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Abstract

Quantile regression offers a useful alternative strategy for analyzing survival data. Compared to 

traditional survival analysis methods, quantile regression allows for comprehensive and flexible 

evaluations of covariate effects on a survival outcome of interest, while providing simple physical 

interpretations on the time scale. Moreover, many quantile regression methods enjoy easy and 

stable computation. These appealing features make quantile regression a valuable practical tool for 

delivering in-depth analyses of survival data. In this paper, I review a comprehensive set of 

statistical methods for performing quantile regression with different types of survival data. This 

review covers various survival scenarios, including randomly censored data, data subject to left 

truncation or censoring, competing risks and semi-competing risks data, and recurrent events data. 

Two real examples are presented to illustrate the utility of quantile regression for practical survival 

data analyses.
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1. Background and motivation

The problem of analyzing survival (or time-to-event) data arises in a number of scientific 

fields. For example, an event time of interest can be survival time of a cancer patient 

recorded in a medical study, time to high school dropout studied by sociologists, “survival” 

time of new business addressed in economic research, or lifetime of a part under stress 

evaluated in an engineering reliability study. A common feature of survival data is that they 

often contain incomplete time-to-event information due to censoring or truncation. 

Censoring occurs when an event time is known to have occurred only within certain 

intervals. Truncation is defined as a condition which excludes certain subjects from the study 

population. Statistical methods for analyzing survival data need to appropriately account for 

various forms of censoring and truncation.

To evaluate the association between a survival outcome and a set of explanatory variables (or 

covariates), the accelerated failure time (AFT) model has been extensively studied in 

literature as a counterpart of linear regression in survival analysis (Miller 1976, Buckley & 
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James 1979, Prentice 1978, Wei & Gail 1983, Tsiatis 1990, Ritov 1990, Wei et al. 1990, 

among others). Consider an event time T and a p × 1 covariate vector Z. The AFT model 

regresses a survival response, Y ≐ log(T), or another monotone transformation of T, over Z; 

that is,

Y = Z⊤b + ϵ,

where b is a vector of unknown regression coefficients and ϵ is an error term with an 

unknown distribution independent of Z. The assumption that ϵ is independent of Z confines 

covariates to affect only the location of the distribution of Y. However, this is often too 

restrictive in real applications. For example, an analysis of a dialysis dataset presented in 

Section 5.1 suggests that the symptom severity of restless leg syndrome (RLS) may only 

impact the lower range but not the upper range of the survival function of dialysis patients. 

The AFT model, which assumes pure location shift effects, would fail to accommodate such 

an inhomogeneous effect of RLS.

An alternative regression strategy for survival data is to use the Cox proportional hazards 

(PH) model (Cox 1972, Andersen & Gill 1982) Specifically, the Cox PH model relates the 

conditional hazard function of T, λ(t ∣ Z) ≐ limΔ 0Δ−1Pr t ∈ (t, t + Δ] ∣ T ⩾ t, Z , to 

covariates in Z multiplicatively without specifying a parametric baseline hazard; that is,

λ(t ∣ Z) = λ0(t)exp Z⊤b ,

where λ0(t) is an unspecified baseline hazard function, and b is an unknown regression 

coefficient vector. The Cox PH model is widely used in the practice of survival analysis. 

Nevertheless, the Cox regression model requires covariate-specific hazards be proportional. 

This key assumption essentially exerts a location shift model for a monotonically 

transformed survival function of T. This limits the applications of the Cox PH model in 

scenarios with inhomogeneous covariate effects as exemplified above. Under the Cox PH 

model, covariate effects are formulated on the conditional hazard function of T, which lacks 

a physical interpretation on event times (Reid 1994).

Quantile regression (Koenker & Bassett 1978) offers a natural remedy for accommodating 

heterogeneous covariate effects, while retaining straightforward physical interpretations. A 

comprehensive review of quantile regression methodology was provided by Koenker (2017). 

Quantile regression has received increased attention in survival analysis because event times 

themselves are often of scientific interest, and quantiles are more flexible and robust 

quantitative tools for characterizing event times than mean-based devices. For example, in 

the presence of censoring with bounded support, mean survival time may not be identifiable, 

while quantiles may be identifiable.

For a survival time T, a standard quantile regression model assumes that the τ-th conditional 

quantile of Y ≐ log(T) given Z = 1, Z⊤ ⊤
, defined as QY (τ|Z) ≐ inf{t : Pr(Y ⩽ t|Z) ⩾ τ), is 

linearly related to covariates in Z. That is,
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QY (τ ∣ Z) = Z⊤β0(τ),  τ ∈ τL, τU , (1)

where 0 ⩽ τL ⩽ τU < 1 and β0(τ) is a (p + 1) × 1 vector of unknown regression coefficients. 

