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Abstract

This article proposes a data-driven learning-based approach for shape sensing and Distal-end 

Position Estimation (DPE) of a surgical Continuum Manipulator (CM) in constrained 

environments using Fiber Bragg Grating (FBG) sensors. The proposed approach uses only the 

sensory data from an unmodeled uncalibrated sensor embedded in the CM to estimate the shape 

and DPE. It serves as an alternate to the conventional mechanics-based sensor-model-dependent 

approach which relies on several sensor and CM geometrical assumptions. Unlike the conventional 

approach where the shape is reconstructed from proximal to distal end of the device, we propose a 

reversed approach where the distal-end position is estimated first and given this information, shape 

is then reconstructed from distal to proximal end. The proposed methodology yields more accurate 

DPE by avoiding accumulation of integration errors in conventional approaches. We study three 

data-driven models, namely a linear regression model, a Deep Neural Network (DNN), and a 

Temporal Neural Network (TNN) and compare DPE and shape reconstruction results. 

Additionally, we test both approaches (data-driven and model-dependent) against internal and 

external disturbances to the CM and its environment such as incorporation of flexible medical 
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instruments into the CM and contacts with obstacles in taskspace. Using the data-driven (DNN) 

and model-dependent approaches, the following max absolute errors are observed for DPE: 0.78 

mm and 2.45 mm in free bending motion, 0.11 mm and 3.20 mm with flexible instruments, and 

1.22 mm and 3.19 mm with taskspace obstacles, indicating superior performance of the proposed 

data-driven approach compared to the conventional approaches.
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I. INTRODUCTION

FLEXIBLE robots have shown great potential in enhancing dexterity and reach in Minimally 

Invasive Surgery (MIS) and Laparo-endoscopic Single Site (LESS) interventions [1]. To this 

end, flexible medical devices such as Continuum Manipulators (CMs) have been the focus of 

attention to facilitate and address some of the challenges associated with rigid instruments in 

medical robotics. Compared to rigid-link robots, CMs can adopt to various shapes and 

exhibit compliance when interacting with obstacles and organs [2]. Although beneficial, the 

flexibility and conformity of CMs make accurate shape sensing (center-line or backbone 

position estimation along the manipulator body) and Distal-end Position Estimation (DPE) 

challenging.

CMs are typically guided to target locations inside the body, where embedded flexible 

sensing units are more suitable as compared to external tracking devices such as optical 

trackers. In recent years, optical fibers such as Fiber Bragg Grating (FBG) have been 

considered for shape and tip sensing of CMs, as well as other flexible devices such as biopsy 

needles and catheters [3]–[6]. FBGs are well-suited for medical applications, since they are 

small in size, lightweight, flexible, and immune to electromagnetic interference. They also 

have high sensitivity, fast response and high frequency streaming rate while compatible with 

medical imaging modalities [7].

A common technique for shape sensing and DPE using FBG sensors is to find the curvature 

at discrete locations, extrapolate curvature along the length of the sensor, compute slopes 

and reconstruct the shape from proximal to distal end (base to tip) by integration [3], [5], [7]. 

This method, however, faces several drawbacks: 1) it relies on many geometrical 

assumptions about the sensor or CM design, 2) it requires extraneous calibration procedures 

for system parameter identification, 3) due to limited number of active sensing locations on 

the fibers, the method is prone to error propagation during integration and shape 

reconstruction, 4) it uses only a subset of FBG measurements located at a particular active 

area cross section for estimation of local curvature. Moreover, due to the proximal to distal 

end integration approach for shape reconstruction, the error is accumulated toward the distal 

end, resulting in poor DPE accuracy. The distal end feedback, however, usually is the most 

critical part of the CM during control to desired surgical target sites.
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Model-driven approaches require deep understanding of the system followed by simplifying 

assumptions to allow modeling of complex systems in a feasible manner. As such, perfect 

emulation of the system with a model containing sufficient complexity to capture the 

underlying physics of the system is challenging and a cumbersome task. Another drawback 

of the traditional model-driven approaches is that the key variables used in the model are 

sometimes difficult to measure online due to the complexity of the design and environment 

uncertainties.

Data-driven methods, however, provide stable and reliable online estimation of these 

variables based on historical measurements [14]. Deep learning has recently become a 

popular data-driven approach by showing the ability to capture richer information from raw 

input data and yielding improved representation [15]. To address the drawbacks associated 

with the conventional model-dependent shape reconstruction approach, we introduce a new 

data-driven paradigm for reconstructing the CM shape and DPE. We define the problem of 

CM shape reconstruction as a supervised regression problem for estimating the CM distal-

end tip position, followed by an optimization method that reconstructs the shape of the 

manipulator. The input to this algorithm is the sensory data obtained from the embedded 

FBG sensor and the output is the DPE as well as the reconstructed shape. Similar to other 

supervised learning algorithms, the proposed method consists of an offline dataset creation 

step, during which the sensory data is labeled with correct distal-end position. Three 

different supervised machine learning algorithms (linear and nonlinear) are incorporated and 

trained on the collected dataset to learn the mapping from FBG measurements to CM’s 

distal-end position. This information is then passed to an optimization method that 

reconstructs the shape of the CM.

