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Abstract

The cell membrane possesses an extensive library of proteins, carbohydrates, and lipids that 

control a significant portion of inter- and intracellular functions, including signaling, proliferation, 

migration, and adhesion, among others. Augmenting the cell surface composition would open 

possibilities for advances in therapy, tissue engineering, and probing fundamental cell processes. 

While genetic engineering has proven effective for many in vitro applications, these techniques 

result in irreversible changes to cells and are difficult to apply in vivo. Another approach is to 

instead attach exogenous functional groups to the cell membrane without changing the genetic 

nature of the cell. This review focuses on more recent approaches of non-genetic methods of cell 

surface modification through metabolic pathways, anchorage by hydrophobic interactions, and 

chemical conjugation. Benefits and drawbacks of each approach are considered, followed by a 

discussion of potential applications for non-genetic cell surface modification and an outlook on the 

future of the field.

Graphical Abstract

Keywords

Click chemistry; bioconjugation; affinity guided; metabolic labeling; T-cell therapy

Jennifer.cha@colorado.edu; Andrew.goodwin@colorado.edu.
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

HHS Public Access
Author manuscript
Bioconjug Chem. Author manuscript; available in PMC 2021 November 18.

Published in final edited form as:
Bioconjug Chem. 2020 November 18; 31(11): 2465–2475. doi:10.1021/acs.bioconjchem.0c00529.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Decorating cellular surfaces with exogenous functionalities has garnered significant interest 

in recent years to aid with delivering antibody-drug conjugates,1 mediating extracellular 

communications,2 and conjugating fluorophores to the cell surface3 for probing and imaging 

cellular and pathological function.4 Originally, specific receptors on the cell surface were 

directly targeted by antibodies or other moieties with high binding specificity.5 However, 

because these interactions are inherently transient,6 focus has shifted to introducing cell 

surface functionalities through more permanent means. Genetic modification of cellular 

proteins and receptors is a common tool in vitro, although this approach can lead to 

unintended changes to the cells.7 Translation of gene delivery in vivo has also been 

notoriously challenging, as targeted viral vectors often elicit immune responses in patients, 

even leading to patient death and the halting of clinical trials.8 Less immunogenic, non-viral 

methods have thus far shown poor transfection.9 Third, the success of any application 

depending on genetic modification of cellular surfaces relies heavily on the expression levels 

of the epitopes that are being expressed. These expression levels can be unpredictable and 

inconsistent across samples, and thus normalizing the expression levels becomes very 

important in these circumstances to get reliable data.10

As an alternative to genetic engineering, natural components of the cell membrane such as 

lipids and glycans can be modified through various non-genetic pathways. This approach not 

only produces more permanent methods of cellular probing than antibody targeting but also 

provides more reliable control over cellular functions.11 Ideal cell surface engineering 

methods should introduce functionalities without affecting cell fate and function such as cell 

survival, proliferation and other cellular activities.12 This review will mainly focus on 

current non-genetic methods of cell surface modification, including metabolic approaches, 

lipid-based insertions, and targeted chemical modification.

Conjugation to Functional Groups Introduced Metabolically

Most cells are coated with a dense layer of glycan sugar derivatives that play essential roles 

in biological processes. The cell’s own machinery involving glycan’s metabolic pathway can 

be utilized to introduce various biorthogonal functionalities such as azides, alkynes, or 

ketones on the cell surface.13 Once on the surface, these functionalities can be selectively 

conjugated to phosphine or hydrazide labeled fluorophores or antibodies through a 

Staudinger ligation.14 This two-step click chemistry pathway, known as metabolic glycan 

labeling (MGL), depends on the expression of natural glycans on the cell surface using their 

sugar analogues. The biochemical mechanism of how unnatural sialic acids become 

displayed on cell surfaces has been well-reviewed elsewhere.15 Sialic acid, or more 

commonly N-acetyl-neuraminic acid (Neu5Ac), is a nine carbon sugar that is the most 

common cellular glycan that is biosynthesized from its precursor N-acetylmannosamine 

(ManNAc).13 Reutter and coworkers have demonstrated that unnatural mannosamine 

derivatives, (where the N-acetyl groups have been replaced by N-azido or N-propanoyl 

groups), can be incorporated on the cell surface through the sialic acid pathway that involves 

a variety of enzymes including the nuclear cytidine monophosphate-Neu5Ac (CMP-
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Neu5Ac) synthase, cytosolic epimerase, cytosolic CMP-Neu5Ac hydroxylase, Golgi 

sialyltransferases, and sialidases. Thus, the azido or the keto functionalities are incorporated 

as glycoconjugates on the cell surface.16 In a landmark study, Bertozzi et al introduced N-

levulinoylsialic acid (SiaLev) in Jurkat cells using N-levulinoylmannosamine (ManLev) 

containing a ketone functional group substituting for the N-acetyl group in the natural sugar. 

