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Abstract

Spectro-temporal modulations are believed to mediate the analysis of speech sounds in the human 

primary auditory cortex. Inspired by humans’ robustness in comprehending speech in challenging 

acoustic environments, we propose an intrusive speech intelligibility prediction (SIP) algorithm, 

wSTMI, for normal-hearing listeners based on spectro-temporal modulation analysis (STMA) of 

the clean and degraded speech signals. In the STMA, each of 55 modulation frequency channels 

contributes an intermediate intelligibility measure. A sparse linear model with parameters 

optimized using Lasso regression results in combining the intermediate measures of 8 of the most 

salient channels for SIP. In comparison with a suite of 10 SIP algorithms, wSTMI performs 

consistently well across 13 datasets, which together cover degradation conditions including 

modulated noise, noise reduction processing, reverberation, near-end listening enhancement, and 

speech interruption. We show that the optimized parameters of wSTMI may be interpreted in 

terms of modulation transfer functions of the human auditory system. Thus, the proposed approach 

offers evidence affirming previous studies of the perceptual characteristics underlying speech 

signal intelligibility.
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I. Introduction

Expensive, time-consuming listening tests can be replaced by speech intelligibility 

prediction (SIP) methods during the development of speech processing systems. An ideal 

SIP algorithm would accurately estimate the intelligibility of a possibly degraded/processed 

signal as perceived by a group of normal-hearing listeners. SIP algorithms can be used 

repeatedly during system development to track the performance of the evolving and final 

system. In this study, we develop an intrusive or reference-based SIP algorithm that relies on 

inputting a clean reference signal. The algorithm is based on a spectral-temporal modulation 

analysis (STMA) of the clean and the degraded/processed speech signals.

Temporal modulation envelopes and modulation transfer functions (MTFs) have long been 

exploited for SIP, serving as the backbone for both intrusive and non-intrusive SIP. The 

Speech transmission index (STI) [1] is one of the first successful SIP algorithms to exploit 

the observation that reverberation tends to reduce the depth of speech temporal modulations. 

STI uses bandpass amplitude-modulated speech-shaped noise (SSN) as the input to the 

communication channel and measures the reduction in modulation depth in each frequency 

band. An intelligibility index is then calculated as a weighted sum of frequency bands. STI 

extends the range of degradations that is covered by the Articulation Index (AI) [2], [3] and 

Speech Intelligibility Index (SII) [4], to encompass convolutive distortions. AI and SII were 

designed for stationary additive noise distortions and bandwidth reduction [2]–[4].

Going beyond STI, Speech-to-Reverberation Modulation energy Ratio (SRMR) [5] performs 

spectral analysis on the bandpass modulation envelopes of the degraded speech signal. A 

non-intrusive or reference-free scheme, SRMR compares the amount of energy associated 

with low temporal modulation frequencies and the energy associated with high temporal 

modulation frequencies, exploiting the fact that the temporal modulation spectrum of natural 

speech exhibits a low-pass behavior [6], [7].

Even though STI, AI, and SII are suitable for a wide range of degradation conditions, the 

algorithms have several limitations. For example, the algorithms perform poorly for non-

linearly processed speech signals, e.g., noisy speech processed by noise reduction algorithms 

[8]. Besides, SII does not make accurate predictions for fluctuating noise, as it relies on 

long-term power spectrum averages. Several extensions have been proposed to overcome 

these limitations [9]. For example, to extend SII to non-stationary noise, Rhebergen et al. 

proposed Extended SII (ESII) [9] which segments the signal into small time frames and 

computes the conventional SII within each frame. Then, the final intelligibility index is 

calculated as the temporal average of the intermediate SII values. Coherence SII (CSII) [10] 

was proposed to include broadband peak-clipping and center-clipping distortions. In a 

similar manner, Goldsworthy et al. proposed speech STI (sSTI) [11] which accounts for non-

linear distortions by replacing the artificial speech-shaped noise in STI with actual speech 

signals [12]–[14].

In a somewhat similar manner to (E)SII, the glimpse proportion [15], [16] was defined as the 

proportion of spectro-temporal regions in which the local SNR is above a pre-defined 

threshold (glimpses), and was shown to be highly correlated with speech intelligibility [16], 
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[17]. The glimpse proportion is similar to SII in that both assume that audibility determines 

intelligibility. However, while SII operates on a long-term average SNR of each acoustic 

frequency sub-band, glimpse proportion operates on local time-frequency regions. Even 

though glimpse proportion has shown a high correlation with speech intelligibility in the 

presence of modulated maskers, its application is limited to speech degraded by additive 

noise.

Several studies suggested that normal-hearing listeners benefit from temporal fine structure 

(TFS) information in the presence of modulated maskers [18], [19]. TFS spectrum index 

(TFSS) [20] is a SIP algorithm that incorporates the Hilbert-derived TFS information into 

SIP. TFSS first decomposes the input speech signals into acoustic frequency sub-bands, 

using multiple bandpass filters. Next, the phase-modulated carrier of the Hilbert envelope is 

calculated for each bandpass signal. Then, within each frequency band, the magnitude-

squared coherence between TFS signals is calculated. Finally, the overall speech 

intelligibility is computed as a weighted average of the coherence terms.

More recently, SIP methods have been proposed to cover a broader range of distortions. Taal 

et al. proposed Short-Time Objective Intelligibility (STOI) [21], which compares the 

temporal modulation envelopes of the clean and degraded speech samples in frequency sub-

bands over short-time segments of speech to produce a similarity measure. STOI has shown 

high correlation with SI in many degradation conditions, including but not limited to noisy 

speech processed by single-channel noise reduction algorithms [21], speech processed by 

cochlear implants [22] and reverberant speech [23]. Although STOI performs well in many 

degradation conditions, it has limitations when additive noise with strong temporal 

modulation content is present in the signal under test [17]. Extended Short-Time Objective 

Intelligibility (eSTOI) [17] was proposed as an extension to STOI to cover a broader range 

of degradations. eSTOI is inspired by STOI and compares the spectro-temporal modulation 

envelopes of the clean and degraded speech signals over short-time segments. eSTOI has 

shown high correlation with SI in the presence of noise sources with highly modulated 

content but also shows high performance in situations in which other SIP algorithms work 

well [17], [23], [24].

Speech intelligibility in bits (SIIB) [25] is an information theoretic intelligibility metric that 

operates based on the hypothesis that the speech intelligibility is related to the mutual 

information between the modulation envelopes of the clean and degraded speech signals 

[26], [27]. SIIB uses a non-parametric mutual information estimator to estimate the 

information shared between the clean and degraded temporal envelopes.