Table I summarizes the recent state of FBG-based CM shape sensing and DPE accuracy by 

different researchers using the conventional sensor-model-dependent approach. Roesthuis et 

al. [8] reconstructed the CM shape in free environment while using FBGs at four active areas 

along the sensor. They performed an additional calibration step to correct for inaccuracies in 

DPE by scaling the reconstructed values from the FBG sensor. Liu et al. [7] and Farvardin et 

al. [10] reported larger tip position errors when the CM was introduced to a constrained 

environment with obstacles. Ryu et al. [11] reported the shape reconstruction results only in 

free space. Other studies, such as [9], [12] and [13], lacked validation studies on the 

accuracy of the FBG-based shape reconstruction and DPE accuracy. For each study, the 

following are reported in Table I: number of fibers used in a sensor, number of inscribed 

Bragg gratings, sensor substrate material and outside diameter, number of sensors, 

configuration of fibers to substrate attachment, manipulator length, sensor/manipulator 

assembly, and DPE in free and constrained environment experiments. In order for the DPE 

errors to be comparable among studies with different manipulator lengths, we define the 

Deflection Ratio (DR) measure and denote it with ξ:

ξ = δ
L (1)

where δ is the maximum tip deflection applied to the manipulator in the study and L is the 

manipulator’s length. The DR for an experiment shows what percentage of the manipulator 
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length, its tip has deflected. This measure along with the maximum curvature applied to the 

manipulator is useful for manipulator DPE error comparison among different studies.

It can be observed from Table I that previous studies have generally focused more on the 

FBG sensor design perspectives and the shape reconstruction methods, while a 

comprehensive and unified evaluation of the shape reconstruction results is missing, 

specially during CM interaction with obstacles and contacts with the environment. 

Moreover, there are many differences associated with these studies with regard to the design 

specifications of the CM and FBG sensor (such as length, substrate material and geometry, 

number of optical fibers and FBGs, etc), as well as the design of the evaluation experiments. 

The maximum curvature and DR are helpful measures in comparing the DPE errors for 

different sensors and manipulators, however, with such variations in previous experimental 

studies, a thorough comparison study on a single sensor and CM assembly in various 

experimental scenarios (free and constrained environment) could be beneficial for the 

community. The main contributions of the paper are as follows: 1) development of a novel 

data-driven approach for CM shape sensing and DPE, 2) implementation of three data-

driven models using linear regression, a Deep Neural Network (DNN), and a Temporal 

Neural Network (TNN), 3) a thorough comparative study for evaluation of the shape sensing 

and DPE results using the conventional sensor-model-dependent and data-driven approaches 

on a non-constant curvature planar CM with large deflections both in free and constrained 

environments. The CM was specifically designed for minimally invasive orthopedic 

interventions such as osteolysis or bone degradation behind the acetabular implant (Fig. 1).

II. METHODS

A. Model-Dependent Shape Sensing

In conventional model-dependent approaches, first the strain at each sensor cross section 

with FBG nodes is found by (2) and then based on the sensor’s geometry, a system of 

nonlinear equations (3) is solved at each cross section with three FBG nodes in a triangular 

configuration (see Fig. 2(d)) to find local curvature (κ), curvature angle (ϕ), and a strain bias 

(ϵ0) entailing the temperature effects or common mechanical strain at the cross section:

ϵ = ΔλB
λB 1 − pe

(2)

ϵa = − κrasin(ϕ) + ϵ0
ϵb = − κrbsin ϕ + γa + ϵ0
ϵc = − κrcsin ϕ + γa + γb + ϵ0

(3)

where subscripts a, b, and c correspond to the three fibers, λB is the Bragg wavelength, pe is 

the strain constant for the optical fiber and r, γ are geometrical parameters which can be 

obtained from design or estimated in a calibration procedure [3]. Assuming a relationship 

(typically linear) between curvature (κ) and arc length (s), and dividing the sensor length to 

n sufficiently small segments, curvature and its direction (ϕ) can be extrapolated at each 

segment (4). Using the curvature at each segment (κi for i = 1,..., n), the slope of each 

segment can be found using (5). Establishing an appropriate local coordinate frame to the 
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beginning of each segment, the shape and consequently the distal-end position can be 

reconstructed segment by segment using (6):

κ = f(s), ϕ = g(s) (4)

Δθi = Δs
ρi

= κiΔs (5)

Pi + 1 = Ri
x, ϕPi + ΔPi

ΔPi = ρisin Δθi 0 − ρi ρi − ρicos Δθi
T (6)

where ρi = 1/κi is the radius of curvature and Rx,ϕ is the rotation of ϕ about the local x axis. 