A non-intercept coefficient in β0(τ) represents a covariate effect on the τ-th conditional 

quantile of log(T). By allowing β0(τ) to change with τ, quantile regression permits varying 

covariate effects on different segments of the response distribution. This feature renders the 

flexibility to accommodate inhomogeneous covariate effects

When τL = τU, model (1) is referred to as a locally linear quantile regression model because 

it only asserts “local” linearity between the conditional quantile of log(T) and Z at a single 

quantile level. When τL < τU, model (1) imposes a “global” linearity for the conditional 

quantile of log(T) throughout the τ-interval [τL, τU], and thus is referred to as a globally 

linear quantile regression model. A globally linear quantile regression model can provide a 

platform for investigating the dynamic pattern of covariate effects, while paying the price of 

imposing a stronger model assumption compared to a locally linear quantile regression 

model.

It is easy to see that the AFT model is a special case of model (1) with β0(τ) = {Qϵ(τ), 

b⊤}⊤, where Qϵ(τ) denotes the τth-percentile of ϵ. Under the standard Cox PH model, 

Qlog Λ0(T)(τ ∣ Z) = log − log(1 − τ) + Z⊤b, where Λ0(t) = ∫0
tλ0(u)du. Given Λ0(·) is an 

unknown function, the quantile interpretation of the Cox PH model is vague. Moreover, 

many interesting forms of heterogeneous covariate effects are excluded by the restrictive 

forms of QT (τ|Z) designated by the AFT model and the Cox PH model. In contrast, quantile 

regression modeling offers straightforward physical interpretations as well as greater 

flexibility to accommodate heterogeneous associations between covariates and the survival 

response. This serves as the key motivation for considering quantile regression as an 

alternative approach to analyzing survival data.

In this paper, we present a comprehensive methodological framework that has been 

developed to perform quantile regression with survival data. Due to space limit, the review is 

rather selective but yet cover a wide range of survival scenarios. More specifically, section 2 

is focused on the standard survival setting with randomly censored data. Section 3 includes 

discussions of quantile regression methods applicable to more complex survival settings that 

involve left truncation or left censoring, competing risks and semi-competing risks. Recent 

method developments for recurrent events data are presented in Section 4. Two real data 

examples are presented in section 5 to illustrate the practical utility of quantile regression 

methods for survival analyses. Section 6 concludes this paper with a brief summary and a 

few remarks.

2. Quantile regression for randomly censored data

Let T denote time to event subject to right censoring by C, and let Y = log(T). Define 

T = T ∧ C and Δ = I(T ⩽ C), where ∧ is the minimum operator. The observed data consist of 
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n i.i.d. replicates of (T , Δ, Z), denoted by (T i, Δi, Zi), i = 1, …, n. Define Y = log(T), 
Y i = log T i , U = log(C), and Ui = log(Ci).

2.1. Random right censoring with C always known

In the absence of censoring, the regression quantile β0(τ) in model (1) is defined as the 

minimizer of the standard quantile loss function, ∑i = 1
n ρτ Y i − Zi

⊤b ∧ Ui , with respect to 

b, where ρτ(x) = x{τ − I(x < 0)} (Koenker & Bassett 1978).

When censoring is present and the censoring time C is fixed at prespecified values, by 

utilizing the fact that QY (τ ∣ Z) = Z⊤β0(τ) ∧ U, Powell (1984, 1986) proposed an 

adaptation of the standard quantile loss function, which led to an estimator of β0(τ) given by 

arg minb r(b, τ), where

r(b, τ) = ∑
i = 1

n
ρτ Y i − Zi⊤b ∧ Ui .

This estimation method is directly applicable to a more general case where C is always 

known but not necessarily fixed, and is independent of T given Z. Unlike the standard 

quantile loss function, r(b, τ) is not convex in b and thus it may have multiple local minima. 

Several authors, for example, Fitzenberger (1997), Buchinsky & Hahn (1998), 

Chernozhukov & Hong (2001), contributed strategies to improve the numerical performance 

of Powell’s estimator. An implementation of Powell’s method is available in the crq function 

in the R package quantreg (Koenker et al. 2019).

