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Abstract

Permanent magnet localization (PML) is designed for applications requiring non-line-of-sight 

motion tracking with millimetric accuracy. Current PML-based tongue tracking is not only 

impractical for daily use due to many sensors being placed around the mouth, but also requires a 

large training set of tracer motion. Our method was designed to overcome these shortcomings by 

generating a local magnetic field and removing the need for the localization to be trained with 

tracer rotations. An inertial measurement unit (IMU) is used as a tracer that moves in a local 

magnetic field generated by a magnet strip. The magnetic strength can be optimized to enable the 

strip to be placed further away from the tracer, thus hidden from view. The tracer is small 

(6×6×0.8 mm3) to reduce hindrance to natural tongue movements, and the strip is designed to be 

worn as a neckband. The IMU’s magnetometer measures the local magnetic field which is 

compensated for the tracer’s orientation by using the IMU’s accelerometer and gyroscope. The 

orientation-compensated magnetic measurements are then fed into a localization algorithm that 

estimates the tracer’s 3D position. The objective of this study is to evaluate the tracking accuracy 

of our method. In a 8×8×5 cm3 volume, positional errors of 1.6 mm (median) and 2.4 mm (third 

quartile, Q3) were achieved on a tracer being rotated ±50° along both pitch and roll. These results 

indicate this technology is promising for tongue tracking applications.

Index Terms—

inertial measurement unit; magnet; magnetic localization; motion tracking; neural network; 
orientation estimation; permanent magnet localization; tongue tracking

I. Introduction

MOTION tracking technologies play a vital role in various applications such as robotics, 

sports, virtual/augmented reality, and entertainment. Chief among them is the tracking of 

body motion for medical applications which, for example, is included as part of assistive 
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technologies to assist in the rehabilitation of physical disabilities, or as an alternative control 

used by people with quadriplegia. However, tracking the motion of the tongue remains a 

challenge despite its valuable use in speech rehabilitation [1], [2], as part of a silent speech 

interface [3]–[5], and as an alternative method of controlling devices [6]. There are many 

technical difficulties in tracking the motion of the tongue that render most available motion 

tracking systems unsuitable. For instance, opticalbased tracking (i.e. computer vision, 

reflective markers) cannot be used due to the lack of visibility of the inside of the mouth, 

and any suitable technology must be minimally obtrusive to avoid impeding natural tongue 

motion.

Commercially available tracking technologies such as the Electromagnetic Articulograph 

(EMA) are well known for tracking with millimetric accuracy the 3D position and 2D 

orientation of multiple tracers on the tongue [7]–[9]. EMA functions by emitting a strong 

electromagnetic field that surrounds the user’s oral cavity in which coil-like tracer(s) are 

glued on the tongue [10]. EMA is generally considered the most accurate tongue tracking 

system currently available, but its use is primarily restricted to speech science research 

because its limitations include a lack of portability due to the need for large electromagnetic 

transmitters and a high cost. The Electropalatograph (EPG) detects the points of contact 

between the tongue and the palate using electrodes embedded in an over-the-palate 

mouthpiece, enabling a discretized 2D view of the tongue surface [11]. EPG is mainly used 

in speech therapy [12] because its lack of continuous motion tracking prevents its 

widespread use since many phonemes are produced without palatal contact. Ultrasound 

Tongue Imaging (UTI) relies on high frequency sound waves to generate a 2D image of the 

sagittal plane of the oral cavity [13]. Although the cross-section of the tongue is captured, 

the tongue tip is usually not visible on the images due to the hyoid and/or the jaw bone [14]. 

Additionally, the ultrasound probe must be held under the user’s jaw which is not hands-free 

and can restrict jaw motion during speech.