Using (6) for i = 1,..., n, the tip position of the sensor (Pn) can be found. For CMs in which 

the FBG sensor is not placed on the center axis of the CM, all Pi should be shifted by the 

distance between sensor’s and CM’s centers to obtain the CM center-line shape.

It must be noted that estimation of local curvature (4) can also be performed by calibrating 

the FBG sensor wavelength data (λ) against curvature (κ), typically using a 3-D-printed or 

laser-cut calibration jig with constant curvatures to find the mapping [7], [10]:

κ = f(λ) (7)

where f is the mapping between the raw wavelength data and the local curvature at sensor 

cross sections with FBG nodes.

B. Data-Driven DPE

In surgical applications, typically the distal end of the CMs are controlled to target locations 

in human anatomy for navigation of flexible instruments or manipulation of tissue [16]. One 

of the major drawbacks of the conventional model-dependent sensing approach outlined in 

section II-A is that the DPE is a byproduct of the shape reconstruction algorithm after 

integration of curvature information from proximal to distal end of the sensor. Consequently, 

the reconstruction error propagates toward the distal end of the manipulator [17]. This error 

can be reduced with high spatial resolution sensors containing several FBG nodes along the 

sensor length. For FBG sensors with limited number of active areas, however, the error 

propagation is more apparent. To remedy this problem in low spatial resolution FBG 

sensors, we introduce a novel data-driven paradigm for reconstructing the CM shape and 

DPE using supervised machine learning methods. The paradigm consists of two steps: 1) 

estimating the CM distal-end position using a supervised regression learning model with 

FBG measurements as input, and 2) reconstructing the shape of the CM via an optimization 

approach using the DPE from step 1) as input (desribed in section II-C). For the DPE step, 

we aim to find a regression model that predicts the CM’s distal-end tip position, given a set 

of raw FBG wavelength data along the sensor. Motivated by application to a planar CM 

designed for minimally invasive orthopaedic interventions such as osteolysis (Fig. 1), we 

formulate this problem as a regression problem with the FBG measurements (λ) as the 

independent variables and the CM distal position (p) as the dependent variables:
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p = Ψ(λ, β) (8)

where p ∈ ℝ2 is the 2-D position of the CM tip, λ ∈ ℝm is the vector containing the raw 

wavelength data of the m FBG nodes on the sensor, β is the vector of unknown parameters, 

and Ψ : ℝm → ℝ2 is the regression model that predicts the CM tip position, given the 

wavelength information of the complete set of FBG nodes on the sensor at any given time. 

Of note, the effect of temperature change and common axial force in sensor readings for a 

single cross section can be eliminated by subtracting the common mode from Bragg 

wavelength shift of each sensor, as proposed in [18], [19]. Additionally, to avoid sensitivity 

of the data-driven algorithm to scale of the input features, we apply a normalization 

(standardization) to the sensor measurements to achieve a data distribution with mean of 

zero and standard deviation of one:

λn = λn − E λn
V ar λn

(9)

where E is the expected mean, Var is the variance and λn is the normalized measurement 

input to the model at time step n. Depending on the degrees of freedom of the CM, 

complexity of the environment, and the shapes that the CM can obtain, different regression 

models could be incorporated to capture the unknown parameters β. We hereby propose, 

describe and evaluate three different models for this purpose: 1) linear least square model, 2) 

DNN, and 3) TNN.

1) Linear Regression: Linear regression is a common regression method that models 

the dependent variables as a linear combination of the unknown parameters. The DPE can be 

modeled as a least squares optimization problem:

min
B

∑
n = 1

N
rn2 = min

B
∥ ΛB − P ∥2

2
(10)

where rn is the residual error for the nth observation, Λ ∈ ℝN×m is a stack of N observations 

of the m FBG node data, P ∈ ℝN×2 is the stack of N ground truth CM distal-end position 

observation data, and B ∈ ℝm×2 is the matrix of unknown parameters. Using (10), the 

regression model can be trained preoperatively on N observations of the FBG and ground 

truth data to find the unknown parameters B using the MoorePenrose inverse:

B = ΛTΛ −1ΛTP (11)

The trained model can then be used intraoperatively to predict CM tip position values given 

the current FBG data:

pn = BTλn (12)
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where pn is the predicted the CM distal-end position, given the normalized FBG wavelength 

nth data observation (λn).