Even though SIIB, STOI and eSTOI perform quite well in many degradation conditions, 

their fundamental processing steps are not strongly motivated by biological findings of the 

human auditory system. In another vein, more sophisticated models incorporating properties 

of the human auditory system into SIP have been proposed [15], [28]–[32]. For instance, 

HASPI [28] passes the clean speech signal and the signal under test through an auditory 

model and compares their envelopes and temporal fine structures to produce an intelligibility 

index [28]. HASPI has been shown to give accurate intelligibility estimates for a variety of 

degradation conditions, including speech processed using frequency compression and speech 
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processed through noise-reduction algorithms. Furthermore, HASPI allows the auditory 

profile of the target listeners to be taken into account.

The Spectro-Temporal Modulation Index (STMI) [29], [30] uses a biologically-inspired 

modulation Gabor filter-bank [33] to decompose the clean and degraded speech 

spectrograms into a 4-D spectro-temporal modulation representation. The envelopes 

extracted from each spectro-temporal channel are then compared using normalized cross-

correlation (NCC) to generate a SIP measure. STMI analyzes the effects of distortions on the 

joint spectro-temporal modulations (in contrast to commonly used temporal-only modulation 

analysis) in speech and is capable of predicting the speech intelligibility in the presence of 

several degradations where traditional SIP methods (such as STI) fail, e.g., phase jitter [29] 

and frequency-dependent phase shifts [29], [30]. However, STMI presumes a uniform 

contribution of different modulation frequencies to speech intelligibility, i.e. assigns equal 

weights to all the spectro-temporal modulation channels, which is not supported by 

behavioural findings of the human auditory system [34]. Although STMI uses an elaborate 

speech decomposition model, it is not capable of accurately predicting intelligibility in some 

degradation conditions, including speech processed by non-linear noise reduction 

algorithms, and speech degraded by temporally modulated noise [23]. In [23], OSTMI 

(denoted as OSTMIO in [23]) is proposed to improve STMI by using a modulation analysis 

filter-bank and a feature extraction scheme introduced in [35] and [36]. OSTMI uses a 

heuristic non-uniform weighting of different modulation channels for SIP, i.e., allowing 

larger contribution of spectral modulation frequencies that better predict speech 

intelligibility. It is shown [23] that the excellent performance of eSTOI is closely followed 

by OSTMI across many degradation conditions.

Motivated by the substantial performance improvement of OSTMI over STMI, here we 

propose an approach for SIP, based on STMA and assess the performance of an algorithm, 

wSTMI, designed to address the limitations of STMI and OSTMI. In contrast to the heuristic 

weighting of the modulation channels in OSTMI, here, we employ one dataset to train and 

another dataset to validate the weights in order to minimize the SIP error. The proposed 

approach features three distinctive characteristics: i) The proposed approach extends the 

concept of frequency-band importance function to spectro-temporal modulation channels 

and uses listening test data to optimize the weights assigned to different spectro-temporal 

modulation channels for SIP. ii) The resultant algorithm is more faithful to the processing in 

the human auditory system compared to other well-performing SIP algorithms such as 

eSTOI. Thus, the approach provides an opportunity to probe the perceptual components of 

the speech signal that affect speech intelligibility. iii) The approach provides a systematic 

way for further performance improvement with new degradation types.

The proposed approach first uses a voice activity detector to remove silent frames from the 

clean and degraded speech signals. Next, the clean and test speech spectrograms are 

calculated and passed through a spectro-temporal modulation filter-bank to produce 

modulation envelopes tuned to specific spectro-temporal modulation frequencies. The 

modulation envelopes of the clean and test signals are then compared using NCC, and 

combined using a simple linear regression model. The parameters of the regression model 

are determined through a regularized least squares method applied to a small training set. 
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We show that the optimized set of parameters may be interpreted in terms of a spectro-

temporal modulation transfer function and is in line with previous biological and perceptual 

studies [34]. We also compare our findings of the relative importance of spectro-temporal 

modulation frequencies to previous studies on automatic speech recognition (ASR). We 

show that similar spectro-temporal modulation channels are crucial for both SIP and ASR. 

Finally, we show that the proposed algorithm performs well in all the degradation conditions 

investigated in this study, including conditions where established SIP algorithms perform 

less well.

This paper is structured as follows. In section II-A, the STMA scheme used in this study is 

described. STMI is briefly introduced in Section II-B, in order to background our work and 

show new performance results for STMI. The proposed SIP algorithm, wSTMI, is 

introduced in Section III. Section V covers the degradation types and datasets that we used 

for investigation in this study. The performance of the proposed SIP algorithm is evaluated 

and compared to other SIP algorithms in Section VI. In Section VII, we interpret the final 

model based on biological spectro-temporal MTFs. Lastly, Section VIII concludes the work.

II. Background

A. Spectro-Temporal Modulation Analysis

To establish a foundation for the proposed algorithm, we briefly discuss an STMA scheme 

proposed in [35], [36] that has shown promising results in ASR [35], [36] and SIP [23]. 

Figure 1 shows the STMA scheme introduced in [36] which comprises two stages of 

processing: auditory-spectral analysis, followed by modulation analysis. The two stages are 

discussed in the following subsections.

1) Auditory-Spectral Analysis: The STMA scheme operates at a sampling frequency 

of fs. To mimic the early stages in the cochlea, first, a Mel frequency spectrogram is 

calculated. OFFT% overlapping Hann-windowed frames of length WFFT are zero padded to 

NFFT samples and transformed using FFT. The absolute values of the FFT coefficients are 

processed using a Mel filter-bank. The frequency band from Fl to Fu is divided into FM 

channels equally spaced on the Mel frequency scale. Each channel has a triangular shaped 

weighting window, and adjacent channels overlap by OM%. The output of each Mel-filter is 

the window-weighted sum of the FFT magnitude values in each band, calculated in 

accordance with the ETSI standard [35] [37]. The output of the Mel-filter is then 

compressed with the natural logarithm. The calculated spectrogram is denoted by X[f, n] 

where 1 ≤ f ≤ FM indexes acoustic frequency channels, and n indexes time frames.

2) Modulation Analysis: In this step, the Mel spectrogram X[f, n] is transformed into a 

multi-resolution spectro-temporal decomposition using two Gabor modulation filter-banks 

[35]. The decomposition is performed in two steps: spectral-only, followed by temporal-only 

modulation filtering. This results in a collection of filtered spectrograms that exhibit 

modulation patterns characteristic of the modulation passbands of the associated filters. 

Equations 1 and 2 describe the one-dimensional filters used to perform the separate spectral- 

and temporal-modulation filtering:
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ℎb(x) = 0.5 + 0.5cos 2πx
b , − b

2 < x < b
2,

0, otherwise
(1)

g(x; ω) =
ℎbmax(x), ω = 0
cos(ωx) ⋅ ℎνπ/ω(x), ω ≠ 0

(2)

where hb is a Hann-envelope of width b, ν is the number of half-waves under the envelope, 

and bmax < ∞ denotes the maximum filter size. The spectral and temporal modulation filter-

banks consist of S spectral and R temporal modulation filters [35], [36]:

GS f; si = g f; si
GT n; rj = g n; rj

(3)

where si and rj denote the spectral and temporal modulation center frequencies of the filters, 

respectively. Spectral and temporal modulation frequencies are also termed “scale” and 

“rate”, and are represented by the notations s and r, respectively. Note that filter supports are 

inversely proportional to the center frequency, and are proportional to the number of half-

waves under the envelope.

