’s images (2100 images) were used in validation. 

To increase the size of the dataset, image augmentation and resizing procedures were 

implemented on the whole training image set. The image set was augmented by a) Y-

reflection mirror, b) 2-D Gaussian smoothing (blurring), c) brightness adjustment, d) 

orientation change to portrait mode, and e) crop and rotation by clockwise 10 degrees and 

anticlockwise 10 degrees. The post augmentation image set contained 42700 training images 
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at each fold. Learning rate, batch size and the number of epochs were chosen as 0.001, 1 and 

4 respectively which were empirically selected from grid search procedures. As we used 

ResNet-50 network trained on ImageNet dataset, to reduce the chance of overfitting the 

number of epochs were set as low as 4 in fine tuning.This training was performed on a 

MATLAB 2018b environment installed on a Windows 10 computer equipped with an Intel 

Core i7 9th Generation CPU with 16GB DDR4 RAM, and an NVIDIA GeForce GTX 1070 

GPU with 8GB memory.

C. IMAGE CLASSIFICATION TO COUNT BITES

A bite can be defined as the process of taking the liquid, semi-solid or solid food by the 

person using straw, glass, bottle, spoon, fork or hand [35], [36]. We used detected faces from 

image frames to count the number of bites in an eating episode by detecting faces with 

straw/glass/bottle/hand/spoon/fork and food in the field of view (defined as ‘bite’ image). 

The images containing only faces were considered as ‘non-bite’ images. Fig. 6, shows a 

sequence of cropped faces of an eating episode with the ‘bite’ images highlighted by the 

box. We used a pre-trained AlexNet [37] to train a binary image classifier to classify 

cropped faces as ‘bite’ image or ‘non-bite’ image. The Faster RCNN network used in face 

detection, consists 50 convolutional layer for classification which could be used in bite vs no 

bite classification. Instead we used a separate pre-trained network named AlexNet, which 

consists 5 convolutional layer to reduce computational cost, training time and overfitting. 

The structure and layers of the proposed classifier from pre-trained AlexNet are presented in 

Fig. 7. The structure of AlexNet comprises of 5 convolution layers followed by 5 rectified 

linear activation units (ReLU). The first two Convolutional layers are followed by 

overlapping max pooling. The third, fourth and fifth convolutional layers are connected 

directly. The fifth convolutional layer is followed by an overlapping max pooling which 

output is feed into a series of two fully connected layers. The last fully connected layer goes 

into a softmax classification layer. Batch normalization was performed between input layer 

and first two convolutional layers. For bite image classification, the AlexNet network trained 

on ImageNet were retrained for binary classification. As the cropped faces were classified 

into the bite or non-bite image, thus, the fully connected layer had two outputs. The input 

layer of the network was fed by a 227 × 227×3 color image. The first convolution layer 

consisted of 96 kernels of size 11 × 11×3 with a stride of 4 pixels which passed the input to 

the second convolution layer through normalization and pooling. The second, third, fourth 

and fifth convolution layer had 256 kernels of size 5 × 5 × 48, 384 kernels of size 3 × 3 × 

256, 384 kernels of size 3 × 3 × 192 and 256 kernels of size 3 × 3 × 256 respectively. The 

fully connected layers had 4096 neurons each. The images with cropped faces resized to 227 

× 227 × 3 were used to retrain the last three layer of the described network. The training 

dataset contains 2800 bite images and 5600 no bite images. During training 4 fold cross-

validation and image augmentation schemes were applied as described in Face Detection 

and Extract ROI section. The two dropout layers drop neurons that have a probability of 0.5 

or less. Learning rate, batch size and the number of epochs hyperparameters were chosen as 

0.001, 10 and 6 respectively which were empirically selected from grid search procedures. 

This training was performed on a MATLAB 2018b environment installed on a Windows 10 

computer equipped with an Intel Core i7 9th Generation CPU with 16GB DDR4 RAM, and 

an NVIDIA GeForce GTX 1070 GPU with 8GB memory.
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D. OPTICAL FLOW TO COUNT NUMBER OF CHEWS

In order to track the movement of the jaw while chewing, we used optical flow, a computer 

vision approach that estimates the apparent motion of surfaces, edges, and objects between 

images [38]–[41]. The motion between two image frames which are taken at times t and t

+∇t can be interpreted by calculating the motion at every pixel location. The images are 

represented as 3-D vector fields, I(x, y, t) where (x, y) and t denotes the spatial coordinates 

and time, respectively. For a specific time instance pair of images, the spatial motion, u = 