2) DNN: DNNs are becoming popular due to their increased flexibility to fit complex 

models compared to traditional regression methods. Unknown parameters in the DNN model 

can be trained end-to-end in a data-driven manner through backpropagation. We define the 

trainable parameters in the DNN as W = W (i)
i = 1
L for W (i) ∈ ℝFi × Fi − 1 with a 

corresponding bias vector b(i) ∈ ℝFi, where i is the layer index and Fi is the layer size 

hyperparameter. For normalized raw FBG wavelength data vector at the nth observation, 

λn ∈ ℝm, we compute activations E = En
(i)

i = 1
L

 for E(i) ∈ ℝFi with:

En
(1) = f W (1) ⋅ λn + b(1) , (13)

En
(l) = f W (l) ⋅ En

(l − 1) + b(l) , (14)

where f(·) is the Rectified Linear Unit (ReLU) non-linear activation function, l ∈ {2,..., L} 

are the second to the last layer of the network and F0 = m. The DNN output is the 

corresponding nth CM distal-end position pn ∈ ℝ2. We use Mean Squared Error (MSE) as 

loss function to optimize ∥ pn − pn ∥2
2, where pn ∈ ℝ2 is the ground truth tip position 

observation. Fig. 2 illustrates the architecture design of the DNN.

3) TNN: All the aforementioned models are trained only with individual sensor 

observations at a particular time step, without consideration of the time-series information. 

In prior work, Temporal Convolutional Networks (TCN) have been proposed to improve 

video-based analysis models, which use time-varying features to make predictions [20], 

[21]. The intuition behind utilizing a time-series model lies with the observation that input 

data features are often changing continuously. In the present application, the CM 

manipulation and deformation also occur in a continuous manner, since the CM is usually 

controlled from its initial state to the desired target state. Thus, we take the inspiration from 

the design of the TCNs to propose a TNN for CM DPE.

Fig. 2 presents the hierarchical structure of the TNN. We follow the above notations and 

denote the input concatenated feature with respect to time as 

λcat, n, k = λn − k, …, λn − 1, λn, λn + 1, …, λn + k ∈ ℝm × (2k + 1), where (2k+1) is the number 

of samples covered in this concatenated feature. The TNN is trained to predict the DPE 

corresponding to the middle data sample pn. In spite of introducing a small delay in 

predictions (in the order of a couple of milliseconds), the intuition behind the proposed 

embedding of the time-series is to incorporate information about changes in the sensory data 

as a result of potential contacts with the environment or stopping the CM actuation. For the 

TNN, we use the same MSE loss that is used in the DNN approach.
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In general, the network architecture and choice of hyperparameters are application-

dependent. Accordingly, in this work, the hyperparameters were chosen empirically based 

on the complexity of the FBG singal data. We perceived that four fully-connected layers 

both for the DNN and the TNN were sufficient to capture the complexity of the data. Fig. 2 

(e) lists the input and output feature dimensions of each layer under each block. The input 

dimension of the first layer is consistent with the input size (number of FBG nodes). The 

second to fourth layers of the DNN and the TNN are designed to be the same in order to 

make the feature encodings comparable between the two methods.

C. Data-Driven Shape reconstruction

Once accurate estimate of the distal-end position of the CM is obtained from the regression 

model, the shape of the CM can be reconstructed. To do so, we model the CM as a series of 

rigid links connected by passive elastic joints using a pseudo-rigid body model. In particular, 

the CM in this study is modeled as a n-revolute-joint mechanism due to the planar motion of 

the CM. Depending on the design of the particular CM, spherical joints can also be assumed 

for the CM in a general case. At any given instance, the DPE (p) output from the regression 

model (section II-B) is passed as input to the constrained optimization (15) to solve for the 

joint angles and consequently the shape is reconstructed:

minimize
Θc

∥ p − f Θc ∥

subject to Θc ≤ Θmax

fx = d . ∑
i = 1

n
sin ∑

j = 1

i
Θj

fy = d . ∑
i = 1

n
cos ∑

j = 1

i
Θj

(15)

where Θc ∈ ℝn is the CM joint angles from the pseudo-rigid body model, d = Lc/n is the 

distance between two consecutive joints, f(Θc) : Θc → ℝ2 is the CM forward kinematics 

mapping from joint space to task space, and Θmax is the maximum angle each joint can take, 

which can be determined experimentally [22]. The trade-off between choosing a more 

complex pseudo-rigid body model (large number for n) and the computational complexity of 

(15) must be adjusted according to the application requirements and specifications.

III. EXPERIMENTAL SETUP

A. Continuum Manipulator and Flexible Instruments

The CM used in this study was designed primarily for the MIS orthopedic interventions. It 

was constructed from a Nitinol (NiTi) tube with several notches to achieve flexibility (see 

Fig. 3, top right). One result of this design and choice of material was that the CM was very 

stiff perpendicular to the direction of bending while still flexible in the direction of bending. 