The decomposition can now be expressed as:

X f, n; si, rj = X[f, n] ∗ GS f; si ∗ GT n; rj , (4)

where X is the resultant time-frequency representation, and * denotes linear convolution. 

The spectrogram is zero-padded prior to the convolution so that the filtered spectrograms 

have the same size as the original spectrogram [35], [36]. The output of the STMA is a set of 

S × R filtered spectrograms. We let X f, n; si, rj  denote the filtered spectrogram tuned to the 

spectral and temporal modulation frequencies si and rj, respectively. For a detailed 

description of the filter banks, we refer the reader to [35] and [36]. The two-step modulation 

filtering process is illustrated in Figure 2, which shows a Mel-spectrogram before and after 

each modulation filtering step.

B. Spectro-Temporal Modulation Index (STMI)

STMI is an intrusive SIP algorithm introduced in [29], [30] based on STMA of the clean and 

degraded/processed input speech samples. STMI uses a biologically inspired STMA scheme 

[30], [38], [39] to produce multi-resolution spectro-temporal decompositions XM and Y M
for the clean and degraded signals, respectively. While conceptually similar to the STMA 

scheme reviewed in Section II-A, the implementation of the spectro-temporal modulation 

filters used in STMI comprises more sophisticated biologically-inspired processing steps 

(e.g., using a lateral inhibitory network before modulation filtering). We emphasize this 

difference by denoting the resulting modulation filtered spectrograms as XM[f, n; s, r] and 

Y M[f, n; s, r]. For a detailed description of STMI’s STMA scheme, we refer the reader to 
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[29], [30]. We emphasize that both STMA schemes produce a 4-D spectro-temporal 

decomposition of the input speech signal.

Next, the absolute values of the filtered spectrograms are summed along the frequency axis 

in order to capture the temporal variation of energy in each spectro-temporal modulation 

channel:

X[n; s, r] = ∑
f

XM[f, n; s, r]

Y [n; s, r] = ∑
f

Y M[f, n; s, r] . (5)

STMI then uses NCC to compare X and Y  within each modulation channel. An intermediate 

intelligibility measure is defined as:

ρ[s, r] = X[n; s, r] − μX, Y [n; s, r] − μY
X[n; s, r] − μX Y [n; s, r] − μY

(6)

where the inner product and the induced norm are defined as:

X[n], Y [n] = ∑
n

X[n] ⋅ Y [n] (7)

‖X[n]‖ = X[n], X[n] (8)

and μX is defined as:

μX = 1
K ∑

n
X[n] (9)

where K is the total number of time frames. Note that the channel indexes s and r are 

dropped in Equations 7 to 9 for simplicity. Finally, an overall speech intelligibility estimate 

is defined as the average over all intermediate intelligibility measures:

STMI = 1
Z ∑

s, r
ρ[s, r], (10)

where Z denotes the total number of spectro-temporal modulation channels.

III. Proposed SIP Algorithm

Although STMI uses a biologically inspired representation of the clean and degraded speech 

signals for SIP, it performs poorly in several degradation conditions [23]. We attribute this 

failure to two oversimplifications. Firstly, the filtered spectrograms XM and Y M are summed 

over acoustic frequency to calculate the intermediate intelligibility measures ρ[s, r]
(Equations 5 and 6). Hence, distinct contributions of different acoustic frequencies to speech 

perception are ignored. Secondly, STMI is computed as the average of the intermediate 

Edraki et al. Page 7

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intelligibility measure ρ[s, r] over all the spectro-temporal modulation channels in Eq. (10). 

In other words, STMI presumes equal contribution of different spectro-temporal modulation 

frequencies to speech intelligibility. However, experimental measurement of the sensitivity 

of the human auditory system [30] suggests that distinct spectro-temporal modulation 

frequencies are not equally important for speech-perception by the human auditory system. 

In particular, Elliott et al. [34] measured the loss in intelligibility caused by eliminating 

specific modulation frequencies from speech. They showed that different modulation 

frequencies are not equally crucial for the comprehension of speech by human listeners. In 

[40], Kates et al. showed that the low temporal modulation rates provide the highest 

information for speech intelligibility using the normalized cross-covariance of the degraded 

signal envelope with that of a reference signal. In [41], Steinmetzger et al. showed that the 

temporal modulation frequencies are not equally important for SIP. Also, in [23], we showed 

that a non-uniform heuristic weighting of the spectro-temporal modulation frequencies 

remarkably improved the performance of STMI.

Motivated by the aforementioned shortcomings of STMI, here, we propose an improved 

algorithm we call weighted STMI (wSTMI). Figure 3 shows an overview of the proposed 

algorithm. First, a voice activity detector [17], [21] is used to remove silent frames from the 

clean and degraded speech signals. Next, the STMA scheme introduced in Section II-A is 

used to decompose the input speech signals. After that, an intermediate intelligibility 

measure is calculated for each spectro-temporal modulation channel. Finally, the 

intermediate intelligibility measures are combined using a spectro-temporal modulation 

importance function to estimate the intelligibility of the degraded speech. wSTMI differs 

from STMI in several ways. First, in [23], it was shown that STMI’s SIP performance could 

be improved remarkably by replacing its STMA with the STMA scheme described in 

Section II-A. Below, the STMA scheme described in Section II-A is used to develop 

wSTMI. Secondly, we avoid the integration over the acoustic frequency axis. Instead, an 

intermediate intelligibility measure is calculated for each spectro-temporal modulation 

frequency channel. Thirdly, an optimization approach is proposed to combine the 

intermediate measures in order to account for the non-uniform contribution of the 

modulation frequencies to speech intelligibility. As in any other data-driven approach, the 

quality and generalizability of the fit is tied to the training data. Therefore, we evaluate the 

algorithm over multiple “unseen” datasets to ensure generalizability. Finally, we present 

some insight into the method and show that it is well in line with previous findings of the 

relative importance of different modulation frequencies for human and machine perception.

A. Intermediate Intelligibility Measure

Here, we propose to modify the intermediate intelligibility measure in Eq. (6). This 

modification is motivated by the fact that at all levels of the human auditory system, the 

speech signal is represented tonotopically, i.e., distinct acoustic frequencies are analyzed 

separately [42]. Hence, for each filtered spectrogram and each acoustic frequency bin, the 

reference and degraded signals are compared using NCC:
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d f; si, rj = X f, n; si, rj − μX, Y f, n; si, rj − μY
X f, n; si, rj − μX Y f, n; si, rj − μY

. (11)

Here, in contrast to Eq. (6), the acoustic frequency bins are compared separately. Next, a 

new intermediate intelligibility measure ρ[si, rj] is defined as:

ρ si, rj = 1
FM

∑
f

d f; si, rj (12)

where FM is the total number of Mel frequency bins.