After expression on the cell surface through glycan metabolism, the ketone was then 

conjugated to a biotinamidocaproylhydrazide and then tagged with FITC-avidin (Figure 1).
17 In a remarkable followup, Bertozzi and coworkers introduced an azido functional group 

through N-acetylazidosialic acid (SiaNAz) in mice splenocytes in vivo using N-

acetylazidomannosamine (ManNAz) and the glycan metabolic pathways. The acetyl groups 

were cleaved in the cell by naturally-occurring carboxyesterases, and once presented on the 

cell membrane the azido group was conjugated to a FLAG tag (Phos-FLAG) and labeled 

with a FITC conjugated anti-FLAG antibody.18 Finally, Bertozzi and Francis also reported 

ssDNA conjugated to phosphines introduced on the surface of the cells to study cellular 

adhesion based on DNA hybridization using the Staudinger ligation reactions between 

phosphines and metabolically driven glycan introduced azides.19

Because the Staudinger ligation reactions between azides and phosphines can exhibit slow 

kinetics, they are not suited for detection of rapid biological processes on a minute time 

scale.20 Hence, Finn et al used ManNAz to incorporate azido groups on CHO and Hela cells 

in the form of SiaNAz by the same glycan metabolic pathway, then used copper-catalyzed 

azide-alkyne cycloaddition (CuAAC) for surface labeling of live cells using AF488-alkyne 

(Figure 2).21 Unfortunately, the Cu/ascorbate catalyst system is toxic to cells due to the 

generation of reactive oxidative species (ROS); although ROS generation should not be an 

issue for fixed cells, it poses a problem for live cell imaging.22 In order to address this issue, 

the authors also added tris(hydroxypropyltriazolyl)methylamine (THPTA) as a scavenger for 

ROS and promotes Cu-assisted peroxide degradation. The dehydroascorbate that is produced 

in this process is then captured by aminoguanidine and thus the combined effect of these two 

additives led to a robust method of labeling live cell surfaces.21

In another approach towards copper-free conjugation, Bertozzi and coworkers introduced 

ring strain and electron withdrawing groups to enhance the reactivity of cycloalkynes to 

azides.23 These modified cyclooctynes (OCT), including difluorinated cyclooctyne (DIFO), 

showed >10-fold faster reaction kinetics (k = 0.076 M−1 s−1)24 than their unmodified 

counterparts (k = 0.0024 M−1 s−1)25 without needing toxic metal catalysts. Adding 

additional ring strain as a biarylazacyclooctyne (BARAC) improved kinetics by another 

order of magnitude (k = 0.96 M−1 s−1) (Figure 2).26 In an example of applications of strain 

promoted azide alkyne cycloaddition (SPAAC), Kang et al incubated lung carcinoma cells 

A549 with peracetylated ManNAz (Ac4ManNAz) to introduce the azide groups as unnatural 

sialic acid residues on the cell surface. The azide labeled cells were then implanted in the 

liver athymic nude mice and dibenzocyclooctyne (DBCO)-Cy5 was intravenously injected 

into the mice. DBCO conjugation was shown to be successful by near infrared fluorescence 

intravital imaging.27

In order to further improve the reaction kinetics of CuAAC for cell labeling, Wu and co-

workers showed that replacing THPTA with tris(tert-butyl triazolylmethyl) amine based 
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ligands in the copper free reaction increased cycloaddition yields multi-fold in living cells. 

The tert-buytl and the hydrogen sulphate groups present in bis((tert-butyl triazolylmethyl) 

amino methyl) ethyl hydrogen sulphate (BTTES) provided a delicate balance of solubility 

and reactivity to these ligands but did not reduce the required Cu concentration below 50 

μM.28 To further confer biocompatibility to these methods, the authors replaced the 

hydrogen sulphate group in BTTES to an acetic acid group to produce a new additive 

bis((tert-butyl triazolylmethyl) amino methyl) acetic acid (BTTAA). The acetic acid ionizes 

at physiological pH to acetate, which acts as a weak donor to the CuI ions and helps the 

formation of strained copper triazole intermediates by increasing the electron density over 

the metal ion. This ligand switch not only accelerates the rate of cycloaddition but also 

allows lower Cu concentrations (30 μM).29

Finally, because cell display of azides is required for both the Staudinger ligation and the 

strain-promoted click reaction, other click chemistries have been devised to allow dual 

labeling of different cell receptors.30 For example, recent efforts have employed the use of 

inverse electron demand Diels-Alder reactions for incorporating cyclooctynes,31 

bicyclononynes,32 and norbornenes33 directly on the cell surface through glycan 

metabolism. However, these structures are too large to be efficiently incorporated into their 

corresponding sialic acids from their mannose amine counterparts.30 Thus, researchers 

turned towards ring-strained scaffolds like methyl substituted cyclopropenes (Cp), which are 

inherently absent in eukaryotes and can be easily ingested by the cells owing to their small 

size.34 These alkenes are incorporated on the cell surface through the metabolism of N-

acetylneuraminic acid (Cp-NeuAc), then ligated to electron deficient tetrazine conjugated 

probes such as tetrazine-Cy3 (Tz-Cy3)35 or indirectly via tetrazine-biotin (Tz-bio).36 

Conjugation was further improved by the group of Xin-Shan Ye, who demonstrated that (N-

(cycloprop-2-ene-1-ylcarbonyl)) sugars (NCp) have higher stability, better metabolic 

efficiency, and faster tagging kinetics to FITC-Tz both in vitro and in vivo.37 Through these 

processes, cells fed both azide and alkene-derived sugars can impart a membrane with 

orthogonal chemical reactivity.