This is important to enable the CM to sustain large loads associated with the debriding/

cutting process in orthopedic surgeries [22], [23]. As shown in Fig. 2(a), the CM’s wall 

contains four lengthwise channels with the Outside Diameter (OD) of 500 μm for passing 

actuation cables and fiber optic sensors. The overall length of the flexible part the CM was 
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chosen as 35 mm, with OD of 6 mm to meet the requirements for the orthopedic applications 

such as the less invasive treatment of osteolysis or bone degradation [24]. The CM contains 

a 4 mm instrument channel for insertion of flexible debriding tools [24], [25]. From a shape 

sensing standpoint, the insertion of the flexible instruments into the open lumen of the CM 

alters the dynamic behaviour of the CM (i.e. the local curvatures), which should 

consequently be accounted for in the shape sensing algorithms [26]. The experimental setup 

is shown in Fig. 3, where the CM is mounted on an actuation unit and its cables are actuated 

with two DC motors (RE10, Maxon Motor Inc. Switzerland) with spindle drives (GP 10 A, 

Maxon Motor, Inc. Switzerland) on the actuation unit. A commercial controller (EPOS 2, 

Maxon Motor Inc. Switzerland) is used to control the individual Maxon motors.

B. FBG Sensor Design and Fabrication

The FBG sensor used for this study contains three FBG fibers attached to a flexible NiTi 

wire with an OD of 500 μm in a triangular configuration (see Fig. 2(d)). Three grooves 

(radially 120° apart from each other) are engraved by laser (Potomac, USA) along the length 

of the wire to hold three fibers each with three 3-mm Bragg grating, spaced 10 mm apart 

from one another (Technica S.A, China). The FBG cores are silica with polyimide coating. 

The fibers are glued into the engraved NiTi grooves using epoxy glue (J-B Clear Weld Quick 

Setting Epoxy). The NiTi wire is passed into the CM sensor channel and glued to the 

manipulator distal end, such that the first grating on each fiber is 5 mm apart from the CM 

tip. Due to its relatively small OD, the NiTi wire can withstand curvatures of as small as 20 

mm radius during bending, which is sufficient to cover and sense large deflections of the 

CM [27].

C. Stereo Camera Pair

In order to generate ground truth data for the true shape of the CM at any given instance, a 

stereo camera setup with 1024 × 768 resolution was used to track colorized markers attached 

to the center-line of the CM. The markers were aligned with the CM notch geometry and 

attached under the microscope. The stereo camera pair was calibrated using the stereo 

camera calibration toolbox in MATLAB on a 8 × 6 checkerboard with 5 mm edge squares. 

The resulting overall mean error for the stereo pair calibration was 0.12 pixels. For each 

stereo image pair, the 2-D pixel locations of the marker centers were found in each image by 

applying a color segmentation with experimentally-determined thresholds. An interactive 

graphical user interface was written in Python to facilitate the process of determining the 

color segmentation thresholds. The intrinsic and extrinsic parameters from the calibration 

procedure were then used in custom-written Python code to find the corresponding markers 

within the two color-segmented images and obtain the 3-D locations of the markers by 

triangulation [28]. An erosion morphological operation, followed up with a dilation was 

applied to the segmented images to smooth out the color segmentation. Of note, a custom-

designed jig containing three markers with known predetermined spatial locations was used 

for validation purposes (Fig. 3, bottom left). The jig was translated and rotated in the desired 

workspace of the stereo pair and a sequence of image pairs were recorded. Using the 

parameters obtained from the calibration process, a 0.02 mm mean 3-D position accuracy 

error was observed when triangulating and measuring the distance between the markers.
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IV. EXPERIMENT DESIGN AND EVALUATION CRITERIA

Inspired by CM motions in a MIS surgical procedure, three sets of experiments were 

considered and the shape reconstruction and DPE from both model-dependent and data-

driven paradigms were evaluated and compared. In the first and second sets, the CM was 

bent in free environment to large curvatures up to κ = 50 m−1 with and without the tool. In 

the third set, 3-D printed obstacles were distributed at eight different locations along the 

body of the CM in its workspace (Fig. 4). Presence of obstacles enforced the CM to take on 

more complex shapes compared to free environment bending, resulting in more challenging 

shape sensing problems. These experiments were designed to imitate the behaviour of the 

CM in real surgical scenarios, where presence of obstacles such as bone, tissue, organs, etc. 

is inevitable. In each experiment, the CM started from its straight pose and the actuating 

cable was pulled for a maximum of 5.5 mm with a velocity of 0.2 mm/s to obtain training 

data with high resolution. On average, each experiment contained nearly 836 samples, with a 

total of 8,364 samples in all experiments. A K-fold cross validation technique (with K = 10) 

was used to evaluate the performance by splitting the data to training and validation sets. In 

particular, out of the ten experiments (Fig 4 (a) through (j)), one experiment was chosen as 

the validation dataset and the remaining nine experiments were used for the training phase. 