(ux, uy), is estimated for every pixel. The basic assumption behind the idea of optical flow is 

the brightness constancy assumption, which states that the brightness (intensity) of a pixel 

remains constant during its motion, and for a specific pixel, it is expressed as

Ixux + Iyuy + It = 0

where Ix, Iy, and It denote the partial derivatives of the image function in the x-axis, y-axis, 

and time, respectively. As the equation has two unknowns (ux, uy), it does not have any 

unique solution which is the mathematical consequence of aperture problem, which is 

defined as the lack of information in a small area to determine motion. To solve the problem, 

additional constrains need to be introduced. There are several approaches which bring 

additional constraints to find the optical flow, such as Lucas-Kanade method [38], Horn-

Schunk method [40], Buxton-Buxton [42], and Black-Jepson method [41]. The constraints 

imposed by Lucas-Kanade method suggest that the displacement of the contents of two 

nearby image frames is quite small and can be considered constant within a neighborhood of 

the point p under consideration. Hence the local image flow (velocity) vector ((ux, uy) must 

satisfy for all pixels within a window centered at p. If we use a 5 × 5 window, that gives us 

25 equations per pixel.

Ad = b, wℎere A25 × 2 =

Ix(p1) Iy(p1)
Ix(p1) Iy(p1)
⋅ ⋅
⋅ ⋅
Ix(p25) Iy(p25)

d2 × 2 = u
v and, b25 × 1 = −

It(p1)
It(p2)
⋅
⋅
It(p25)

Now the system has way more equations than unknowns and thus is commonly over-

determined. The Lucas-Kanade method obtains a solution by using least squares principle d 
= b; minimize ∥ad – b∥2

The minimum least squares solution: (ATA)d = ATb which can be written as following

u
v = −

∑IxIx ∑IxIy
∑IxIy ∑IyIy

−1 ∑IxIt
∑IyIt
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In order to detect chewing, we used affine (or first-order) optical flow model which has 6 

parameters: two to describe the translational movement in x (vxo ) and y-direction (vy0); 
one to describe rotation (r); two to describe angular sheer movement (s1 and s2); and one for 

directional movement (d). A least-squares fit of the parameters, which is an extension of the 

Lucas-Kandle method [43], was implemented to estimate the spatial and temporal grey-level 

gradients. In order to apply optical flow, each image frame was passed through the face 

detector. The detected face was cropped, converted to a grayscale image and resized to 150 × 

120 pixels. Fig. 8 shows the effect of optical flow in consecutive images while chewing. 

Chewing is associated with opening and closing the jaw muscles during mastication [44]. 

The values of the rotational parameter (r) of optical flow are the highest during jaw opening 

and the lowest during jaw closing. This phenomenon suggests that the rotational parameter 

of optical flow can be used to explain chewing. The translational movement in the y-

direction (vy0) also shows similar characteristics. But as the grinding movement of the jaw 

during chewing can be best described by the rotational movement, we used the rotational 

parameter.

E. BITE AND CHEW COUNTING

The pipeline of developed automatic chew and bite counting from meal episode video is 

represented in Fig. 11. The algorithm for counting the number of bites and chews from 

videos of eating episodes is presented in Fig. 12. First, the recorded 30 fps meal video was 

converted to 6fps image frames. Each frame is then passed through the face detector. If no 

face was detected or the confidence level of detection was below 0.8, then the frame was 

ignored and a new frame was taken as input. The detected faces were cropped, resized and 

then passed through two processing steps 1) bite/non- bite image classification, and 2) 

calculation of affine optical flow parameter to be used in chew counting.

The counting of chews took several considerations into account. A typical sequence of solid 

food consumption consists of a bite followed by a chewing sequence. Consumption of fluids 

consists of a bite (placing liquid in mouth) that is not followed by chewing. Also, gestures 

such as the use of napkin to wipe mouth may be detected as a bite but followed by no 

chewing. Fig. 9 shows the bite recognition of an eating episode. The top graph shows the 

raw prediction from cropped faces (bite images labeled as ‘1’ and non-bite images labeled as 

‘0’). In order to remove false detection, the classification labels were smoothed by a moving 

average filter with a span of 10 images. The smoothed classification results were binarized 

by a threshold with a value of 0.5. This false detection may cause over-prediction in chew 

counting. Thus, chewing segments were identified by calculating the short-time energy of 

the signal between consecutive bites and estimating a dynamic threshold (T) as described in 

[22]. If the short-time energy of the optical flow signal between consecutive bites was below 

the threshold, then that segment was not used in counting the chews. Another consideration 

is that food consumption is not a continuous process. People often take rest after taking a 

bite and chewing the food. The movement of the head during these rest periods can also 

produce false chew count.
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From the experimental data we determined that the longest observed chewing sequence was 

52 seconds in duration. Thus, at the most 52 seconds of optical flow signal was used in the 

calculation of chew counting.