Like glycans, phospholipids are integral parts of the cell membrane and the most common 

phospholipid headgroup in eukaryotic cells is choline (Cho). Cho-containing phospholipids 

play an important role in both intra- and intercellular signaling and undergo cellular uptake 

by various membrane transporters, followed by incorporation as phospholipids by the high 

energy intermediate CDP-Cho.38 Salic et al utilized this metabolic pathway to incorporate 

propargylcholine (PCho), an alkyne bearing moiety, into phosphatidylcholine (PC). These 

modified phospholipids were then labled by azide-modified Alexa568 and fluorescein dyes 

through CuAAC between the terminal alkyne group of PCho and the azide labeling probes, 

followed by visualization in the kidney, liver, and spleen cells of three week old mice.39 

Griese et al demonstrated the transport of phospholipids in ATP binding cassette sub family 

A member 3 (ABCA3) in lamellar bodies by tracking the choline phospholipids 

incorporated into the pulmonary cells. The authors first transfected the human carcinoma 

A549 lung cancer cells with HA-tagged ABCA3, which was detected on cell membranes by 

a series of antibodies and conjugation of TAMRA-azide.40 Thus, novel assays of cellular 

imaging and treatment can be developed by tracking the propargyl-Cho labeled lipids inside 

cells which are introduced using the Cho phospholipid metabolic pathway.
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Membrane Insertion with Hydrophobic Groups

Rather than relying on a cell feedstock to supply a clickable functional group, another option 

is to incorporate the exogenous biomolecule into the membrane with a hydrophobic tag.41, 42 

The interactions between the hydrophobic part of the conjugate and the lipid bilayer 

membrane causes the functional groups to be anchored to the cell surface. These interactions 

are weaker than covalent conjugation and thus are easily released from the cell surface, but 

they do not disturb cellular functions and are non-toxic to the cells.43 To demonstrate this 

approach, Iwata et al designed several lipid-poly(ethylene glycol)-amine (PEG-lipid) 

conjugates with different alkyl chain lengths to study the interactions between the lipid tails 

and the membrane surface.44 After the insertion of the PEG-lipid conjugates onto the human 

T-lymphocyte cells (CCRF-CEM) and subsequent reaction with fluorescein isothiocyanate-

N-hydroxyl succinimide (FITC-NHS), the cells were imaged by confocal microscopy. The 

highest fluorescence and surface density was observed for distearoyl-phosphoethanolamine-

PEG (DSPE-PEG), compared to PEG chains with dioleoyl, dipalmitoyl, or dimiristoyl lipids 

(DOPE, DPPE, and DMPE, respectively); therefore, longer, saturated hydrophobic tails 

produced stronger retention in the cell membrane (Figure 3). Lim et al built upon this 

approach by modifying the DSPE-PEG with homing peptides to improve the targeting 

specificity of the conjugates. The DSPE-PEGs were modified with CRPPR peptide to bind 

to cysteine-rich protein 2 (CRIP2) as well as a FITC-labeled super paramagnetic iron oxide 

nanoparticles, which showed attachment to a variety of human cell lines.45

For cell assembly applications, Gartner and coworkers anchored DNA-conjugated C16–18 

dialkylphosphoglycerides directly to cell surfaces. These DNA-decorated non-adherent 

(Jurkat) and adherent cells (HeLa, MCF-10A) could be assembled into oligomeric structures 

using DNA hybridization.46 Building upon this work, Gartner et al increased the yield of 

DNA-lipids on the surface by using a combination of a 100 base anchor and a 20 base 

complementary co-anchor connected to fatty acid amines. The retention of oligonucleotides 

in the cell membrane was seven to eight times higher than DNA anchored with 

dialkylphosphoglycerides or doubly anchored cholesterol. The anchor and the co-anchor 

strands hybridized in a complementary “lock” region that increased the hydrophobicity of 

the duplex and increased residence in the membrane.47

While these lipid-based methods are straightforward, inexpensive, and can target a variety of 

cell lines,48 ultimately these approaches remain nonspecific in terms of labeling. In order to 

use these lipid conjugates in a more specific manner, Yousaf et al developed liposomes 

tethered with mutually recognizable molecular pairs like ketones and oxyamines. When 

added to the cell surface, this pair reacts to form a stable oxime bond, allowing conjugation 

of fluorophores or other probes. In these studies, two sets of large unilamellar vesicles 

(LUVs) were synthesized, one containing an oxyamine and a FRET donor dye, and the other 

possessing a ketone and an acceptor dye. Upon mixing, the liposomes aggregated, adhered, 

and finally fused due to the formation of stable oxime linkages between them. This same 

strategy was employed to attach cells to surfaces. To decorate the cell surfaces of fibroblasts 

with fluorophores, the liposomes were first adhered to the cell surface using a cation liquid. 