This process was repeated for all possible ten choices of the validation experiment to ensure 

generalization of each method in predicting unseen sensory data regardless of the type of 

experiment (i.e. free or constrained with varying obstacle location).

A. Data Collection

FBG data was streamed by an optical sensing interrogator (Micron Optics sm 130) at a 

frequency of 100 Hz, while the images from the stereo pair camera system (Flea2 1394b, 

FLIR Integrated Imaging Solutions Inc.) were obtained at 30 Hz frequency. A thread-safe 

mechanism from open source C++ cisst-saw libraries [29] was used to record the data for 

each of these sensor sources in parallel, using a separate CPU thread for each source. All the 

data was time-stamped and pre-processed during the training phase to pair the FBG data 

with the corresponding image sample. All experiments were run on a computer with an Intel 

2.3 GHz core i7 processor with 8 GB RAM, running Ubuntu 16.04.

B. Network Training Hyperparameters

Both the DNN and the TNN were trained with learning rate of 1.0 × 10−3, and batch size of 

128. We used the Adam optimizer with a weight decay of 1.0×10−5, obtained empirically. 

Fig. 4(k) presents an example of the reduction of the loss function during training and 

validation of the DNN model as the number of epochs (each epoch correspond to one cycle 

through the full training dataset) evolves. Of note, the concatenation feature length 2k+1 in 

the TNN model controls how much temporal information is included for prediction. The k 
value was chosen experimentally as 5. Thus, a concatenation feature covers 2k + 1 = 11 

samples in the TNN model.
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V. RESULTS AND DISCUSSION

A summary of the performance of the data-driven and sensor-model-dependent approaches 

in shape sensing and DPE is presented in Table II. For each method, the DPE error for any 

point along the length of the manipulator (parametrized by the distance from the manipulator 

base) is defined as the euclidean distance between the method estimation and the ground 

truth data for that particular point. For instance, the distal-end (tip) position error is the 

euclidean distance between the estimation for the tip of the manipulator and the ground truth 

tip position. For shape, the mean absolute error is used for all the points with available 

ground truth data (i.e. the markers) along the length of the manipulator. In addition, the 

standard deviations and the maximum absolute errors are reported for the shape estimations. 

In particular, using the DNN, TNN, linear regression, and the sensor-model-dependent 

model, the mean, standard deviation, and maximum error for shape reconstruction and DPE 

in both constrained spaces and free environment are presented. Motivated by orthopedic 

applications, the CM was equipped with a flexible instrument (Fig. 2(b)) during the 

constrained space experiments with obstacles, while the free environment experiments were 

performed both in presence and absence of the flexible instrument. From a shape sensing 

and DPE perspective, the presence of a flexible instrument is regarded as internal 

disturbance while the presence of obstacles in the surrounding of the CM is regarded as 

external disturbance. The last three columns of the table demonstrate the average errors 

observed in the constrained cases (in presence of obstacle) as well as the free environment 

with and without flexible instruments. A comparison of the DPE results reveals that the 

DNN model achieves better generalization and outperforms the other models on average 

with sub-millimeter accuracy performance in constrained and free spaces. The linear and 

TNN models also show relatively good performance, while the sensor-dependent-model 

approach can lead to DPE with maximum error as high as 3.20 mm and 3.19 mm in large 

deflection bendings of the CM in presence of internal and external disturbances, 

respectively. For the experiments with presence of obstacles (external disturbance), the 

maximum observed DPE errors using the DNN, TNN, linear, and sensor-model-dependent 

approach are 1.22 mm, 1.72 mm, 2.74 mm, and 3.19 mm, respectively.

The slightly superior performance of the DNN compared to the TNN in maximum reported 

errors (maximum CM bend) can be explained by noting that the network mostly experiences 

continuous changes in data during motion of the CM, whereas there is only one appearance 

of a motion stop in each experiment (at maximum CM bend). Given the limited number of 

data associated with motion stops, the TNN model may not be able to predict the stops and 

as a result may slightly overshoot the predicted DPE. Such behaviour could be mediated by 

either adding more stop/motion occurrences in the data set or by incorporating action 

information (e.g. actuation cable displacement or motor current) in the input to the network. 

Another possible reason is that DNN and TNN have different learnable parameters. DNN 

has 6,847 learnable parameters, while TNN has 15,847 learnable parameters. TNN is more 

likely to overfit to the training data. Of note, The learnable parameters of the linear 

regression is 18 (number of FBG nodes times the output dimension).