More recently, there has been a growing body of research on the development of a 

permanent magnet localization (PML) method to track the motion of a small magnet [15]–

[17]. Tongue tracking was achieved by placing the magnet on the tongue [18], [19]. The 

basic principle of PML relies on capturing the magnetic field, generated from the magnet, by 

an array of magnetometers. The changes in the magnetic field due to the motion of the 

magnet are fed into a localization algorithm that estimates the magnet’s position and 

orientation. PML has the potential to overcome many of the shortcomings of the current 

tongue tracking technologies since the tracer (i.e. magnet) is small enough to not be 

obtrusive, provides continuous tracking in the whole 3D space, and is capable of providing 

millimetric tracking accuracy that is required for typical tongue tracking applications such as 

speech recognition [10]. However, in its usual design, PML has significant limitations that 

hinder its practical use for tongue tracking. For instance, its localization algorithm requires 

input from multiple magnetometers which must be placed close to the mouth to measure the 

weak magnetic field produced by the small magnet. These magnetometers must remain fixed 

in place to provide a stable frame of reference which requires these sensors to be mounted 

on a headset that can be cumbersome in activities of daily living and subject to social stigma. 

Using a larger magnet is not a solution because the natural motion of the tongue should not 

be impeded which causes this restriction on the distance between the magnet and the 
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magnetometers. Additionally, PML is incapable of tracking multiple magnets since the 

magnetic field generated by each magnet cannot be uniquely measured or identified.

The tongue tracking system proposed in this paper aims to improve upon the shortcomings 

of existing technologies. Specifically, our portable system has been designed for use in 

activities of daily living, and to enable multiple tracers to be tracked simultaneously to 

enhance its tongue tracking capabilities for speech applications. As illustrated in Fig. 1, our 

technology centers around the use of an inertial measurement unit (IMU), as the tongue 

tracer, that moves in a local magnetic field generated by a magnet strip composed of an array 

of permanent magnets. An IMU combines into one package a magnetometer, an 

accelerometer, and a gyroscope. The novelty of our system comprises the implementation of 

a reverse PML in which the local magnetic field is constant but the magnetometer is moving 

within this field. Importantly, our method allows us to shape the local magnetic field without 

changing the features of the tracer (e.g. dimension, shape). More specifically, the magnetic 

field intensity can be increased by adding more magnets to the strip, and/or increasing their 

size, which enables the strip to be placed further away from the user’s head. For example, 

the strip can be hidden in a neckband and thus would not require a bulky, cumbersome 

headset to be worn. Tracers can be tracked independently because each tracer provides its 

own position and orientation information. Additionally, the accelerometer and gyroscope 

readings are used to estimate the orientation of the tracer to re-orient the sensor’s magnetic 

field reading to a reference frame. The orientation-compensated magnetic field is then used 

to estimate the position of the tracer by a feedforward neural network. Although the end goal 

is to design wireless tracers, a wired tracer connected to a controller is used at this stage to 

demonstrate the proof-of-concept of our novel tracking method. In this paper, the objective 

is to evaluate the tracking accuracy of our system in a volume greater than an typical oral 

cavity (8×8×5 cm3) with a tracer being rotated by ±50° for both pitch and roll, which are the 

rotations of interest for the tongue.

The rest of the paper is organized as follows: Section II provides a detailed description of 

our tracking method, Section III describes our data collection setup, Section IV presents our 

results on tracking accuracy, and Section V concludes by summarizing the significance and 

impact of this work.

II. Tracking Method

An overview of our tracking method is provided in Fig. 2 and can be split into the following 

processes: (A) generating raw data from the tracking hardware which are (B) processed to 

output calibrated data before being used to estimate (C) the orientation and (D) the position 

of the tracer. These processes are described in more details in the subsections below.

A. Tracking Hardware

The tracking hardware comprises a magnet strip, a tracer, and a controller. The magnet strip 

is a custom-designed and 3D-printed semi-ellipse with a length of 6 cm and a width of 7 cm. 

In this version, five permanent magnets are evenly distributed around the strip as shown in 

Fig. 2 (top left). Each magnet (D32-N52, K&J Magnetics, Pipersville, Pennsylvania) is 

cylindrical, N52 grade, and measures 4.8 mm in diameter and 3.2 mm in thickness. Because 
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of the geometric arrangement of the magnets, the magnet strip generates a unique and local 

magnetic field. The dimensions, numbers, position, and orientation of the magnets are 

chosen empirically and have not yet been optimized for performance. Our objective in this 

work is to provide a proof-of-concept rather than an exhaustive study of the influence of all 

these parameters on the tracking accuracy. Therefore, better performance could potentially 

be obtained in the future.