Once the keto or oxy group was anchored on the cell surface, rhodamine-oxyamines and 
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fluorescein-ketones were added to the fibroblast cell cultures that resulted in fluorescent 

labeling of the cells by chemoselective oxime formation.49

Yousaf and co-workers also extended their work to both attachment of cells to substrates and 

self-assembly into tissue-like structures. First, cells were attached to gold substrates that 

were preprinted with oxyamine and aldehyde groups. This approach resulted in the 

patterning of fibroblasts with the complementary lipid functionalities on their surface. The 

remainder of the gold substrates were coated with tetraethylene glycol to prevent non-

specific cell adhesion through integrin-extracellular matrix (ECM) interactions.50 This idea 

was further utilized in another work from the same group, in which a UV-labile nitrophenyl 

oxyamine group51 was introduced on non-adherent Jurkat cells. When conjugated with cells 

possessing the complementary keto group, the cells formed multi-cellular spheroid 

assemblies due to the development of oxime linkages (Figure 3). The oxime linkages were 

cleaved rapidly upon exposure to UV light for 5 min, which resulted in the complete 

disassembly of tissue-like spheroid structures into individual cells. This photoswitchable 

tissue assembly technique can be controlled by simple cell irradiation because of the 

photocleavable group on the lipid molecules anchored on the cell surface, producing both 

cell-surface adhesion and cell-cell aggregates.52

While useful in vitro, one disadvantage of the methods discussed above is that the 

conjugates by themselves are not capable of in vivo delivery for cell augmentation in live 

animals. Liposome-assisted bioorthogonal reporters (LABORs), developed by Chen and 

coworkers, will help to expand the utility of hydrophobic delivery to various applications.53 

Chen and coworkers used LABORs to deliver azido sialic acid on cell membranes using 

folate targeting to HeLa cells (Figure 3). Azido sialic acid was encapsulated within a 

liposome layer constructed of folic acid-DSPE-PEG2000. The liposome layer would bind to 

folate receptors and the liposome encapsulating the azido sugar would be endocytosed. 

Endocytic degradation would release the azido sugar, which would then be transported to the 

surface through the sialin biosynthetic pathways. In order to confirm the presence of the 

azido sugars on the surface, the authors tagged the cells with alkyne-biotin and then labeled 

them with streptavidin-AF488 (SA-AF488).

Finally, Bertozzi and coworkers designed glycoproteins to mimic cell surface mucins that 

play a significant role in controlling cell-cell interactions. The mucin mimics were 

composed of a poly(methyl vinyl ketone) with synthetic glycans appended via oxime 

linkages and end-functionalized with lipids so that they could be directly anchored onto cell 

surfaces. These mucin mimics were then anchored onto Chinese Hamster Ovary (CHO) cells 

deprived of any endogenous mucins. Mucin density on the CHO cells was quantified and 

their intracellular location and dynamics were studied.54

Affinity-Mediated Covalent Conjugation

Covalent chemical reactions can also be applied to surface-exposed functional groups, 

usually amino acid side chains, on existing membrane proteins or polysaccharides.55 Initial 

efforts in membrane protein conjugation utilized a non-specific approach to react with 

functional groups common to amino acid sidechains. N-hydroxysuccinimidyl (NHS)-ester 
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modified single-stranded DNA (ssDNA) was conjugated to the amine groups of the lysine 

residues on human T-lymphocytes (Jurkat cells). Because Jurkat cells are non-adherent, the 

conjugated ssDNA would be responsible for adhering the cells to the glass surfaces treated 

with the complementary DNA sequence (Figure 4).56 However, the trypsin required to 

detach cells for further study also tended to cleave lysine (and arginine) residues.57 Hence, 

Tusnady et al described a method to react the carboxyl acid side chains of aspartic and 

glutamic acid with ethyl (dimethylaminopropyl) carbodiimide (EDC) and sulfo-NHS, 

followed by introduction of biotinylated cysteamine. The displayed biotin group was then 

treated with streptavidin or avidin conjugates for cell surface labeling and elaboration of 

human leukemia cell line HL60. Similarly, maleimide-conjugated biomolecules can target 

exposed thiols. For example, Irvine et al designed nanocapsules (NC) loaded with SN-38, 

the active metabolite of irinotecan, an FDA-approved inhibitor of tropoisomerase I. The 