Fig. 5 shows the shape reconstruction results using the four approaches and their comparison 

with the ground truth data obtained from the markers attached to the CM. Figs. 5(a), 5(b), 
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and 5(c) correspond to the shape reconstruction in presence of obstacle, free environment 

with embedded flexible tool, and free environment without flexible tool, respectively. The 

quantitative shape reconstruction results are shown in Figs. 5(d), 5(e), 5(f), where the mean, 

standard deviation and maximum errors in shape reconstruction using each method are 

plotted in constrained environment, free environment with flexible tool, and free 

environment without flexible tool, respectively. It can be observed that the sensor-model-

dependent approach yields to maximum shape deviations of 3.20 mm and 2.45 mm from the 

ground truth markers in free environment with and without flexible tool, respectively. The 

increased error in presence of flexible tool can be explained by the variations that the 

flexible tool may impose on the local curvature profile of the CM which may not be 

captured by the limited number of sensing nodes along the length of the sensor. Moreover, 

the model-dependent approach results in average maximum error of 1.76 mm in all obstacle 

cases, with the worst performance in case of obstacle (b) with 3.19 mm maximum error. For 

the data-driven approaches, the DNN model outperforms the TNN and linear model with 

smaller maximum shape deviation error in comparison. For the cases with obstacle, the 

DNN, TNN, and linear models yield maximum shape deviation errors of 1.95 mm, 2.27 mm, 

and 2.74 mm, respectively. For the free environment experiments, with and without the 

presence of tool, all three methods result in similar accuracy performance, with the DNN 

model showing slight superior performance over the TNN and linear models.

Of note, we have tried the TNN approach both by using the temporal information only from 

the past observations, as well as the combination of the future and the past observations. The 

results demonstrated better performance when using both past and future observations, 

increasing the DPE estimation accuracy by 0.4 mm on average, compared to using only the 

past observations. This finding is consistent with prior work on temporal convolutional 

networks ([21]), where it was demonstrated that including both the past and future 

information helps with better encoding of the signal. There is clearly a trade-off between 

accuracy and real-time performance that could be determined based on the application and 

performance criteria. With 100 Hz FBG data streaming frequency and k = 5 number of 

future samples, a 50 ms delay is introduced in the estimations, which could still be 

acceptable for many applications.

The CM used in this study is non-constant curvature, which makes the modeling of the CM 

and sensor more challenging due to more complex underlying behaviour. An overview of the 

previous studies (Table I) reveals that compared to other studies where the fibers are directly 

attached to the CM or the backbone, the integration of the FBG sensor into the side lumens 

of the manipulator used in this study increases the modeling complexities further. As such, a 

data-driven approach could be beneficial by skipping the step for making several 

geometrical assumptions. In addition, a segment by segment shape reconstruction in 

conventional model-dependent methods suffers from error propagation especially in CMs 

with large deflection (similar to the CM used in this study), since any inaccuracy in 

curvature estimation at cross sections close to the base of the CM will establish an incorrect 

direction for the remainder of shape reconstruction, resulting in inaccurate DPE.

For the experiments reported in this study, the CM underwent a maximum curvature of 50 m
−1, with a DR of 58, while both intrinsic (flexible tool) and extrinsic (contact at multiple 
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locations in the workspace) disturbances were present during the experiments. Referring to 

Table I, the maximum curvature and the DR reported in this study are larger than or equal to 

any of the previously reported work in the literature, with enhanced variation in the free and 

constrained environment experiments. Considering the larger maximum curvature and DR, 

the DNN results reported in this study are superior than those reported in the literature. The 

constrained environment bending shape sensing errors in [7] is comparable to the DNN 

results, however, the variety of contact location in [7] is limited compared to our study (three 

compared to eight contact locations).

While previous studies have demonstrated valuable insight into the design considerations of 

the FBG sensor and integration into different CMs, they have not provided thorough 

evaluation experiments on the shape sensing method accuracy in practical cases. The 

comprehensive results presented in this study can therefore be used as a baseline for the 

performance and accuracy of the FBG-based shape sensing with limited number of sensing 

locations for CMs with large curvature bending in free and constrained environments. 

Moreover, the proposed data-driven approaches for DPE and shape reconstruction have 

proven valuable for such manipulators. One reason for the observed outperformance is that 

on the contrary to the conventional shape reconstruction methods where only wavelength 

information of a few FBG nodes at a certain cross section are used to predict curvature 

locally, in the data-driven approach, the wavelength information of all FBG nodes on the 

sensor is incorporated into the model during each tip position prediction. Of note, the data-

driven method can also be applied to CMs with multiple backbones by incorporating 

separate data-driven models for each segment and sequentially estimating the distal-end 

position of the next segment.