2.2. Unconditionally random right censoring

Censoring time C is not always observed in most survival settings. Under the assumption 

that T and C are independent and C is independent of Z (i.e. unconditionally random right 

censoring), Ying et al. (1995) proposed to estimate β0(τ) by solving the following estimating 

equation,

n−1/2 ∑
i = 1

n
Zi

I Y i − Zi
⊤β(τ) > 0

G Zi
⊤β(τ)

− (1 − τ) = 0, (2)

where G( ⋅ ) is the Kaplan-Meier estimate for G(·), which denotes the survival function of U. 

Since equation (2) is not continuous and may not have an exact zero-crossing, Ying et al. 

(1995) suggested obtaining the estimator of β0(τ) by minimizing the L2 norm of the 

estimating function in (2). The resulting objective function however may have multiple 

minima.

Employing the inverse probability of censoring weighting (IPCW) technique (Robins & 

Rotnitzky 1992), Zhou (2006) studied an alternative estimating equation for β0(τ), which is 

given by
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n−1/2 ∑
i = 1

n
Zi

I Y i ⩽ Zi
⊤β(τ), Δi = 1

G Y i
− τ = 0. (3)

The estimating function in (3) is monotone (Fygenson & Ritov 1994). Consequently, the 

solution to equation (3) can be reformulated as the minimizer of a convex L1-type convex 

function of b,

∑
i = 1

n
I Δi = 1

Y i
G Y i

− b⊤ Zi
G Y i

+ M* − b⊤ ∑
l = 1

n
−

ZlI Δl = 1
G Y l

+ 2Zlτ ,

where M* is an extremely large positive number selected to bound 

b⊤∑l = 1
n −

ZlI Δl = 1
G Y l

+ 2Zlτ  for all b’s in a compact parameter space. This minimization 

problem can be readily solved by the l1fit() function in S-PLUS or the rq() function in the R 

package quantreg (Koenker et al. 2019).

2.3. Conditionally random right censoring

Conditionally random right censoring, which assumes C is independent of T given Z, is the 

most commonly adopted random censoring mechanism. This censoring mechanism is less 

restrictive than those considered in Sections 2.1 and 2.2.

In this section, we first consider a globally linear quantile regression model,

QY (τ ∣ Z) = ZTβ0(τ),  τ ∈ 0, τU , (4)

and then discuss a locally linear quantile regression model with τL = τU.

2.3.1. Self-consistent approaches.—By adapting the idea of redistributing censoring 

probability in the self-consistent Kaplan-Meier estimator (Efron 1967), Portnoy (2003) made 

the first attempt to estimate the globally linear quantile regression model (4) under the 

conditionally random right censoring assumption. The initial iterative self-consistent 

algorithm (Portnoy 2003) was simplified into a grid-based sequential estimation procedure 

(Neocleous et al. 2006), and the corresponding asymptotic studies was conducted by Portnoy 

& Lin (2010).

The grid-based estimation procedure of Neocleous et al. (2006) is outlined as follows. First, 

define a grid of τ-values, Gn, as 0 = τ0 < τ1 < … < τMn = τU. Let 

Gn = max τk − τk − 1:  k = 1, …, Mn . Without further mentioning, Gn will be adopted 

throughout Section 2.3. Assuming no censoring occurs below the τ1-th conditional quantile 

of T, one can obtain an estimate for β0(τ1) from applying uncensored quantile regression. 

Next, one can estimate β0(τk+1) sequentially for k = 1, 2, …, Mn by minimizing
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∑
i ∈ Kc

ρτk + 1 Y i − Zi
⊤b + ∑

i ∈ K
wk + 1, i ⋅ ρτk + 1 Y i − Zi

⊤b

+ 1 − wk + 1, i ρτk + 1 Y * − Zi
⊤b ,

(5)

where Y* is an extremely large value and K denotes the set of indices of censored 

observations that have been previously crossed (i.e. Ci ⩽ Zi
⊤β(τ)). The weight wk+1,i takes 

the form (τk+1−τl)/(1−τl) to approximate the conditional probability, Pr(Ci < Ti < 

exp{Ziβ0(τk+1)}|Ci < Ti, Zi) based on the estimates for β0(τ1), …, β0(τk).

Peng (2012) proposed alternative formulations of the self-consistent approach based on 

stochastic integral equations. First, using stochastic integral formulation and applying 

stochastic integral by parts, Efron (1967)’s self-consistent estimating equation for FY (t) in 

the one-sample case can be re-expressed as

FY (t) = n−1 ∑
i = 1

n
Ni(t) + Ri(t) 1 − FY (t) ∫0

t Ri(u)

1 − FY (u) 2dFY (u) ,

where Ni(t) = I Y i ⩽ t, Δi = 1 , Ri(t) = I Y i ⩽ t, Δi = 0 , and FY (t) = Pr(Y ⩽ t).