NC’s were decorated with maleimide groups to target the thiols on the surface of T-

lymphocytes. The polyclonal T-cells were expanded ex vivo under conditions that would 

retain their adhesion receptors required for homing to lymphoid tissues, followed by delivery 

of a payload to lymphoma in a mouse model.58

Another approach is to add an affinity group to target specific membrane proteins on the 

cell. Notably, Hamachi and coworkers utilized dimethylaminopyridine (DMAP), a common 

acyl transfer catalyst, conjugated to a saccharide ligand to ensure efficient and selective 

acylation of lectins in the presence of thiophenyl ester acyl donors.59 The idea behind this 

affinity-guided DMAP (AGD) conjugation is that a non-covalently binding affinity ligand 

binds selectively to the target of interest and the DMAP catalyzes acyl transfer to a 

nucleophilic group on the target protein (Figure 4). Hamachi et al utilized an anti-epidermal 

growth factor receptor (EGFR) affibody-DMAP molecule appended with fluorescein or 

Alexa-Fluor 488 labeled acyl donors to EGFR (Figure 4).60 The AGD approach appears to 

be quite general and could provide valuable information on protein-protein interactions 

towards a deeper understanding of cell receptor function.

One of the more recent works of Hamachi and coworkers described the design of ligand-

directed N-acyl-N-alkyl sulfonamide (LDNASA) derivatives as an electrophilic reactive 

group that can be attacked by a nucleophilic amino acid located on the protein surface 

through a proximity effect.61 In this study, the authors demonstrated that the reaction 

kinetics of the LDNASA method is faster than other chemistries like ligand-directed tosyl 

(LDT)62 and alkyloxyacyl imidazole (LDAI).63 The authors also demonstrated successful 

covalent conjugation of the natural inhibitor PU-H71 causing successful suppression of 

ATPase activity of Hsp90, which plays a significant role in tumorigenesis. In a similar 

experiment, Ploegh et al used a LPXTG peptide-tagged probe and transpeptidase enzyme 

sortase A from Gram-positive bacteria Staphylococcus aureus. The chemistry involves the 

attack of the enzyme at the amide bond between threonine (T) and glycine (G) to form an 

acyl-enzyme intermediate, which is then attacked by a nucleophile, preferably exposed N-

terminal glycines on the cell surface, to transfer the probe onto the surface for real time 

imaging.64 In each of these examples, non-covalent ligand-protein binding interactions were 

converted to permanent covalent conjugations using a chemical reaction. Such reactions can 

be used to deliver a fluorophore or an antibody depending upon the purpose and application 

under study.
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Finally, more recent developments have utilized photocrosslinking of small molecules like 

single chain variable fragment (scFV)65 and affibodies66 specifically to cellular receptors as 

an approach for conjugation.67 As discussed above, NHS-amine and maleimide-thiol 

chemistries suffer from a lack of control over the location and position of the conjugation. 

Certain applications like FRET are heavily dependent on a proper control of fluorophore 

labeling on the cell surface.68 Therefore, Tsourkas et al introduced site-specific mutations on 

affibodies from Protein Z to incorporate a photocrosslinking agent like the unnatural amino 

acid (UAA) benzoyl-phenylalanine (BPA) through amber codon suppression. The amber 

codon was mutated in the Protein Z at different locations using site directed mutagenesis to 

create ten different mutants and then identified the mutants that only bind to different human 

and rat immunoglobulins (IgGs) but also show a fast crosslinking reaction. This method 

comprises of two steps: the non-covalent binding of Protein Z to IgG followed by the 

covalent UV cross-linking of the affibody to IgG.69

Taking a cue from this work, Goodwin and Cha et al developed anti- EGFR affibodies that 

can not only bind to these receptors but also can crosslink to them when exposed to UV 

irradiation. A set of site-directed mutagenesis studies revealed that by mutating the N23 of 

the native affibody to a cysteine, the photocrosslinker could be incorporated by reacting the 

mutant with maleimide benzophenone. The modified affibody (N23BP) could then 

successfully crosslinked to soluble EGFR, as detected by SDS-PAGE. Next, a rhodamine-

tagged N23BP affibody mutant was conjugated to EGFR-expressing 4T1 mouse cells, 

resulting in enhanced retention of affibody expression for up to 24 h in both 2D cell 

monolayers and 3D tumor spheroid models. In contrast, the wild type affibody (WT) that 

lacked BP had disappeared after 24 h. The hypothetical mechanism for this behavior was 

that the permanent conjugation between a site-specific benzophenone on the affibody 

molecule and the targeted receptor prevented proteolytic degradation when the receptors 

were endocytosed.70 This hypothesis was tested by the same group when they tracked the 

local environment of a N23BP affibody-enzyme fusion protein before and after 

photocrosslinking using a pH-sensitive dye. After photocrosslinking, the affibodies were 

found to first show exposure to an acidic pH environment (endosome) followed by a neutral 

environment (endosomal escape) in MDA-MB-468 breast cancer cells (Figure 5). More 

importantly, the affibody-enzyme was found to retain its enzymatic activity after recycling to 

the surface, and thus this approach could be used to increase the efficacy of enzyme-prodrug 

therapy treatments.71

Non-Genetic Cell Modification for Cell and Tissue Based Therapeutics

Cell surface modification is a powerful tool, particularly for applications in which cell 

contacts are desired. This section will focus on ways in which investigators have leveraged 

some of the beneficial aspects of non-genetic modification for different applications, 

primarily in therapy or tissue engineering. For further reading beyond the scope of this 

review, we recommend a review by Won et al72 concerning the treatment of cardiac diseases 

and Langer et al73 for a thorough breakdown of approaches by cell type. A review by 