The tracer is based on an LSM9DS1 inertial measurement unit (STMicroelectronics, 

Geneva, Switzerland) that measures 3-axis acceleration, 3-axis angular velocity, and 3-axis 

magnetic field. This IMU is embedded in a custom printed circuit board (PCB) with a size of 

6×6×0.8 mm3. When used on the tongue, the tracer is coated with a bio-compatible material 

and attached using an FDA-approved dental adhesive such as PeriAcryl (GluStitch Inc., 

Delta, British Columbia, Canada). The tracer is wired to a controller composed of a Teensy 

microcontroller (PJRC, Sherwood, OR, USA) and a custom PCB to facilitate the connection 

to the tracer. Custom firmware was developed for obtaining the IMU’s data using I2C 

communication protocol and transmitting raw data packets to a host computer every 10 ms 

for further processing.

B. Sensor Calibration

Because our application requires tracking with millimetric accuracy, the IMU must be 

calibrated to compensate for the non-idealities that are inherent to any sensor. To calibrate 

the accelerometer a raw , an ellipsoid fit method was used to provide a 3×3 gain matrix (Ga) 

and a 3×1 offset vector O a  [20]. Regarding the gyroscope ω raw , a computer vision 

method based on colored markers was developed to estimate the angular position of the IMU 

relative to a reference point. These angles were used as reference values to derive the 

optimal gain matrix (Gω) and offset bias O ω  using a least square error method on the 

estimated angles by the gyroscope. Finally, the magnetometer b raw  was calibrated by 

randomly rotating the IMU in all orientations. The ellipsoid described by the 3-axis 

magnetic readings was then generated using an ellipsoid fit method [21] that also returns a 

3×3 gain matrix (Gm) and a 3×1 offset bias O m . The resulting sensor calibration is 

summarized below as a set of linear transformations,

a cal = Ga × a raw − O a (1)

ω cal = Gω × ω raw − O ω (2)

b cal = Gm × b raw − O m (3)
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C. Orientation Compensation

A primary challenge for magnetic localization on a moving (wearable) system is the 

cancellation of the background magnetic field (BMF). The BMF is composed of the Earth’s 

magnetic field, which varies not only with location on Earth but also with time [22], and any 

surrounding magnetic sources (e.g. ferromagnetic materials). In traditional PML, the 

magnetometers are fixed in place which simplifies the BMF cancellation process by 

capturing the BMF with no magnet in the vicinity of the sensors [18], [19]. However, in a 

movable setup, the BMF can be seen as a rotating vector in a magnetometer’s viewpoint. 

Therefore, the magnetometer’s orientation must be known to cancel the BMF which is the 

main reason for the use of an IMU rather than solely a magnetometer in our tracer.

The added benefit of using an IMU is to circumvent the need to include the tracer’s 

orientation as part of the training of the localization algorithm. Indeed, the magnetic field 

read by a magnetometer is dependent on both position and orientation of the magnetic 

source. In traditional PML, the magnet is rotated in various orientations when training a 

localization algorithm [19] which makes the resulting model more complex and likely less 

accurate in practice since different combinations of position and orientation produce a same 

magnetic field (refer to section IV-B). Since our tracer is an IMU, its orientation can be 

estimated on its own and used to reduce the number of variables to be estimated by the 

magnetic localization model from 6 (3 positions and 3 angles) down to 3 positions only.

The Madgwick filter was chosen to estimate the tracer’s orientation due to its simplicity and 

efficiency. The orientation is expressed as the rotation from the sensor frame (S) to a 

reference frame (R) set to be orthogonal to Earth’s gravity vector which results in an 

absolute value of 0° for pitch and roll. Because the magnetometer is already used for 

magnetic localization and in the presence of a strong local magnetic field, the tracer’s yaw 

cannot be determine with absolute value by estimating the tracer’s heading using the Earth’s 

magnetic poles. Therefore, in our reference frame, the zero yaw is set to be aligned with the 

major axis of our magnet strip. The orientation is represented as a quaternion 
S
Rq t , 

estimated from the calibrated acceleration and angular velocity, and a tuning parameter β 
sets the robustness of the filter against sensor noise. For our IMU, a β value of 0.071 results 

in an estimation accuracy of 1.09°, 1.04°, and 1.10° root-mean-square errors for pitch (θ), 

roll (φ), and yaw (ψ), respectively.