With t replaced by Zi
⊤β(τ), this equation evolves into an estimating equation for β0(τ),

n1/2Sn
(SC)(β, τ) ≐ n−1/2 ∑

i = 1

n
Zi Ni Zi

⊤β(τ) + Ri Zi
⊤β(τ) (1 − τ

)∫
0

τ Ri Zi
⊤β(u)

(1 − u)2 du − τ = 0.
(6)

Peng (2012) further justified several asymptotically equivalent variants of the estimating 

equation (6), one of which takes the form of

n1/2Sn
(MSC)(β, τ) ≐ n−1/2 ∑

i = 1

n
Zi Ni Zi

⊤β(τ) + Ri Zi
⊤β(τ) τ − ψi(β, τ)

1 − ψi(β, τ) − τ

= 0.
(7)

Here ψi(β, τ) = sup{Ai(β, τ)} · I(Ai(β, τ) is not empty) + τI(Ai(β, τ) is empty) with 

Ai(β, τ) = u:0 ⩽ u < τ,  Zi
⊤β(u − ) ⩽ Y i ⩽ Zi

⊤β(u) . The estimation procedure derived from 

equation (7) is identical to Neocleous et al. (2006)’s procedure except for the estimation of 

β0(τ1). That is, Neocleous et al. (2006)’s procedure estimates β0(τ1) as the minimizer of (5) 

with w1,i = 1, while estimating β0(τ1) based on equation (7) is equivalent to minimizing (5) 

with w1,i = 0.

Large sample studies for the estimator βSC(τ) obtained from solving equation (6) are 

facilitated by the stochastic integral equation representation of Sn
(SC)(β, τ). Specifically, 
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under certain regularity conditions and given limn ∞ Gn = 0, 

supτ ∈ ν, τU ‖βSC(τ) − β0(τ)‖ p 0, where 0 < ν < τU. If n1/2limn ∞ Gn = 0 is further 

satisfied, then n1/2 βSC(τ) − β0(τ)  converges weakly to a Gaussian process for τ ∈ [ν, τU]. 

Estimator defined based on (7) is asymptotically equivalent to βSC( ⋅ ).

2.3.2. Martingale-based approach.—Peng & Huang (2008) proposed to utilize the 

martingale structure underlying randomly censored data to construct an estimating equation 

for model (4). Define ΛY (t|Z) = −log{1−Pr(Y ⩽ t|Z)}, N(t) = I(Y ⩽ t, Δ = 1), and M(t) = 

N(t) − ΛY (t ∧ Y|Z). Let Ni(t) and Mi(t) be sample analogs of N(t) and M(t) respectively, i = 

1, …, n. Note that Mi(t) is the martingale process associated with the counting process Ni(t). 
Thus, E{Mi(t)|Zi} = 0 for all t > 0, and 

E ∑i = 1
n Zi Ni Zi

⊤β0(τ) − ΛY Zi
⊤β0(τ) ∧ Y i ∣ Zi = 0 for τ[0, τU]. Since Zi

⊤β0(τ) is 

monotone in τ ∈ [0, τU], we have ΛY Zi
⊤β0(τ) ∧ Y i ∣ Zi = ∫0

τI Y i ⩾ Zi
Tβ0(u) dH(u), where 

H(x) = −log(1 − x). These findings suggest a stochastic integral based estimating equation,

n1/2Sn
(PH)(β, τ) ≐ n−1/2 ∑

i = 1

n
Zi Ni Zi

⊤β(τ) − ∫
0

τ
I Y i ⩾ Zi

⊤β(u) dH(u) = 0. (8)

An estimator of β0(τ), denoted by βPH(τ), can be obtained through approximating the 

stochastic solution to equation (8). Specifically, let βPH(τ) be a cadlag (i.e. right continuous 

with finite left limits) step function of τ that jumps only at the grid points of Gn. The 

procedure to obtain βPH(τ) follows.

1. Set exp Zi
⊤βPH τ0 = 0 for all i. Set k = 0.

2. Given exp Zi
TβPH τl  for l ⩽ k, obtain βPH τk + 1  as the minimizer of the 

following L1-type convex objective function:

lk + 1(h) = ∑
i = 1

n
ΔiY i − ΔiZi⊤h + Y * − ∑

l = 1

n
−ΔlZl

⊤h

+ Y * − ∑
r = 1

n
2Zr⊤h ∑

l = 0

k
I Y r ⩾ Zr⊤βPH τl H τl + 1 − H τl ,

where Y* is an extremely large value.