Wagner et al74 also provides a good perspective on the promise for clinical translation.
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1. Increased Cell Adhesion Strength.

Some applications, for example those in flow conditions, might require stronger adhesion 

between a conjugate and its cell target. As an example, surface engineering of Mesenchymal 

Stem Cells (MSCs) is gaining increasing importance for ensuring efficient delivery of MSCs 

to injured sites within the body. Stem cells play a vital role in repairing damaged tissue and 

suppressing inflammation on endothelial cells (EC) but lack adhesion ligands on their 

surface that would help them to target the appropriate site of injury. During an inflammatory 

response,75 ECs express lectins like P-selectin/L-selectin and E-selectin on their surfaces. 

Modifying the surfaces of the MSCs to attach these epitopes to the surface of ECs would 

result in efficient homing of MSCs towards the endothelial lining, not only in static 

conditions but also in dynamic flow environments.76 For example, Karp et al developed a 

method for guiding MSCs towards damaged tissue by incorporating biotin vesicles on the 

surface of the MSCs, followed by the addition of streptavidin and then biotinylated 

sialylated glycocalyx or SialylLewisX (sLeX).77 The MSCs would then exhibit a rolling 

action toward a P-selectin glycoprotein ligand 1 (PSGL-1)78 coated substrate under a shear 

stress condition such as that found in normal blood flow. Similar studies by Dennis et al 
have incorporated antibodies through lipid insertions on MSCs to bind ICAM-1 epitopes on 

Human Umbilical Vein Endothelial Cells (HUVECs) that are upregulated by the local 

immune response to cytokines like TNF-α. The adhesion of MSCs to the HUVECs was 

tested both in a static in vitro study and a dynamic flow chamber by fluorescence 

microscopy and flow cytometry.79 Based on this work, Dennis and co-workers showed that 

MSCs modified with homing peptides through lipid interactions exhibited higher MSC 

localization in mice with myocardial infarction (MI) than untreated MSC or MSC modified 

by non-specific peptides, with negligible toxicity.80 In another application, Jiang et al 
utilized cell conjugation to form mimics of blood vessels and other tubular structures. First, 

smooth muscle cells (SMC) and HUVECs were functionalized with biotin and streptavidin. 

Using stress induced rolling membranes (SRIM), the resultant tubular structure had a bilayer 

of cells with the muscle cells on the outside and the HUVECs on the inside.81

These cell surface modifications provide a means to control cell-cell interactions, which in 

turn can lead to various strategies for cellular therapies and regenerative medicine. For 

example, Wagner et al developed chemically self assembled nanorings (CSAN), which when 

inserted onto T-cells target MCF-7 human breast cancer cells through ligand-receptor 

specific interactions.82 These dihydrofolate reductase (DHFR) nanorings were 

recombinantly expressed to target epithelial cell adhesion molecules (EpCAM) and placed 

into cells through interactions with biotin-lipids or Cu-free SPAAC with DBCO-azide 

groups. When inserted into T-cells, EpCAM (+) MCF-7 cells could be targeted in the 

presence of EpCAM (−) U87 glioblastoma cells for selective cancer targeting.83 Importantly, 

these CSANs can be disassembled by treating the cells with an FDA approved antibiotic 

trimethoprim to reverse detach targeting ligands from cell surfaces.

2. Reversible Cell-Cell and Cell-Substrate Interactions for Tunable Cellular Assembly

Reversing covalent conjugation should allow a cell to its original state after being used for a 

given application. One method is to destroy the binding groups. For example, Gartner et al 
formed cellular structures through DNA hybridization by complementary oligonucleotides. 
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These structures could then return to nonbinding cells upon addition of DNAse enzymes.84 

Similarly, Tan et al developed DNA aptamers that can anchor themselves onto CCRF-CEM 

T cells through lipid interactions. These TDO5 aptamers can target the immunoglobulin 

chains of Ramos B cells and similarly Sgc8 aptamers anchored on Ramos cells can target the 

tyrosine kinase 7 on CCRF-CEM cells, thereby causing an aggregation of various 

lymphocytes that can be used in various cell based therapies in treating several cancer cell 

lines. These lymphocytic aggregates were then disintegrated by a DNAse enzyme that can 

cleave both single and double stranded DNA.85

Reversibility can also be conferred by temperature changes. Building on their previous work, 