One important aspect of the data-driven approaches lies at the creation of the dataset, as with 

any supervised machine learning approach. While this can be considered an additional step 

in preparation and use of the sensor, the benefit of learning the parameters from real data 

rather than imperfect geometrical and mechanical assumptions and conjectures, outweighs 

the hardships associated with dataset creation. Additionally, for the conventional mechanics-

based model-dependent approaches, performing a calibration experiment of some sort is 

inevitable. The calibration could be done for establishing a wavelength-curvature 

relationship or estimating the parameters present in the model (system identification).

For the data-driven approaches, the average required time for collecting the data associated 

with each experiment in this study was less than one minute. As a result, a combination of 

e.g. ten experiments could be carried out in the order of 10 to 15 minutes. Using a system 

with core i7 Intel CPU and 8 GB of RAM running Ubuntu 16.04, the average training time 

for the DNN, and the TNN were 14.82 s and 28.93 s, respectively, while estimating the least 

squares linear model was in the order of a couple of milliseconds depending on the size of 

training data. The forward pass time for the DNN and the TNN were on average measured at 

0.41 ms and 0.72 ms, respectively, which is sufficient for real-time applications. Of note, in 

a practical setting (e.g. surgical scenario), the required data for the data-driven approach can 

be generated on the fly by articulation of the CM (and consequently the embedded FBG 

sensor) and incorporation of an external source of information such as X-ray or camera 

images. In another scenario, a baseline data-driven model could be established 
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preoperatively, while the model is updated intraoperatively as additional data (such as 

ground truth data from intermittent X-ray) is incorporated into the model for updating the 

network parameters (weights).

VI. CONCLUSION

In this study, we evaluated the performance of the conventional mechanics-based sensor-

model-dependent approach for reconstructing the shape of a large curvature CM in free and 

constrained environments. In these experiments, the CM was articulated to curvatures as 

large as 50 m−1 (corresponding to radius of curvatures as small as 20 mm), which is larger 

than the reported maximum curvatures for CMs with similar scale in previous studies. In 

addition, we proposed a novel data-driven paradigm for DPE and shape sensing which did 

not require calibration or any prior assumptions regarding the sensor or CM model (FBG 

node location, substrate geometry, sensor-CM integration). Particularly, a DNN, a TNN, and 

a linear regression model were designed, trained and evaluated in combination with a data-

driven optimization-based shape sensing method, resulting in superior performance 

compared to conventional model-dependent approaches.

While in this study, we incorporated an FBG sensor embedded in the CM and used a stereo 

pair camera system for obtaining the ground truth data, other sensing modalities such as EM 

trackers for sensing and optical trackers or X-ray images for ground truth data could 

potentially be used. In future work, other optical fiber sensing such as the polymer FBG [30] 

or Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) [31] will be explored 

to enhance the sensitivity and estimation accuracy. Additionally, the combination of the 

data-driven and the physics-based methods should be explored in the future to take 

advantage of the strengths of each method.
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Fig. 1. 
(a) Robot-assisted treatment of pelvic osteolysis, (b) continuum manipulator interacting with 

bone behind the acetbular implant, and (c) debriding tool and FBG sensor integrated with 

the continuum manipulator (distal end view)

Sefati et al. Page 19

IEEE Sens J. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
(a) CM tip cross sectional view showing the actuation, sensing, and tool channels, (b) tool 

integrated with the CM, (c) FBG sensor, (d) FBG sensor with the triangular configuration 

cross section view, and (e) Top: DNN architecture. λn is the raw FBG vector at the nth 

observation. pn is the network output CM tip position. Hyperparameters of the fully 

connected layers are listed under each block. Bottom: TNN architecture. The concatenation 

process is illustrated with the time-series data.
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Fig. 3. 
The experimental setup including the CM actuation unit integrated with a calibrated stereo 

camera pair. Raw images obtained from the camera pair are first color-segmented and then 

3-D locations of the markers are computed by triangulation. The custom-designed jig for 

validation of the marker-based triangulation is shown on the bottom left.
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Fig. 4. 
(a through h) CM bending experiments in constrained environment in presence of internal 

disturbance (flexible tool) and external disturbance (obstacles at various locations), (i) CM 

bending in free environment, (j) CM bending in free environment with tool, as well as the 

demonstration of the obstacle locations relative to the CM for experiments a through h. (k) 

loss trend during training and validation.
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Fig. 5. 
Shape reconstruction results using the DNN, TNN, linear, and physics-based methods for the 

constrained environment experiments with obstacle contacts (a and d), free environment 

experiment with tool (b and e), free environment experiment without tool (c and f).
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