Comparing speech spectrograms using NCC was beneficial for SIP in (e)STOI [17], [21]. 

However, (e)STOI compares the clean and degraded/processed speech spectrograms over 

short-time segments. In particular, it was shown [21] [17] that lengthening the segment in 

(e)STOI to above 384 ms decreases SIP performance, especially in the presence of non-

stationary maskers. In contrast to (e)STOI, in the proposed approach, speech signals are not 

segmented into short-time windows, but, instead, integration is performed across the full 

duration of the speech signals in question (Eq. (11)). This “full duration” analysis was 

completed in the present experiment as a first investigation of the utility of the proposed 

algorithm. Future work will need to explore if a segmental implementation provides 

advantages to SIP beyond that implemented here, and under what conditions.

B. Intelligibility Estimation

To enable unequal contribution of distinct modulation frequencies to speech perception we 

propose to combine the set of intermediate intelligibility measures ρ[si, rj] using regression. 

In this study, a linear model is used to estimate the intelligibility of the degraded signal as a 

linear combination of the intermediate intelligibility measures:

wSTMI = ∑
i = 1

S
∑
j = 1

R
w si, rj ρ si, rj + b (13)

where w si, rj ∈ ℝ denotes the weights and b ∈ ℝ is the intercept. Below, we show how the 

weights can be computed using least squares with L1 regularization. Using a linear model 

offers some advantages over more complex models. Besides model simplicity, the number of 

parameters can be controlled via sparsification in order to reduce the risk of over-fitting. 

Sparse linear models are easier to interpret and do not require a massive amount of data for 

training.

Eq. (13) can be written in a matrix form as:

wSTMI = ΦTW + b (14)

where W ∈ ℝSR and Φ ∈ ℝSR are constructed by stacking the weights w[si, rj] and 

intermediate measures ρ[si, rj] into a column vector, respectively.
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IV. Implementation

The following subsections provide the implementation details for the proposed algorithm. 

Section IV-A covers the STMA parameters used in this study, and Section IV-B describes 

the optimization of the wSTMI’s parameters.

A. Spectro-Temporal Modulation Analysis

Tables I and II summarize the STMA parameters used in this study. To ensure that a 

sufficient range of high spectral modulation frequencies are covered, the calculation of the 

Mel-spectrogram consists of FM = 130 frequency channels. The values of spectral and 

temporal modulation center frequencies are selected following the suggestions in [35] and 

[36]. Since a Mel-scaled frequency axis is used, the spectral modulation frequencies are 

specified in cycles per kMel (cyc/kMel). The selection of spectral and temporal modulation 

center frequencies ensures that adjacent filters exhibit a constant overlap in the modulation 

frequency domain. For the DC modulation filters, we adopt the suggestions in [36] and set 

bmax = bs
m = 3 × FM = 390 channels for si = 0 and bmax = bt

m = 40 time-frames for rj = 0. For 

a more detailed description of the modulation filter bank, we refer the reader to [35], [36].

B. Parameter Optimization

We optimize W and b in Eq. (14) by minimizing the root mean square error (RMSE) 

between the wSTMI scores and the subjective intelligibility scores of a training data set. The 

minimization is augmented with a Lasso [43] sparsification constraint.

Consider a training dataset comprising L clean and degraded speech signal pairs and a 

subjective intelligibility score for each degraded signal. Let Φi ∈ ℝSR and 0 ≤ Ii ≤ 1, 1 ≤ i ≤ 

L denote the intermediate intelligibility vector and the subjective intelligibility score 

associated with the i-th signal, respectively. The optimization problem can be expressed as:

min
W , b

1
2L ∑

i = 1

L
Ii − b − Φi

TW 2 + λ W
1

, (15)

where λ ≥ 0 is the regularization parameter, and ∥W∥1 is the L1 norm of W [43]. Increasing 

λ increases our preference for a sparse model with fewer non-zero weights. Sparse linear 

models are easier to interpret and can generalize more accurately to unseen data [43]. 

Sparsification also reduces the number of selected modulation channels and hence the 

computational complexity of the SIP algorithm. Here, an algorithm based on cyclical 

coordinate descent is used to optimize W and b. For a detailed description of the algorithm, 

we refer the reader to [44]. We emphasize that the computational complexity of the 

optimization is of little concern, since it is performed once, and W and b are fixed afterward.

To optimize W and b, speech stimuli and the subjective intelligibility scores of the ITFS-

Kjems and NELE-Taal datasets (described in Section V) are used for training and validation, 

respectively. The generalizability of the trained model is investigated by evaluating its 

performance over unseen data in Section VI. Figure 4 shows the RMSE and Pearson 

correlation between the model predictions and the subjective scores of the training and 
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validation datasets as a function of λ. It is interesting to note that the RMSE curves for the 

training and validation datasets are almost flat for a wide range of λ, indicating that reducing 

the number of channels used has little impact on RMSE. For large values of λ, the 

performance over the validation set is better than the performance over the training set. We 

attribute this phenomenon to the fact that, unlike the common practice of partitioning one 

data set into a training and a validation set, two different datasets were used with one for 

training and the other for validation, resulting in drawing the training and validation samples 

from two different distributions.

We select the regularization parameter λ* = 0.065 to minimize the RMSE over the 

validation dataset. Figure 5 shows the selected set of weights W associated with λ*. The 

horizontal and vertical axes indicate the temporal and spectral modulation center 

frequencies, respectively. The weights associated with the selected spectro-temporal 

modulation channels are also shown. Figure 5 shows that only 8 out of the given 55 spectro-

temporal modulation channels are selected for SIP. The optimized weights identify the 

importance of spectral modulation frequencies between 0.72 and 4.54 cyc/kMel and 

temporal modulation frequencies below 10 Hz.

V. Datasets

We evaluate wSTMI and other SIP algorithms using noise-corrupted/processed speech 

datasets collected previously from measuring the speech recognition performance of normal-

hearing adults.

A. ITFS-Kjems

This dataset consists of speech subjected to ideal time-frequency segregation (ITFS) [45] 

processing. 150 Sentences from the Dantale II corpus [46] were degraded by four types of 

noise: unmodulated SSN, cafeteria noise, car interior noise, and noise from a bottling factory 

[47]. Noisy sentences were processed using an ideal binary mask (IBM) or a target binary 

mask (TBM). Noises were presented at three different SNRs: at 20% speech reception 

threshold (SRT), 50% SRT, and −60 dB SNR. Each binary mask was created using eight 

different relative-power criteria (RC). This resulted in a total of 7 (mask and noise type 

combinations) x 3 (SNRs) x 8 (RCs) = 168 conditions. N=15 subjects participated in the 

listening test. This dataset was used as the training set to optimize the parameters of wSTMI.