3. Replace k by k + 1 and repeat step 2 until k = Mn or no feasible solution can be 

found for minimizing lk(h).

Peng & Huang (2008) established the uniform consistency and weak convergence of 

βPH( ⋅ ). Moreover, Peng (2012) showed that βPH( ⋅ ) is asymptotically equivalent to the 

self-consistent estimator βSC( ⋅ ) in that supτ ∈ ν, τU n1/2 βPH(τ) − βSC(τ) = op(1) with 0 

< ν < τU. This theoretical result is consistent with the numerical results reported in Koenker 

(2008) and Peng (2012).
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The crq() function in the R package quantreg (Koenker et al. 2019) provides an 

implementation of βPH(τ) based on an algorithm slightly different from the one presented 

above. An asymptotically equivalent grid-free estimation procedure for model (4) was 

developed by Huang (2010).

2.3.3. Data augmentation approach.—Yang et al. (2018) employed a variation of the 

data augmentation algorithm to tackle the estimation of model (4) with τU = 1. The basic 

idea is to apply the general principle of data augmentation (Tanner & Wong 1987), and 

employ an alternating process between imputation of censored values from the quantile 

functions and refitting of the quantile model using the imputed values. More specifically, the 

algorithm starts with a set of initial values, β(0) τk k = 1, …, Mn , obtained by parallel 

quantile regression estimators or existing quantile regression estimators. For h = 1, …, H, 

draw Y i
(ℎ) from the quantile process approximated by Zi

Tβ(ℎ − 1) τk  conditional on the set of 

possible values for Yi. Then, based on a pairwise bootstrapping sample of size n from 

Zi, Y i
(ℎ)

i = 1
n

, obtain updated estimates β(ℎ) τk  via standard uncensored quantile regression. 

Lastly, take the final estimates as β(τ) = H−1∑ℎ = 1
H β(ℎ)(τ).

An appealing feature of Yang et al. (2018)’s approach is that it can handle different forms of 

censoring, including random censoring, double censoring, and interval censoring. As 

demonstrated by Monte Carlo simulations, the resulting estimator can achieve significant 

efficiency gains over the existing methods. The algorithm of Yang et al. (2018) is 

implemented by the R function DArq().

2.3.4. Adjusted loss function methods.—Assume a locally linear quantile 

regression model, which is model (1) with τL = τU equal to a prespecified τ, i.e.

QY (τ ∣ Z) = Z⊤β0(τ) . (9)

To account for random censoring in the estimation of model (9), Wang & Wang (2009) 

proposed to modify the standard quantile loss function by twisting the idea of the self-

consistent Kaplan-Meier estimator (Efron 1967). That is, one may redistribute the 

probability mass associated with each censored case, Pr(Ti > Ci|Ci, Zi), to the right through a 

local weighting scheme by wi(F0), where

wi F0 =
1 Δi = 1 or F0 Ci ∣ Zi > τ
τ − F0 Ci ∣ Zi
1 − F0 Ci ∣ Zi

Δi = 0 and F0 Ci ∣ Zi < τ

with F0(t|z) = Pr(T > t|Z = z). Suppose F0(t|z) is known. An estimator of β0(τ) in model (9) 

can be obtained by minimizing the following objective function of β:

n−1 ∑
i = 1

n
wi F0 ρτ Y i − Zi

⊤β + 1 − wi F0 ρτ Y * − Zi
⊤β . (10)
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In practice, F0(t|z) is usually unknown. In this case, Wang & Wang (2009) proposed to 

minimize the objective function (10) with F0(·) replaced by F( ⋅ ), the local Kaplan-Meier 

estimator, namely,

F(t ∣ z) = 1 − ∏
j = 1

n
1 −

Bnj(z)

∑k = 1
n I Y k ⩾ Y j Bnk(z)

Nj(t)
.

Here Bnk(z) is a sequence of nonnegative weights adding up to 1, for example, Nadaraya-

Watson’s type weight, Bnk(z) = K
z − zk

ℎn
/∑i = 1

n K
z − zi

ℎn
, where K(·) is a density kernel 

function and hn is a positive bandwidth converging to 0 as n → ∞. The resulting estimator 

is shown to be consistent and asymptotically normal with root n rate under regularity 

conditions.