D. Magnetic Localization

The main purpose of our orientation-compensated magnetic localization is to use the 

estimated orientation to rotate the measured magnetic field from the sensor frame b
S

cal  to 

our reference frame b
R

cal  using the standard equation for quaternion rotation,

b
R

cal,t = S
Rq t ⊗ b

S
cal,t ⊗ S

Rq t* (4)

where ⊗ and * denotes quaternion multiplication and conjugate, respectively.
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The same rotation is applied to the BMF which is collected once before the start of a data 

collection and with no magnet strip in the tracer’s vicinity. Once both are in the same 

reference frame, the BMF is subtracted from the magnetic field, and the resulting orientation 

and BMF compensated magnetic field is fed into a feedforward neural network responsible 

for estimating the tracer’s 3D position. Prior to being fed into the neural network, the 

magnetic values are normalized to be in the range of ±1.0.

The training of the neural network was performed by collecting magnetic samples of the 

tracer traversing a trajectory with predefined positions as the reference. The L2 norm of the 

difference between the 3D position estimated by the model p est  and its reference p ref
was used as the loss function (Epos) to be minimized during training,

Epos = p est − p ref (5)

A validation set was used to prevent overfitting to the training set by stopping the training of 

the neural network when the validation Q3 error did not improve after 100 epochs. It was 

found empirically that the architecture of the neural network that provides the lowest errors 

is as follows: 3 hidden layers, 50 neurons per layer, exponential linear unit as the activation 

function, and RMSprop as the optimizer with 256 batch size and 0.05 learning rate.

III. Data Collection Setup

To collect the datasets needed to train the neural network and evaluate the tracking accuracy 

of our method, a 5D positioning stage was designed to enable the tracer to be positioned and 

oriented to desired values with great precision. More details are provided in the following 

subsections.

A. 5D Positioning Stage

A similar 5 degree-of-freedom positioning stage as used in our previous work [19] has been 

redesigned for this study (Fig. 3). The linear stage comprises three motorized XSlides 

(Velmex Inc., Bloomfield, NY, USA) that can position the tracer in the 3D space (X, Y, and 

Z) with a reported accuracy of 76 m. The rotational stage is capable of orienting the tracer 

along its pitch and roll thanks to a pulley/belt system driven by two stepper motors in half-

step mode, resulting in an accuracy of 0.9°. In the current design, the yaw cannot be changed 

because of many practical issues. Chief among them is the need for any motor to be placed 

far enough from the tracer (>15 cm) to prevent their induced magnetic field to be read by the 

magnetometer. This prevents any practical design based on standard motors, but could be 

overcome in the future with the use of nonmagnetic piezoelectric motors if they are more 

affordable.

B. Reference Trajectories

Training and evaluating the accuracy of a neural network in estimating the position of the 

tracer require a training, validation, and testing set (Fig. 4). These datasets are continuous 

trajectories inscribed in a volume of 8×8×5 cm3 which is wider than most typical oral 

cavities [23], [24] and thus adequate for our tongue tracking application. The number of 
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magnetic samples collected for the training set is ~378,000, validation is ~285,000, and 

testing is ~265,000. The validation set follows a similar trajectory than the training set but 

with a positional shift in each axis to ensure that the model will not overfit to the training set. 

The testing set is a unique trajectory designed to randomly sample the volume, traverse 

positions unseen in the training and validation sets, and represent curved movement similar 

to that of the tongue.

C. Comparative Assessment of Tracking Accuracy

The objective of our orientation compensation method is to reduce the complexity of the 

model that the neural network must learn by removing the need to account for the 

orientation of the tracer. To evaluate this objective, there are three assumptions that can be 

tested: (1) a model trained with trajectories that do not include any rotation of the tracer 

should generalize well to datasets with compensated rotations, (2) the model should provide 

a greater tracking accuracy than that of a neural network that must learn the relationship 

between the magnetic measurements and both 3D position and 3D (uncompensated) rotation 

of the tracer, and (3) the model should provide a similar level of tracking accuracy than a 

model trained with compensated rotations.