B. ModN-Jensen

This dataset consists of speech degraded by modulated noise [17]. Dantale II sentences were 

degraded by ten types of modulated noise, each presented at six SNRs selected to cover the 

full range of performance across the different noise types. Four of the maskers were selected 

from the ICRA noise corpus [48]: unmodulated SSN and 1/2/6-person babble. The ICRA 

signals are synthetic signals with spectral and temporal modulation properties similar to 

speech. Machine gun noise and destroyer operation room noise were selected from the 

Noisex corpus [49]. The rest of the maskers were sinusoidally amplitude-modulated SSN at 

2, 4, 8, and 16 Hz. This resulted in a total of 10 (noise types) x 6 (SNRs) = 60 conditions. 

N=12 subjects participated in the experiment.
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C. ModN-Fogerty

This dataset consists of speech degraded by modulated noise. In [50], IEEE sentences [51] 

spoken by a male talker [52] were degraded by six modulated maskers: unmodulated SSN 

and single-talker modulated SSN that was either time-compressed or expanded. Pitch-

synchronous overlap-add time compression/expansion was employed to modify the 

modulation spectrum of the masker to run at 25%, 50%, 100%, 200%, and 400% of the 

duration; thereby, increasing or decreasing the rate of noise modulation. Maskers were 

presented at −7 dB SNR. This resulted in a total of 1 (unmodulated SSN) + 5 (modulated 

SSN) = 6 conditions. N=15 normal hearing subjects participated in the study.

D. ModN-Gibbs

In [53], IEEE sentences were corrupted by four types of noise: unmodulated SSN and three 

types of time-compressed/expanded speech-modulated noise. Unmodulated SSN and single-

talker speech-modulated SSNs were created similar to those in Section V-C, and the noise 

modulation was time-compressed/expanded using pitch-synchronous overlap-add to run at 

25%, 100%, or 400% of the original duration. Noises were presented at three SNR levels: 

−8, −4, and 0 dB. This resulted in a total of 4 (noise types) x 3 (SNRs) = 12 degradation 

conditions. Stimuli were presented to 5 listeners.

E. ModFN-Fogerty

This dataset [54] consists of temporally filtered speech, degraded by unmodulated SSN or 

speech-modulated noise. IEEE sentences, spoken by a male talker, and speech-modulated 

SSN were temporally filtered to retain modulations in either the low-pass (0–8 Hz), high-

pass (8–16 Hz), or combined range. Moreover, the noise envelope was compressed (to 50% 

depth), left alone (100% depth), or expanded (to 200% depth) using an exponential function 

of the instantaneous envelope amplitude (as in [55]), and noises were presented at two 

different SNRs (0 dB and −2 dB). This resulted in a total of 16 (speech + noise 

configurations)×2 (SNRs)=32 conditions. N=20 young normal hearing subjects participated 

in the listening test.

F. NR-Jensen

This dataset consists of speech processed by non-linear single-microphone noise reduction 

(NR) algorithms. In [56], the Dutch version of the noisy Hagerman sentences [57], [58] were 

degraded by unmodulated SSN at −8, −6, −4, −2, and 0 dB SNR. The degraded speech was 

processed by three NR algorithms aimed at finding binary or soft minimum MSE estimates 

of the short-time spectral amplitude. This resulted in a total of 4 (3 NR algorithms + 1 

unprocessed) x 5 (SNRs) = 20 conditions. N=13 subjects participated in the listening test.

G. NR-Hu

In [52], IEEE sentences and isolated consonants were degraded by four types of noise: 

babble, car, street, and train at 0 and 5 dB SNRs. Degraded signals were then processed by 

eight non-linear NR algorithms, including spectral subtraction, sub-space, statistical model-

based, and Wiener-type algorithms. This resulted in a total of 4 (noise types) x 9 (1 

unprocessed + 8 algorithms) x 2 (SNRs) = 72 conditions. N=40 subjects participated in the 
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listening test. This is the only dataset in this study that provides sentence instead of word 

recognition scores.

H. Reverberation datasets

In [59], HINT [60] and IEEE sentences were convolved with room impulse responses 

simulated using the image method. The sentences were processed subject to four 

reverberation times: T60 = 0.9, 1.2, 1.5, and 2.1 seconds, and three direct-to-reverberant 

ratios (DRR): 0, −10, −20 dB. This resulted in a total of 4 (T60) x 3 (DRR) = 12 

reverberation conditions. The stimuli were presented to N=15 normal-hearing subjects. This 

is the only dataset explored here that did not use noise as a type of speech degradation.

I. NELE-Taal

In [61], sentences from the Dutch Matrix-test [57] were processed by two near-end listening 

enhancement (NELE) algorithms based on linear [62] and non-linear [61] approximations of 

the SII. The signals were then degraded by unmodulated SSN and babble noise at three 

different SNRs: [−20, −17, −14] dB and [−11 −8 −5] dB for the processed and unprocessed 

speech, respectively. The SNRs were chosen to produce roughly similar intelligibility for the 

processed and unprocessed conditions. This resulted in a total of 2 (noise types) x 3 (1 

unprocessed + 2 algorithms) x 3 (SNRs) = 18 conditions. N=16 subjects participated in the 

listening test. This dataset was used as the validation set in optimizing the parameters of 

wSTMI.

J. NELE-Cooke

In [63], IEEE sentences were processed by 19 NELE algorithms and degraded by two types 

of noise. Unmodulated SSN and competing speaker (CS) noise were added to the processed 

speech at [1, −4, −9] dB and [−7, −14, −21] dB SNR, respectively. In [24], a subset of the 

dataset comprising 10 of the IEEE sentences for each degradation condition and nine of the 

NELE algorithms was used for SIP assessment. This resulted in a total of 2 (noise types) x 

10 (1 unprocessed + 9 processed) x 3 (SNRs) = 60 conditions for our assessment.

K. NELE-Chermaz

In [64], a recording of the IEEE sentences [65] were processed by three NELE algorithms: 

SSDRC [66], AdaptDRC [67], [68], and AdaptDRC + OE [69]. The algorithms were chosen 

based on their performances in the Hurricane challenge [63]. The processed sentences were 

degraded in two realistic acoustic environments. The first environment was a small space 

with a short reverberation time (T60 = 300 ms) and CS noise. The second environment was a 

wide space with a long reverberation time (T60 = 1250 ms) and unmodulated SSN. Additive 

noises were presented at [−12.6, −7.6, −2.6] and [−1.6, 1.8, 5.6] dB SNRs for the small and 

large environments, respectively. This resulted in a total of 2 (environments) x 4 (1 

unprocessed + 3 NELE algorithms) x 3 (SNRs) = 24 degradation conditions. Stimuli were 

presented binaurally to N=34 listeners. In our work, speech signals associated with the left 

channel (the better ear) were used for monaural SIP.
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L. Int-Miller

In contrast to the previous datasets of degraded continuous speech, this dataset [70] 

presented temporally interrupted segments of clean speech alternating with noise. 