De Backer et al. (2019) and De Backer et al. (2020) investigated different strategies for 

adjusting the standard quantile loss function in order to accommodate randomly censored 

data. More specifically, letting GU(u|Z) = Pr(U > u|Z), De Backer et al. (2019) noted that the 

derivative of ϕτ a; Y , GU( ⋅ ∣ Z) ≐ (Y − a) τ − I(Y ⩽ a) − (1 − τ)∫0
a 1 − GU(s ∣ Z) ds with 

respect to a equals −{I(Y > a) − GU(a|Z)(1 − τ)}, which, conditional on Z, has expectation 

zero with a = Z⊤β0(τ) under model (9). This key fact leads to an adjusted loss function for 

censored quantile regression,

∑
i = 1

n
ϕτ Zi

⊤β; Y i, GU ⋅ ∣ Zi , (11)

where GU( ⋅ ∣ z) is a consistent estimator of GU(·|z). When C is independent Z, GU( ⋅ ∣ z) can 

be obtained through the Kaplan-Meier estimator of the survival distribution of C. Without 

assuming the independence between C and Z, GU( ⋅ ∣ z) can be obtained through 

semiparametric modeling of C given Z, or by directly using Beran’s conditional Kaplan-

Meier estimator (Beran 1981). De Backer et al. (2019) developed a numerically robust MM 

algorithm to solve the minimization of the non-convex adjusted loss function (11). 

Following a different view, De Backer et al. (2020) proposed to estimate model (9) based on 

a minimum distance loss function, given by ∑i = 1
n 1 − F Zi

⊤β(τ) ∣ Zi − τ 2
. De Backer et al. 

(2020) further suggested using a smooth double kernel version of F ⋅ ∣ Zi . They also 

discussed how to handle high-dimensional covariates by employing the effective dimension 

reduction technique (Li et al. 1999, Xia et al. 2010). Desirable asymptotic properties, 

consistency and asymptotic normality, were established for these estimators of β0(τ) in 

model (9).

2.4. Inference procedures

2.4.1. Variance estimation.—Bootstrapping procedures have been justified and 

commonly used to make inferences under quantile regression with either uncensored 

response or censored survival response. For example, to estimate the asymptotic variance of 
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the estimators discussed in sections 2.1–2.3, one may use resampling methods that follow 

the idea of Parzen & Ying (1994) or apply the standard bootstrapping procedures that use 

resampling with replacement (Koenker 2005, Peng & Huang 2008).

Alternative methods without involving resampling have been developed for variance 

estimation under quantile regression. A main challenge is how to estimate the unknown 

densities involved in the formulas for asymptotic variances. Under random right censoring 

with known censoring time or unconditionally random censoring, Huang (2002)’s technique 

can be directly applied to avoid smoothing-based density estimation, which may be unstable 

with small or moderate sample sizes. Specifically, let β(τ) denote an estimator of β0(τ), and 

Sn{β(τ), τ} denote the estimating function associated with β(τ), for example, the left-hand 

side of (2) and (3). Generally it can be shown that Sn{β0(τ), τ} converges to a mean-zero 

multivariate normal distribution with covariance matrix Σ(τ), which may be consistently 

estimated by Σ(τ). The following are the main steps to obtain a sample-based variance 

estimator:

A.1 Find a symmetric and nonsingular (p + 1) × (p + 1) matrix En(τ) ≐ {en,1(τ), …, 

en,p+1(τ)} such that Σ(τ) = En(τ) 2.

A.2 Calculate Dn(τ) = Sn
−1 en, 1(τ), τ − β(τ), …, Sn

−1 en, p + 1(τ), τ − β(τ) , where 

Sn
−1(e, τ) is defined as the solution to Sn(b, τ) − e = 0.

A.3 Estimate the asymptotic variance matrix of n1/2 β(τ) − β0(τ)  by n{Dn(τ)}⊗2.

Under conditionally random censoring, the self-consistent estimators and the martingale-

based estimator for model (4) take much more complex forms than those developed under 

the stronger censoring mechanism with either known censoring time or unconditionally 

independent censoring. To estimate the asymptotic variances of these estimators, it requires 

much more sophisticated twists of Huang (2002)’s technique to address the challenge 

associated with unknown densities. A sample-based variance estimation procedure for Peng 

& Huang (2008)’s estimator is available through adapting Sun et al. (2016)’s sample-based 

inference procedure for recurrent events data to the setting with randomly censored data.