To validate these assumptions, the neural network described in section II-D is trained with 

different datasets that were collected by traversing the reference trajectories first without any 

rotation (Fig. 5a, top row), and then traversed again with the tracer being rotated with 

varying pitch and roll (Fig. 5a, center row). For both rotations, the angles are following a 

sinusoidal waveform with a ±50° amplitude but different frequencies to generate many 

combinations of pitch and roll values. To evaluate the effect of our orientation compensation 

method, the magnetic measurements of the trajectories with a rotated tracer are compensated 

(Fig. 5a, bottom row).

A baseline of tracking accuracy (Fig. 5b, top) is first evaluated to compare our assumptions 

against. This baseline is composed of a neural network that is trained and tested with the 

datasets that do not contain rotation. The resulting model is then tested with the testing set 

with compensated rotation to validate our first assumption. Secondly, a neural network is 

trained and tested with uncompensated rotations to validate our second assumption. Finally, 

our third assumption is validated by training and testing a neural network with compensated 

rotations.

IV. Results & Discussion

This section presents the results of the comparative assessment of tracking accuracy of our 

system. Using the same metric as used in our previous work [19], the accuracy is represented 

as a positional error which is the L2 norm of the difference between the actual and estimated 

3D position of the tracer, as expressed in (5). The results for each assumption is presented 

and discussed in a subsection below, with the positional errors shown as a heat map for the 

testing sets and as box plots to facilitate their analysis and comparison.
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A. Tracking Accuracy for Model Trained Without Rotation

The positional errors of this model is shown in Fig. 6 with the training set having a median 

and Q3 values of 1.8 mm and 2.4 mm, respectively. The validation set has a median error of 

1.7 mm and a Q3 error of 2.4 mm. We can observe that overfitting did not occur since the 

errors for validation and training sets are similar. The baseline accuracy of our system is 

estimated from the reference testing set with a median error of 2.0 mm and a Q3 of 2.8 mm. 

Overall, these results show that 75% of the errors are within 3 mm for any position of the 

tracer in a volume of 8×8×5 cm3.

While trained on trajectories without rotation, this model generalizes well to the testing set 

containing compensated rotations since the median error (2.5 mm) and Q3 (3.5 mm) are 

only ~0.5 mm greater than the baseline.

It is consistently observed that the tracking accuracy is better in the lower and center parts of 

the volume. However, the accuracy tends to worsen with increased Z-axis position which 

can be explained by the tracer moving further from the magnet strip, resulting in a reduced 

signal-to-noise ratio due to a weaker magnetic field. A feature of our system is the ability to 

adjust the magnetic strength of the local magnetic field by varying the number, size, and 

geometric arrangement of the magnets in the strip. Such optimization of the magnetic strip 

has the potential to reduce the errors observed with higher Z values.

B. Tracking Accuracy for Model Trained with Uncompensated Rotation

The positional errors for a model trained and tested on trajectories with an uncompensated 

rotating tracer are provided in Fig. 7. These errors are significantly higher with a median 

centered around 5 mm and Q3 values greater than 10 mm. Although a better accuracy could 

potentially be achieved with a more complex architecture for the neural network, the values 

of these reported errors are consistent throughout our empirical evaluations of simple 

feedforward neural networks with varying number of neurons (10–100), number of layers 

(1–4), activation functions, along with other hyper-parameters. Since increasing the size of 

the neural network and changing various hyper-parameters did not have any significant 

effect on the tracking accuracy, this provides evidence in support of our second assumption 

that using an orientation compensation method to reduce the complexity of the model to be 

learned results in more accurate tracking.

C. Tracking Accuracy for Model Trained With Compensated Rotation

Fig. 8 shows that this model has similar positional errors than our baseline for its training set 

(median: 1.8 mm, Q3: 2.9 mm), validation set (median: 1.7 mm, Q3: 2.5 mm), and testing 

set (median: 1.6 mm, Q3: 2.4 mm). These results provide additional evidence for our second 

assumption since compensating for orientation facilitates the learning of the neural network 

by simplifying the underlying model. Our third assumption is somewhat valid because 

although this model performs better at generalizing to trajectories with rotation than the 

baseline model, the errors are only decreased by ~1 mm. Therefore, one could consider 

collecting trajectories without a rotating tracer while not significantly decreasing accuracy if, 

for example, a large volume must be sampled or a rotational stage is not available.
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D. Future Considerations