Interruption intervals for IEEE sentences were defined by calculating the running SNR 

between the target speech and a single-talker speech-modulated SSN at an average SNR of 0 

dB. Two methods of interruption were employed based on the running SNR: positive (high-

intensity speech) and negative (low-intensity speech) local SNR intervals which defined 

temporal intervals of speech either exceeding, or exceeded by, the competing noise level, 

respectively. The detected intervals were deleted and filled with one of the following noise 

types: (1) unmodulated SSN, or speech-modulated SSN based on (2) the missing portion of 

the speech, (3) the preceding speech, (4) a random segment of a different sentence, and (5) a 

time-compressed version of (4). The noise replacements were presented at two levels: 

according to the level of the replaced segment or according to the overall level of the 

sentence. This resulted in a total of 2 (interruption methods) x 5 (noise types) x 2 (noise 

levels) = 20 conditions. Stimuli were presented to 11 normal-hearing listeners.

VI. Results Analysis

We evaluate the performance of the proposed algorithm under several degradation 

conditions. We emphasize that only normal-hearing listeners were considered in this study. 

Figures of merit are introduced in Section VI-A. A comparison to other SIP algorithms is 

presented in Section VI-B.

A. Figures of Merit

SIP algorithms are conventionally evaluated using the Pearson and Spearman correlation 

coefficients or variants. The reason is that the subjective intelligibility score scale generally 

depends on listening test parameters not known to the algorithm, such as the corpus, subject 

response protocol, and scoring method, e.g., word scoring versus sentence scoring. Thus, a 

SIP algorithm can be made more widely applicable to different listening test protocols and 

scoring scales by requiring the algorithm’s output (“objective” scores) to track the trend of 

the subjective scores instead of the latter’s absolute values. To reconcile the objective score 

and the subjective score scales, a common practice is to use a monotonic mapping with few 

parameters, such as a sigmoid or a third-degree polynomial, to map the objective scores to 

the subjective scale. In [21], a logistic mapping is used to map model outputs to subjective 

score estimates:

I = 1
1 + exp(cI + d) (16)

where I is the SIP algorithm output, and c < 0 and d are constants whose values are chosen 

with least square fitting. The parameters of the logistic mapping are calculated separately for 

each dataset and each algorithm.

We use five figures of merit to evaluate the performance of SIP algorithms: i) the Pearson 

correlation coefficient between the subjective I and objective I intelligibility scores, ii) the 

Pearson correlation coefficient between the subjective I and logistic mapped I intelligibility 
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scores, iii) the Spearman rank correlation coefficient, iv) the RMSE between I and I, and v) 

the RMSE between intelligibility score I and the logistic mapped predicted intelligibility I.

B. Performance Evaluation

We compare the performance of wSTMI to the other SIP algorithms listed in Table III. 

Included are the best-performing SIP algorithms known to-date. Different from other 

algorithms, SIIB needs to input speech samples with at least 20 s length. To meet this 

requirement, SIIB-1 uses sample repetition, and SIIB-2 entails concatenation of several 

distinct short samples.

Figure 6 shows scatter plots for each dataset and wSTMI’s output before applying a logistic 

mapping. Each point in the plot represents a different condition in the dataset. Tables IV and 

V show the Pearson correlation before and after applying the logistic mapping in Equation 

16, respectively. To determine statistically significant differences between correlation values 

(Tables IV and V), pairwise comparisons using the Williams’s test [72] were performed for 

each dataset between the best performing SIP method and the others. Methods which did not 

perform significantly worse than the best performing algorithm (p < 0.05) are marked with 

(*) in Table V. Table VI displays the Spearman rank correlation. Tables VII and VIII show 

the RMSE before and after applying the logistic mapping in Equation 16, respectively.

Not surprisingly, wSTMI shows excellent performance for the training and validation 

datasets, for which the model parameters W and b were optimized (ITFS-Kjems and NELE-

Taal). However, importantly, wSTMI also performs well for datasets not used in the training 

phase. Also interesting to note that wSTMI performs well with strongly modulated noise 

maskers, despite the fact that such signals were not present in the training dataset. The top 

performance of wSTMI is closely followed by eSTOI, SIIB-2, and OSTMI. Focusing on the 

modulated noise conditions, i.e., ModN-Jensen, ModN-Fogerty, ModN-Gibbs, and ModFN-

Fogerty, it is clear that wSTMI outperforms existing SIP methods.

STMI, OSTMI, and wSTMI all compare the spectro-temporal modulation envelopes of the 

clean and degraded speech signals to estimate the intelligibility of the latter. STMI integrates 

the filtered spectrograms across the acoustic frequency axis in order to capture the temporal 

fluctuation of energy in each modulation channel, while OSTMI and wSTMI avoid this 

integration by making individual comparisons between acoustic frequency bins within each 

modulation channel. Moreover, while STMI assigns equal weights to different spectro-

temporal modulation frequencies, OSTMI uses a heuristic feature-selection scheme which 

assigns larger weights to intermediate spectral modulation frequencies. wSTMI further 

improves the performance of OSTMI by optimizing the weights assigned to different 

spectro-temporal modulation channels to maximize the SIP performance across a training 

dataset. The top SIP performance of wSTMI signifies the importance of taking into account 

different contributions of distinct spectro-temporal modulation channels to speech 

intelligibility.

Recall that STOI, eSTOI, OSTMI, and wSTMI estimate the intelligibility by comparing the 

modulation envelopes of the clean and degraded input signals. While STOI compares the 

temporal modulation envelopes of the clean and degraded signals, the other three algorithms 
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use the joint spectro-temporal modulation envelopes. It is interesting to note that eSTOI, 

OSTMI, and wSTMI outperform STOI in the presence of modulated noise (ModN-Jensen, 

ModN-Fogerty, ModN-Gibbs, NELE-Cooke, and NELE-Chermaz). This suggests the 

significance of spectral modulation analysis in modulated noise.

TFSS uses a Hilbert-derived temporal fine structure (TFS) waveform for SIP. The TFS 

waveform in [20] is the phase-modulated carrier of the Hilbert envelope. This contrasts with 

SIP methods that employ primarily envelope information, such as STOI, eSTOI, and 

wSTMI. Though TFSS was tested only on the NR-Hu dataset in [20], TFSS performs quite 

well for a wide range of distortions, including modulated noise and reverberation. The 

decent performance of TFSS for modulated noise conditions may be explained by the 

significant contribution of TFS information to speech perception in the presence of 

modulated noise [18], [73], [74].

We note that HASPI is computed as a linear combination of cepstral correlation and auditory 

coherence terms (low, mid, and high-level coherence). Here, we used a fixed set of 

parameters proposed in [28] to evaluate the performance of HASPI. In [24], the parameters 

of HASPI were optimized for each dataset to maximize performance. By comparing the 

performance of HASPI with and without parameter tuning, a few observations can be made. 

Even though HASPI achieves top SIP performance in many degradation conditions in both 

setups, it performs less well for NR-Hu and ModN-Jensen when used without parameter 

tuning. Moreover, when used without adaptation, HASPI performs poorly for NELE-Taal 

while delivering high performance for similar distortions in NELE-Cooke and NELE-

Chermaz. These observations indicate that a careful tuning of HASPI’s parameters is crucial 

for achieving robust SIP performance.