Tan et al used the same DNA aptamers to capture T cell and B cells but now with more 

specificity and higher control. The aptamers anchored on CCRF-CEM cells could capture 

tetravalent SA, which can then capture a biotinylated TDO5 aptmaer targeting the Ramos 

cells through a SA-biotin bridge at 4°C. The aggregates disassociate when temperature is 

raised to 37°C due to the melting of the oligonucleotides, thereby disintegrating the 

aggregates.86 Similarly, Pasparikar et al developed a co-polymer of thermosensitive 

di(ethylene glycol) methyl ether methacrylate (DEGMA) and amine-reactive NHS-

methacrylate (NHS-MA) to covalently bind to the amino acid residues on the membrane 

proteins. Above the LCST of the co-polymer, intercellular aggregation is promoted by the 

hydrophobic interactions of the DEGMA residues, driven by the the coil to globule polymer 

transformataion. Below the LCST, the cells disassemble due to steric repulsion. These 

aggregates disintegrate when the cells are warmed to 37°C, indicating that reversibility in 

cellular aggregation can be modulated by temperature changes.87

Finally, reversibility can be built into the functional groups themselves. For example, Yousaf 

et al synthesized hydroxyquinone (HQ, ‘off state’) functionalized liposomes that can be 

tethered to cell surface and converted to a quinone (Q, ‘on state’) under slightly oxidative 

conditions.88 Quinone-modified human MSCs and fibroblasts were then covalently 

conjugated to amino-oxy (AO) alkanes modified cells.The chemo-selective binding between 

Q and AO leads to a stable oxime linkage between the cells produced a 3D cell assembly. 

Because of the reversibility of the quinone redox chemistry, the linkage can be broken down 

under slightly reductive conditions to restore HQ and release the oxime. Yousaf et al also 

synthesized a ketone-bearing calcein dye liposome conjugated to a fluorescence quencher 

dabcyl through a hydrazone linkage.89 Under normal conditions, this conjugate does not 

fluoresce and is in the ‘off state’ but a ligand exchange reaction replaces the hydrazone with 

an oxime, releasing the dye and turning on fluorescence. This reversible covalent bond 

approach was extended for reversible cellular aggregation and can serve as inspiration for 

several studies involving other biochemical processes that involve cell proliferation and 

growth and requires dynamic cellular imaging.

3. Increased Duration of Expression on the Cell Membrane Surface.

One question is how long an unnatural conjugation can remain on the cell surface. In one 

example, Wagner et al showed that the insertion of CSANs through hydrophobic insertions 

remain stable on the cell surfaces for more than 72 h.90 Goodwin et al also showed that 

photocrosslinked anti-EGFR targeting N23CD-BP affibodies are maintained on the cell 
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surface for about 72 h. This residence time was measured through the conversion of prodrug 

5-fluorocytosine to 5-fluorouracil and killing of cancer cells.71 Boons et al demonstrated that 

the enzymatic transfer of CMP-Neu5Ac using the sialyltransferase ST6GAL1 to N-

acteyllactoseamine (LacNAc) can stably express the modified glycans for ~ 72 h. The CMP-

sialic acid derivative has a modified dual functionality with a biotin and heparan sulphate 

(HS) that binds to a variety of proteins. This enzymatic transfer of CMP-Neu5Ac to cells 

deficient in HS led to a long lived display of biotin, as observed from the avidin AlexaFluor 

488 labeling and phosphorylated ERK activity, that is a consequence of the recruitment and 

binding of the FGF-2 protein by the cells.91

Conclusions and Outlook

In this review, we focused mainly on various techniques of non-genetic cell surface 

modification and how these types of conjugations enable applications such as in vivo 
imaging, controlling cell-cell and cell-substrate interactions, and promoting cellular 

adhesion. One possible future direction for these approaches is to reduce or control cell 

signaling on a temporary basis. If a receptor or set of receptors could be blocked, the cell 

could be made dormant without inducing apoptosis. Reversing or removing the conjugation 

could then allow the cells to grow again. For example, quiescence is desired in stem cells so 

that they do not differentiate into a defined type prior to use, but it can be difficult to 

maintain in culture.92,93 The ability to target specific receptors could provide a more stable 

quiescent state without changing the cell permanently. Pursuing this goal would require 

further study on the duration of expression on the cell membrane surface to obtain a more 

precise rate of receptor regeneration, either by swapping with membrane proteins already 

present in the endomembrane system, the digestion of tagged receptors and synthesis of new 

ones, or some combination of these mechanisms. While the rate of receptor degradation and 

regeneration would certainly depend on the type of targeted receptor, it would be interesting 

to determine if receptor modification led to changes in lifetime.