The chew counts for all identified chewing segments were computed by finding peaks and 

counting them. A peak was defined as the highest point around which there are points lower 

by X (threshold = 0.5) on both sides. The number of peaks in the chewing segment 

represents the number of chews. Fig. 10 shows the optical flow parameter values 

corresponding to bite and chews. The figure shows a bite manifesting as a large spike in the 

value of optical flow, followed by a chewing sequence which produces oscillating values of 

optical flow.

III. RESULTS

The performance evaluation of face detector utilized IoU (Intersection over Union) and mAP 

(mean Average Precision) metrics. IoU was calculated from the area of the overlap between 

the predicted bounding box and ground-truth bounding box, and the area encompassed by 

both the predicted bounding box and the ground-truth bounding box using the following 

formula.

IoU = Area of Overlap
Area of Union

mAP is the average AP (Average Precision) calculated for each class where AP is the area 

under the precision-recall curve.

AP = ∫0
1

p(r) dr

mAP = 1
N ∑i = 1

N APi The trained face detector achieved an average IoU of 0.97±0.01 and an 

average mAP of 0.91±0.02 in 4-fold validation.

The cumulative confusion matrix for 4-fold cross-validation of image classifier to detect 

bite/non-bite images is shown in TABLE 1. The classifier achieved an average F1-score (± 

standard deviation) of 98.5% ± 1.5%, average precision of 98.5% ± 1.5%, sensitivity 99.1% 

± 0.9% in training. Using the image classifier, we achieved an accuracy of 82.65%±8.70% in 

bite counts.

The chew counting algorithm achieved an accuracy of 88.64% ± 5.29% in 84 meal videos. 

Chews were counted by detecting peaks in the chewing segment of affine optical flow 

rotational values.

IV. DISCUSSION

In this manuscript we proposed a method for automatic measurement of meal microstructure 

(bites and chews) from the video of eating episodes. The proposed method detects faces, 
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identifies face images with a bite taking place, identifies chewing segments between 

consecutive bites and counts chews from affine optical flow parameters.

A bite is a phenomenon of placing the food (liquid/solid) in the mouth. During chewing the 

jaw makes grinding motion which can be inferred from the movement of pixels of the face in 

consecutive image frames. In finding both bite and chew in images, face is our region of 

interest (ROI).

To extract the ROI from image frames of meal videos, we applied Faster-RCNN object 

detection in each image frame. In order to reduce false detection, the threshold for 

confidence level was set as 0.80. The face detector was able to correctly identify the face in 

385892 images among 388074 image frames. In cases, when participants moved away from 

the cameras field of view or blurriness in the images caused by the movement of participants 

then, face detector misses to detect the face.

The number of bites in the meal was identified from the detected faces using the trained 

image classifier. Using the image classifier, we achieved an accuracy of 85.4%±6.2% in 

counting bites for 84 meal videos of 28 subjects. The total number of predicted bites was 

1903, whereas the total number of manually annotated bites was 1887 in the dataset. The 

mean number of bites in an eating episode from manual annotation was 22.5±10.3 (manual 

annotation) bites and 22.7±11.1 (image detection) bites.

Gestures which comprise bringing hand toward mouth such as the use of napkin to wipe the 

mouth during eating contribute in false prediction of bite count. Fig. 14(a) shows the false 

bite detection because of gestures mimicking the bite. Top graph shows the automatic bite 

count from image classification and bottom graph represents the manual annotation of bite/

non-bite images in the eating episode.

The movement of the jaw during chewing can be inferred from the movement of pixels in 

the face in consecutive image frames. To find the movement of pixels in consecutive cropped 

faces, the affine optical flow was calculated and the rotational parameter of pixels’ 

movement was used to describe the chewing. Fig. 13 shows the calculated rotational 

parameter of affine optical flow in an eating episode.

To remove the effect of false prediction of bites from gestures mimicking a bite and drinking 

which are not followed by chewing, short-time energy of the optical flow signal between 

consecutive bites were calculated and thresholded to identify the chewing segment. Talking 

and movement of the head during these non-chewing segments often contribute enough in 

short time energy to cross the threshold and hence cause false chewing segment detection.

The developed chew counting algorithm achieved an accuracy of 88.9% ± 7.4% in counting 

the number of chews in 84 meal videos from 28 subjects. The total number of manually 

counted chew is 40057 and the total number of predicted chews from the proposed method is 

41224. The average number of chews in an eating episode as per manual annotation is 

476.9±228.7. The mean number of predicted chews by the automatic method in an eating 

episode is 490.8±248.4. False detection of bite and chewing segment because of gestures, 

contribute to overprediction of chew count. Also, several participants (up to 3) were invited 
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to take a meal at a time and allowed to talk during eating, which contributed in false chewing 

detection and over counting of chews. Fig. 14(b) represents the cumulative chew count of an 

eating episode for both manual and automatic annotation.

The proposed method of counting bites and chews achieved an accuracy of 85.4%±6.2% in 

counting bites and 88.9% ± 7.4% in counting chews in 84 videos of eating episodes.