Many SIP algorithms performed poorly on ModN-Fogerty. Recall that ModN-Fogerty 

consists of speech degraded by time-compressed/expanded speech shaped modulated noise 

presented at a fixed SNR. Therefore, the time-compression/expansion rate of noise is the 

only factor governing the intelligibility in this dataset. None of the SIP methods investigated 

in this study were optimized for such distortions. STOI and SI-SDR show negative 

correlation with intelligibility across this dataset. In general, we desire a SIP algorithm 

whose outputs show strong positive correlation across many types of speech distortions.

Focusing on the interrupted speech conditions, i.e., Int-Miller dataset, it is evident that 

wSTMI, CSII-high, SI-SDR, and HASPI outperform other SIP methods. Interestingly, 

OSTMI, SIIB, CSII-I3, and TFSS are negatively correlated with intelligibility for this 

dataset. Figure 7 shows the scatter plots for each algorithm and the Int-Miller dataset before 

applying a logistic mapping. Recall that Int-Miller consisted of temporally interrupted 

speech. Also, the +SNR conditions (high-intensity speech) were more intelligible than their 

−SNR (low-intensity speech) counterparts. As the scatter plots in Figure 7 imply, many SIP 

algorithms predicted lower intelligibility for the +SNR conditions, resulting in a negative 

correlation. In addition, even though CSII-high and SI-SDR achieved high overall 

correlation for this dataset, they might not be suitable for this type of degradation. The 

scatter plots show that the predictions within each cluster are flat or negatively correlated 

with intelligibility for CSII-high and SI-SDR.
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VII. Discussion

In Section VI, we pointed out that the accuracy of HASPI predictions depends on the degree 

of parameter tuning. In general, the accuracy of a SIP method is tied to the data used to 

develop the algorithm [24]. For example, a SIP algorithm designed with additive noise in 

mind might not work well on speech processed by non-linear noise reduction algorithms. In 

order to verify that the proposed algorithm is not narrowly tuned to a specific noise/

processing condition- but works broadly, we evaluated it using 11 datasets that were not 

used for algorithm parameter tuning.

As described by Eq. (11), the sum in the NCC is computed over the entire utterance. This is 

different from the short-time NCC used by other SIP methods such as (e)STOI [17], [21], 

which computes the NCC across short signal segments, e.g., of duration 384 ms [17], [21], 

and then averages the results. STOI’s approach can be regarded as a time-varying 

normalization of the input envelopes, while wSTMI normalizes the entire envelopes at once. 

While the non-segmental approach of wSTMI has shown good SIP performance over a 

broad range of degradations and datasets, it might fail in certain acoustic conditions. For 

example, consider a sentence with five unrelated words degraded by a burst of noise that 

aligns with one of the words in the sentence. As the noise level increases, the intelligibility 

will drop to 80%, because only one of the words is affected by the noise. However, as 

calculated in Eq. (11), the NCC will be dominated by the high-energy portion of the noise 

and hence possibly decrease the predicted intelligibility to much below 80%. Calculating the 

NCC sum over short segments could be beneficial in such scenarios, because the segmental 

approach limits the time extent of the influence of the noise burst. Future work will need to 

consider extending wSTMI to using short-time NCC for SIP. However, it is encouraging in 

this first investigation of the wSTMI as implemented over the entire signal, that it performs 

similarly or better than the other SIP methods, including those using segmental analysis. As 

mentioned, the comparison of segmental and non-segmental methods, particularly in 

transient noise scenarios, will need to be considered.

In Section IV-B, we employed two datasets (ITFS-Kjems and NELE-Taal) to optimize the 

linear combination of intermediate intelligibility measures for SIP. Here, we present some 

insights into the optimized set of parameters. In order to interpret the optimized weights W, 

first, we seek to determine whether the same spectro-temporal modulation channels will be 

selected (assigned non-zeros weights) if other datasets were used for training. Figure 8 

shows the set of weights optimized for different training datasets as a function of the 

regularization parameter λ. We see that as λ increases, W tends to a sparse selection and 

almost the same cluster of spectro-temporal modulation channels are selected, irrespective of 

the training stimuli. Notably, increasing λ prunes off the “redundant” channels for the linear 

model. Increasing sparsification tends to assign larger weights to the spectral modulation 

frequencies between 0.72 and 4.54 cyc/kMel and temporal modulation frequencies below 10 

Hz, essentially without affecting SIP performance. The importance of spectro-temporal 

modulation frequencies, as determined here, is tied to the type of degradations that were 

used to tune the parameters of the algorithm. Hence, tuning the model parameters using 

degradation conditions that were not considered in this study might lead to different results. 

For instance, Steinmetzger et al. [41] demonstrated that measuring temporal modulation 
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frequencies in the human-pitch frequency range (roughly 60–400 Hz) can improve SIP 

accuracy when a masker is periodic and/or slowly amplitude modulated. In any case, the 

selected modulation channels in Figure 5 appear to work well over a wide range of 

degradations. The following subsections present some insights into the optimized set of 

parameters.

A. Comparison to MTFs of Human Auditory System

The optimization in Section IV-B assigns larger weights to the modulation channels that are 

important for SIP. As MTFs represent the relative importance of the spectro-temporal 

modulation frequencies for human auditory perception, we expect to observe similarities 

between the MTFs of the human auditory system and the optimized weights W.

In [29] and [30], spectro-temporal MTFs were estimated by measuring the detection 

thresholds of different modulation frequencies for the human auditory system. The MTFs in 

[30] show a lowpass behavior in both the spectral and temporal modulation directions with 

cut-off frequencies of about 2 cyc/octave and 16 Hz, respectively. Moreover, the MTF is 

relatively flat in the bandpass region. In [34], MTFs were measured by evaluating the 

relative importance of the modulation frequencies for speech perception (in contrast to 

discrimination thresholds in [30]). A modulation filtering approach was used to restrict the 

modulation patterns in the speech signal and a joint spectro-temporal MTF was derived. In 

[40], the envelope modulation fidelity was calculated using the normalized cross-covariance 

of the degraded and reference signal envelopes. Even though Kates et al. used temporal 

modulation frequencies up to 325 Hz, the results indicated that the low temporal modulation 

frequencies provided the highest amount of information for speech intelligibility. The 

findings in [29], [30], [34], [40] are consistent with the optimized W depicted in Figure 5, 

but with one key difference. While the cut-off spectral and temporal modulation frequencies 

agree, Elliot et al. [34] found that the lowest spectral modulation frequencies (near DC) are 

important for speech perception. In contrast, our optimization method tends to favor the 

intermediate spectral modulation frequencies.

From Figure 8 it follows that for larger values of λ (larger sparsity), the optimization scheme 

favours a lowpass behaviour with respect to the temporal modulations. Specifically, temporal 

modulation frequencies below 10 Hz tend to be selected. This is in slight contrast to 

previous studies of the relative importance of modulation frequencies for speech perception. 