Lastly, covalent cell surface modification can potentially allow increased mechanical loading 

on a cell by stabilizing interactions that are often provided by biotin-streptavidin or DNA 

hybridization. Retraction experiments on live cells can be used to gain fundamental 

knowledge of cell-ligand interactions.72 For example, Salaita et al has used DNA for 

measuring mechanical forces on the cellular surface.94 These nucleic acids were also 

conjugated with a fluorophore and a natural cell receptor. Upon ligand-receptor recognition 

through a non-covalent mechanism, the cells transmitted pico-Newton (pN) forces through 

the receptors. This mechanism can cause DNA melting and other conformational changes 

that can be tracked using the fluorophore signal and can be correlated with the cellular force. 

Now these pN forces can be transmitted through the receptors to the ligands and then to 

DNA molecules.

Of course, the biggest question whether non-genetic cell modification approaches can be 

translated to the clinic. Although exogenous materials may not be toxic, a question remains 

as to whether are they necessarily innocuous.95 Glycans, lipids, and proteins are the three 

most abundant cellular components and hence exogenous materials made from these 

precursors should not be toxic to the cells by themselves;96 however, care should be taken to 
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not cause steric hindrance or a permanent change in the lipid structure of the cellular 

membrane, thereby irreversibly affecting biochemical signaling.97 Along with 

biocompatibility, solubility of lipo-conjugates can be difficult to optimize so that they 

maintain binding to the membrane but do not adhere non-specifically to other cell 

membranes,98 which in turn would lead to rapid endocytosis and removal from circulation.99 

While non-genetic modification of cell surfaces is still in a nascent stage and has enjoyed 

some preclinical success,100 its success in human trials will depend on the innocuity and 

stability of therapeutic conjugates.
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Figure 1. 
(a) Schematic for incorporating ketone groups on a cell surface using a glycan metabolic 

pathway for Staudinger ligation with biotinylated hydrazides for detection with FITC-avidin. 

(b) Flow cytometry of Jurkat cells reveal that the addition of azido sugars (ManLev-Bio+Av) 

increase the fluorescence 30-fold as compared to the controls [18]. Reproduced with 

permission from Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Engineering Chemical 

Reactivity on Cell Surfaces through Oligosaccharide Biosynthesis. Science 1997, 276 
(5315), 1125–1128.
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Figure 2. 
(a) Strategies for cell labeling with azides using metabolic expression of non-natural sugars, 

followed by Cu-catalyzed click chemistry labeling [21]. (b) Cu-free methods of cell labeling 

with strained cyclooctynes [23]. Reproduced with permission from: Baskin, J. M.; Prescher, 

J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; 

Bertozzi, C. R. Copper-Free Click Chemistry for Dynamic in Vivo Imaging. Proc. Natl. 
Acad. Sci. U. S. A. 2007, 104 (43), 16793–16797. (c) Comparison of Jurkat cell labeling 

with a biarylazacyclooctyne (BARAC), fluorinated cyclooctyne (DIFO), and non-fluorinated 

cyclooctyne (DBCO) [26].
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Figure 3. 
(a) Confocal fluorescence images of CCRF-CEM cells after incubating with lipids of 

different lengths for 30 min [44]. Reproduced with permission from: Itagaki, T.; Arima, Y.; 

Kuwabara, R.; Kitamura, N.; Iwata, H. Interaction between Cells and Poly (Ethylene Glycol) 

-Lipid Conjugates. Colloids Surf. B Biointerfaces 2015, 135, 765–773. (b) Schematic 

showing labeling of cells with oxyamines and their use in cell assembly, with images 

showing the sequential formation and disassembly of Jurkat cells by this technique [52]. 

Reproduced with persmission via Creative Commons from: Luo, W.; Pulsipher, A.; Dutta, 

D.; Lamb, B. M.; Yousaf, M. N. Remote Control of Tissue Interactions via Engineered 

Photo-Switchable Cell Surfaces. Sci. Rep. 2014, 4, 1–8. (c) Schematic of azide delivery by 

liposome assisted bioorthogonal reporter (LABOR) [53].
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Figure 4. 
(a) Left: Immobilization of DNA-conjugated MCF-7 cells onto a glass surface with a 

microarray of a complementary DNA sequence. The neighboring areas on the glass surface 

having a non-complementary DNA sequence is left untouched. Right: selective 

immobilization of Jurkat (green) and MDA-MB-231 cells (blue) by DNA hybridization [56]. 

(b) Schematic of DMAP-tethered antibody labeling of cell surface receptors [60]. (c) 

Fluorescence images of EGFR expressive human epidermal carcinoma A431 cells labeled 

by DMAP-tethered anti EGFR affibody conjugated to fluorescein dye, compared to cells (−) 

affibody-DMAP and cells reacted with non-affibody conjugated PEG-DMAP [60].
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Figure 5. 
(a) Schematic depicting how affibody photocrosslinked to EGFR causes recycling of the the 

affibody to the cell surface [63]. (b) Confocal images showing pH-stable Alexafluor 488 and 

pH-sensitive pHAb. The photocrosslinked affibody-enzyme is internalized in endosomes at 4 

h and 12 h but returns to the surface after 24 h [63].
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