These results show promising encouragement in further enrichment of the proposed method 

to apply as an alternative of manual annotation. The manual annotation of meal 

microstructure such as bite and chews from video consume an immense amount of time of 

researchers in large feeding studies. In this study, videos were played 5X slower than the 

original speed while annotating bite and chews. An eating episode spanning 10 min and 6 

seconds took around 50 min and 30 seconds to annotate whereas the proposed method took 

around 22 minutes and 55 minutes to convert the videos into image frames, pass the image 

frames through face detector, save the cropped faces, apply image classification to count the 

number of bites and optical flow to count the number of chews in MATLAB 2018b 

environment installed on a Windows 10 computer equipped with an Intel Core i7 9th 

Generation CPU with 16GB DDR4 RAM, and an NVIDIA GeForce GTX 1070 GPU with 

8GB memory. Note that the time required in manual annotation is spent by human annotator 

but a single click on the mouse is all required by the human in the computer-based 

annotation.

Thus the proposed automatic method of bite and chew counting will save both effort, time 

and increase the reliability considerably than manual annotation of feeding study.

The video of eating episodes was recorded from the side of the participant to keep the 

movement of the jaw during chewing most visible. Future work should concentrate on 

developing a more robust algorithm that will be able to count a number of bites and chews in 

an eating episode from the video of any angle. In this study, the calculation of bites and 

chews are done offline. Future works may focus on implementing the process in real-time, 

providing meal microstructure information (number of bites, number of chews, duration of 

chewing segments) immediately after the meal.

These results show promising encouragement in further enrichment of the proposed method 

to apply as an alternative of manual annotation.

V. CONCLUSION

We present a novel computer vision-based method of finding total number of bites and 

chews in an eating episode from the recorded video. To the best of our knowledge, the 

developed method is the first computer vision-based method which is applied to count both 

number of bites and chews in same eating episode. The contribution of this work is 

threefold. (I) Development of a face detector based on Faster-RCNN object detection 

scheme to detect faces (regions of interest, ROI) in recorded meal videos. (II) Development 

of simple image classifier based on pre-trained AlexNet, to classify the detected faces as 

‘bite’ image and ‘non-bite’ image and hence calculating total number of bites in the eating 

episode. (III) To count number of chews in an eating episode by applying optical flow in 
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consecutive cropped faces to find the movement of jaw. The developed method was applied 

on a very large dataset that contains 19 hours and 26 minutes of recorded meal video of 84 

eating episodes from 28 subjects. A mean accuracy of 88.9% ± 7.4% in respect to manual 

annotation in counting the number of bites and a mean accuracy of 88.64 ± 5.29% for the 

number of chews in the 84 meal videos shows promising result which paves the way for 

further exploration to make the annotation of bites and chews in eating episodes fully 

automatic, accurate, less time consuiming and easy to use.
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FIGURE 1. 
Camera and data collection set up (a) Data collection setup (b) Real participant.
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FIGURE 2. 
Manual annotation of bite and chew from video (a) The three button system for annotation 

the video (b) Annotated bite and chews in a meal video (c) Annotated bite and chew of a 

chewing sequence.
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FIGURE 3. 
Architecture of faster R-CNN object detector.
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FIGURE 4. 
Structure and layers of face detector.
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FIGURE 5. 
Labeled training Image for face detector.
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FIGURE 6. 
Cropped faces of an eating episode to detect bite.
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FIGURE 7. 
Structure and layers of image classifier to classify bite.
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FIGURE 8. 
Affine optical flow to find chewing. First and last image show the jaw opening and the 

middle image shows the jaw closing movements during chewing.
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FIGURE 9. 
Prediction of bite count from image classification. (Top figure represents raw prediction, 

middle two figures represents filtering and thresholding to remove false detection and the 

bottom figure represents the ground truth obtained from manual annotation).
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FIGURE 10. 
Effect of bite and chew in optical flow values.
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FIGURE 11. 
The pipeline of our developed method. First the input meal episode video is converted into 6 

fps image frames. Then the image frames are passed through face detector. The detected 

faces is then classified into bite and no-bite images and consecutively affine optical flow 

algorithm is applied in detected faces to count number of chews within a bite.
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FIGURE 12. 
Flowchart of developed bite and chew counting algorithm from meal video.

HOSSAIN et al. Page 26

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 13. 
1-D optical flow values from cropped images of an eating episode.
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FIGURE 14. 
(a) False bite event detection because of gestures mimicking bite (b) Cumulative chew count 

from manual annotation and automatic count.
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TABLE 1.

Cumulative confusion matrix of trained bite/non-bite image classifier.

Predicted Class

No Bite Bite

Actual Class No Bite 5560 40

Bite 40 2760

IEEE Access. Author manuscript; available in PMC 2021 March 19.
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