2.4.2. Second-stage inference.—Globally linear quantile regression model (4) 

provides a platform to explore the varying pattern of covariate effects across different 

quantile levels. Second-stage inference can be performed to address such interests. For 

example, one may estimate a functional of β0(·), say Ψ(β0), to provide a meaningful 

summary of covariate effects over a range of τ. It is often of interest to determine whether 

some covariates have constant effects so that a simpler model may be considered. In this 

case, the problem can be formulated as testing the null hypothesis H0, j:β0
(j)(τ) = ρ0, τ ∈ [τL, 

τU], where the superscript (j) indicates the jth component of a vector, and ρ0 is an 

unspecified constant, j = 2, …, or p+1. Of note, accepting H0,j for all j ∈ {2, …, p+1} may 

indicate the adequacy of an AFT model. Peng & Huang (2008) presented second-stage 

inference procedures for estimating Ψ(β0) and testing H0 under model (4), which can be 

readily adapted to many other quantile regression settings.
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3. Quantile regression in complex survival settings

In practice, survival data often involve complications beyond random censoring, such as 

truncation, competing risks or semi-competing risks. Various methods have developed for 

quantile regression in more complex survival scenarios. In this section, we present a set of 

quantile regression methods developed for analyzing for doubly censored data with left 

truncation, competing risks data, and semi-competing risks data.

3.1. Quantile regression with doubly censored data with left truncation

Ji et al. (2012) proposed an extension of Peng & Huang (2008)’s method to handle doubly 

censored data subject to left truncation. Such survival scenarios often arise in observational 

studies, where the event of interest can occur before study entry. Let T denote the event time 

of interest and C denote time to random right censoring. In addition, let L denote left 

censoring time, always observed, and A denote left truncation time. Define X = L ∨ (T ∧ C) 

and Δ as the censoring indicator which equals 1 if L < T ⩽ C, 2 if T ⩽ L, and 3 if T > C, 

where ∨ is the maximum operator. When X is subject to left truncation by A, the observed 

data include n i.i.d. replicates of (X′, L′, A′, δ′, Z), denoted by Xi′, Li′, Ai′, δi′, Zi i = 1
n , 

where {X′, L′, A′, δ′, Z′} follows the conditional distribution of {X, L, A, δ, Z} given X ⩾ 
A. It is assumed that (L, C, A) is independent of T given Z. We refer to such data as doubly 

censored data with left truncation. With L = 0, the data reduce to the usual randomly left 

truncated right censored data.

To estimate model (4) with doubly censored data subject to left truncation, an estimating 

equation can be constructed based on the martingale structure underlying the observed 

survival data, namely, M′ t = N′ t − ∫0
tR′ s dΛY s ∣ Z , where N′(t) = I(log(X′) ⩽ t, δ′ = 

1), R′(t) = I{log(L′ ∨ A′) < t ⩽ log(X′)) denoting an at-risk process, and ΛY (·|Z) denotes 

the cumulative hazard function of Y ≐ log(T) given Z. It can be shown that M′(t) is a 

martingale process. This fact suggests an estimating equation for β0(·),

n1/2Sn′ β, τ ≐ n−1/2 ∑
i = 1

n
Zi Ni′ Zi

⊤β τ − ∫
0

τ
R′ Zi

⊤β u dH u = 0. (12)

To obtain an estimator of β0(τ) based on equation (12), denoted by βPH, * τ , one may 

follow the algorithm for βPH τ  (presented in section 2.3) with the objective function in Step 

2 modified to

lk + 1* h = ∑
i = 1

n
I Δi = 1 log Xi′ − I Δi = 1 Zi⊤h + Y * − ∑

l = 1

n
−I Δl = 1 Zl

⊤h

+ Y * − ∑
r = 1

n
2Zr⊤h ∑

l = 0

k
I log Xr′ ⩾ Zr⊤βPH, * τl ⩾ log Lr′ H τl + 1 − H τl .

Theoretical properties, such as uniform consistency and weak convergence to a Gaussian 

process, can be established for βPH, * τ  with similar lines of Peng & Huang (2008).
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3.2. Quantile regression with competing risks data

Competing risks data arise in scientific studies involving multiple types of failures that are 

mutually exclusive. For example, a cancer patient may die from tumor recurrence or 

nonrecurrence-related reasons. This gives rise to a competing risks scenario, where death 

from tumor recurrence and death from nonrecurrence-related reasons are two competing 

failure types.

We adopt standard formulation of competing risks data. Let Tk denote the latent time to 

failure of type k (k = 1, …, K). Define T = min(T1, …, TK). Let ϵ denote the failure type 

corresponding to T (i.e. T = Tϵ), C denote independent censoring to T, and Z denote a p×1 

vector of covariates. Define X = T ∧ C, δ = I(T ⩽ C)ϵ, and Z = 1, Z⊤ ⊤
. Here ∧ is the 

minimum operator and I(·) is the indicator function. The observed competing risks data 

consist of n iid replicates of (X, δ, Z), denoted by {(Xi, δi, Zi), i = 1, …, n}.