For example, Drullman et al. [13] examined the effect of varying the amount of temporal 

modulation frequencies available to human subjects for speech recognition and found that 

they needed temporal modulation frequencies up to 16 Hz. The weights selected for wSTMI 

are an outcome of predicting speech intelligibility using a referenced-based STMA 

framework. One may argue that the task of SIP is different than that of speech recognition, 

and hence, one might not expect the important spectro-temporal modulations for the two 

tasks to be identical.

B. Comparison to Automatic Speech Recognition

In (Schadler et al. [35] and [36]), the relative importance of different spectro-temporal 

modulation frequencies for automatic speech recognition (ASR) was determined using the 
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STMA front-end (Section II-A) and hidden Markov models with Gaussian mixture 

emissions as the back-end. Schadler et al. evaluated the performance sensitivity of their ASR 

algorithm, when features from a single spectro-temporal modulation channel were dropped. 

The results showed that the intermediate spectral modulation frequencies (between 1.34 and 

2.8 cyc/kMel) and low temporal modulation frequencies were more important for ASR. This 

is consistent with our findings and implies that the relatively important spectral modulation 

frequencies exhibit a bandpass behavior.

C. Selected Spectral Modulation Frequencies

We present a filtering example to help further understanding the role of spectral modulation 

analysis in SIP. Figure 9 shows a series of spectral modulation filtered speech spectrograms 

for the utterance “should we chase?” spoken by a male (no temporal modulation filtering is 

employed). We can see that the filtered spectrograms with intermediate spectral modulation 

frequencies between 0.72 and 4.54 cyc/kMel best preserve the clarity of the formants and 

their transition patterns. A similar observation was made for several other speech signals. 

The importance of formant transitions in the perception of natural speech has been shown in 

several studies, including [75]–[77]. Thus, based on the above observation, we argue that the 

intermediate spectral modulation frequencies are crucial for SIP.

VIII. Conclusion

We have presented a monaural intrusive speech intelligibility prediction algorithm based on 

spectro-temporal modulation analysis of the input speech samples. The proposed algorithm, 

which we call wSTMI, combines intermediate intelligibility measures from different 

modulation channels using a sparse linear model and extends the concept of frequency-band 

importance function to spectro-temporal modulation channels. The linear model parameters 

were optimized using a Lasso regression approach. We showed that the optimized 

parameters can be interpreted in terms of MTFs and are consistent with other findings of the 

human auditory system. We evaluated the performance of wSTMI and other state-of-the-art 

SIP algorithms across several datasets and distortions. Compared to other SIP methods, 

wSTMI performs well across all the investigated acoustic conditions. Notably, wSTMI 

outperforms other SIP methods in the presence of highly non-stationary distortions, e.g., 

single and multi-speaker speech modulated noise. The proposed SIP approach also provides 

a systematic way for performance-improvement with hitherto untested acoustic conditions.
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Fig. 1: 
A block diagram of the spectro-temporal modulation analysis (STMA) scheme described in 

Section II-A. The impulse responses of the modulation filters are plotted in the dashed box. 

Using S=11 spectral and R=5 temporal modulation filters result in R×S=55 spectro-

temporally filtered spectrograms. Because the slow spectral modulation filters have very 

long supports, the diagram can only show part of the first four spectral impulse responses.
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Fig. 2: 
An illustration of two-step spectro-temporal modulation filtering to produce a filtered 

spectrogram. (a) the Mel-spectrogram (b) the spectrally filtered spectrogram (c) the spectro-

temporally filtered spectrogram. The impulse responses superimposed on the left are 

associated with spectral and temporal modulation center frequencies of 1.1 cyc/kMel and 4.9 

Hz, respectively.

Edraki et al. Page 25

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
A block diagram of the proposed SIP algorithm.
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Fig. 4: 
The RMSE and the Pearson correlation between wSTMI predictions and subjective 

intelligibility scores of the training and validation datasets as a function of the regularization 

parameter λ. The highlighted value of λ* = 0.065 minimizes the RMSE over the validation 

dataset.
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Fig. 5: 
Optimized weights W associated with λ* = 0.065.
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Fig. 6: 
Scatter plots of listening test intelligibility scores against wSTMI’s output, before applying a 

logistic mapping. The horizontal axis shows the intelligibility and the vertical axis shows 

wSTMI’s output.

Edraki et al. Page 29

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 
Scatter plots of listening test scores for the Int-Miller dataset versus different algorithms’ 

outputs, before applying a logistic mapping. The horizontal axis shows the intelligibility and 

the vertical axis shows the predicted intelligibility.
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Fig. 8: 
Optimized weights W as a function of regularization parameter λ using different training 

datasets (a) ITFS-Kjems (b) ModN-Jensen (c) NELE-Taal.
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Fig. 9: 
An illustration of spectral modulation filtered spectrograms for different spectral modulation 

frequencies. The Mel spectrogram in the top left panel is filtered with the spectral 

modulation filter-bank GS[f; si] presented in Section II-A. No temporal modulation filtering 

is performed. The formant trajectories for the word “chase” are highlighted. The first four 

formants of the vowel change from 380, 1820, 2580, and 3490 Hz to 330, 2140, 2880, and 

3720 Hz.
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TABLE I:

Auditory-Spectral Analysis Parameters

Parameter Value Parameter Value

fs 10 kHz Fu 5000 Hz

OFFT 50% FM 130

WFFT 25.6 ms bs
m 390 channels

NFFT 1024 bt
m 40 frames

Fl 64 Hz
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TABLE II:

Modulation Analysis Parameters

Parameter Value

v 3.5

S 11

R 5

Spectral Modulation Center 0, 0.28, 0.44, 0.72, 1.10, 1.77,

Frequencies si (cyc/kMel) 2.88, 4.54, 7.26, 11.6, 18.3

Temporal Modulation Center Frequencies rj (Hz) 0, 4.9, 7.8, 12.4, 19.7
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TABLE III:

SIP methods for comparison.

Method Description

wSTMI Weighted Spectro-Temporal Modulation Index.

STMI Spectro-Temporal Modulation Index [29], [30].

OSTMI Modified Spectro-Temporal Modulation Index [23].

STOI Short-Time Objective Intelligibility [21].

eSTOI Extended Short-Time Objective Intelligibility [17].

HASPI Hearing-Aid Speech Perception Index [28].

SIIB Speech Intelligibility In Bits [25].

CSII-high The high-level Coherence Speech Intelligibility Index [10].

CSII-I3 A linear combination of high/mid/low-level CSII [10].

SI-SDR Scale-Invariant Signal-to-Distortion Ratio [71].

TFSS The Temporal Fine-Structure Spectrum index [20].

ESII* Implementation of Extended SII [9].

Glimpse* Implementation of Cooke’s glimpse method [15].

SIP methods marked with (*) require the speech and additive noise realizations to be available separately.
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