The level of accuracy of our system is satisfactory for many motion tracking applications, 

including tongue tracking for applications not related to speech such as alternative control 

for powered wheelchairs [6]. Speech-related applications might require a higher degree of 

tracking accuracy than our current system can reach with [9] reporting that an accuracy of 

0.5 mm is considered acceptable for speech. The latest EMA model (AG501, Carstens 

Medizinelektronik GmbH, Bovenden, Germany) has a reported positional tracking accuracy 

of 0.3 mm (RMSE) at the best location in the magnetic field [25]. To be noted, the 

evaluation methods for the tracking accuracy of EMA such as in [7]–[9], [25] are 

significantly different and we believe that ours is more comprehensive since it samples an 

entire volume with both translational and rotational motion. Also, EMA relies on a 

technology that is likely superior for tracking but is not amenable to a wearable form factor. 

Therefore, it is quite challenging for our system to reach a similar tracking accuracy as EMA 

at this stage, though future studies will be conducted to improve it since it is likely that a 

higher accuracy can be obtained.

V. Conclusion

This work presented an evaluation of the tracking accuracy of a novel motion tracking 

system that was designed to overcome the shortcomings of the traditional permanent magnet 

localization. Rather than tracking a permanent magnet with numerous magnetometers 

fixated around the working volume, an IMU is used as the tracer and tracked inside a local 

magnetic field generated by a magnet strip. This allows the system to not only be wearable 

but also more practical for tongue tracking applications since the magnet strip can be hidden 

from view by being placed further from the user’s face. The tracer is designed to be as 

unobtrusive as possible with a current size of 6×6×0.8 mm3, and with the potential to be 

further reduced. Our novel tracking method builds upon our previous work by using the 

IMU’s magnetometer to measure the varying magnetic field over its position. These 

magnetic measurements are then compensated for the tracer’s orientation and fed into a 

magnetic localization algorithm. The positional errors evaluated in a volume of 8×8×5 cm3, 

with the tracer being rotated ±50° about its pitch and roll, resulted in median and Q3 values 

of 1.6 mm and 2.4 mm, respectively.

These reported results in tracking accuracy can be further increased by implementing some 

improvements to our system. For instance, the magnet strip can be redesigned to increase the 

strength of the local magnetic field in our working volume. The orientation compensation 

can be improved with a better calibration of the IMU and the implementation of a more 

advanced sensor fusion algorithm. The magnetic localization can be more accurate by using 

a more complex architecture for its neural network and a more optimal pre-processing of the 

samples.

This proposed system offers a new alternative to existing motion tracking systems, 

especially as a practical, affordable, and wearable tongue tracking system to be used in 

various application such as the front-end for a silent speech interface, a treatment tool in 

speech therapy, and an alternative control paradigm for people with quadriplegia.
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Fig. 1. 
Overview of our tongue tracking system composed of a magnet strip that produces a local 

magnetic field, a tracer comprising an IMU, and a controller that transmits the IMU’s data to 

a localization algorithm that estimates the 3D position and 3D orientation of the tracer.
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Fig. 2. 
Overview of our tracking method based on a magnetic localization with orientation 

compensation of the magnetic field measured by the tracer’s magnetometer. The orientation 

of the tracer is estimated from the angular velocity and acceleration provided by its IMU and 

processed by a Madgwick filter. The magnetic localization is based on a neural network that 

estimates the tracer’s 3D position.
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Fig. 3. 
5D positioning stage that can place a tracer at a desired 3D position and 2D orientation 

(pitch and roll).
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Fig. 4. 
3D positions of the trajectories used for (a) training, (b) validation, and (c) testing of the 

neural network.
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Fig. 5. 
Comparative analysis of the tracking accuracy of a neural network trained with different 

datasets that are selected to validate specific assumptions.
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Fig. 6. 
Positional errors of the baseline model shown as a heat map for the (a) reference testing set, 

and (b) testing set with compensated rotation. A box plot of all errors are provided in (c).
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Fig. 7. 
Positional errors of the model trained with uncompensated rotation shown (a) as a heat map 

for its testing set, and (b) as a box plot of all errors.
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Fig. 8. 
Positional errors of the model trained with compensated rotation shown (a) as a heat map for 

its testing set, and (b) as a box plot of all errors.
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