Analysis of competing risks data generally follows two different perspectives. One 

perspective focuses on crude quantities, such as the cumulative incidence function or cause-

specific hazard function. Studying crude quantities for a failure type naturally accounts for 

the presence of competing risks from the other types of failure. The other perspective 

concerns net quantities defined upon latent failure times Tk’s. Inference on the latent failure 

time for a failure type however implicitly hypothesizes a setting where the other types of 

failure do not exist. Such a setting may be controversial but can be meaningful in some 

situations. For example, patient dropouts can be a competing risk for time to death but may 

be avoided by diligent follow-up efforts. When the elimination of other types of failures is 

not possible, competing risks analysis oriented to crude quantities would be more 

appropriate. In the following, we discuss quantile regression methods for competing risks 

data developed under these two different perspectives.

3.2.1. Competing risks quantile regression based on cumulative incidence 
functions.—Peng & Fine (2009) proposed to formulate competing risks quantile 

regression using cumulative incidence function, which is the cause-specific analog of the 

usual survival function for an event time. Specifically, the type-k cumulative incidence 

conditional quantile function is defined as Qk(τ|Z) ≐ inf{t : Fk(t|Z) ⩾ τ}, where Fk(t|Z) ≐ 
Pr(T ⩽ t, ϵ = k|Z) denotes the type-k cumulative incidence function (k = 1, …, K). This 

quantity can be interpreted as the first time given covariate Z at which the probability of 

type-k failure having occurred exceeds τ, in the presence of other types of failures.

A competing risks quantile regression model based on type-k cumulative incidence function 

takes the form,

Qk τ ∣ Z = exp ZTβ0 τ ,  τ ∈ τL, τU , (13)

where β0(τ) is a (p+1)×1 vector of unknown regression coefficients, and 0 ⩽ τL ⩽ τU < 1. 

Under model (13), the non-intercept coefficients in β0(τ) represent covariate effects on the 

τth-cumulative incidence quantile, Qk(τ|Z), which may change with τ. The exp(·) function in 

(13) can be replaced by any other monotone link function.
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To estimate β0(τ) in model (13), Peng & Fine (2009) proposed the following estimating 

equation,

n−1/2 ∑
i = 1

n
Zi

I Xi ⩽ exp Zi
Tb I δi = 1

G Xi ∣ Zi
− τ = 0, (14)

where G ⋅ ∣ Z  is a reasonable estimate for G(x|Z) ≐ Pr(C ⩾ x|Z), which can be obtained by 

following the discussions about GU ⋅ ∣ Z  in Section 2.3.4.

Solving equation (14) can be reformulated as locating the minimizer of the convex L1-type 

function,

∑
i = 1

n
I δi = 1

log Xi
G Xi ∣ Zi

− bT Zi
G Xi ∣ Zi

+ M* − bT ∑
l = 1

n −ZlI δl = 1
G Xl ∣ Zl

+ M* − bT ∑
k = 1

n
2Zkτ ,

where M* is an extremely large positive number.

Peng & Fine (2009) showed that the resulting estimator is uniformly consistent in τ ∈ [τL, 

τU], and converges weakly to a tight mean-zero Gaussian process. They developed inference 

procedures about β0(τ) in model (13), which follow similar lines to those presented in 

section 2.4 for randomly censored data with known or unconditional independent censoring. 

Following the same framework, Sun et al. (2012) studied model (13) for the competing risks 

setting with missing failure types, where IPCW technique was used to to deal with 

unobserved failure types under the missing at random assumption.

3.2.2. Quantile regression based on latent failure time distributions in the 
presence of competing risks.—The analysis of competing risks data based on net 

quantities, such as the marginal distributions of Tk’s (k = 1, …, K), is complicated by their 

nonparametric nonidentifiability (Tsiatis 1975). Without loss of generality, we consider the 

situation with K = 2. This special case coincides with the typical dependent censoring 

scenario, where the dependent censoring event and the event of interest can be viewed as a 

pair of competing risks.

Concerning the latent failure times T1 and T2, one may consider the following quantile 

regression models:

QTk τ ∣ Z = exp Z⊤β0, k τ ,  τ ∈ 0, 1 ,  k = 1, 2, (15)

where β0,k(τ) is an vector of unknown coefficients, representing covariate effects on 

QTk τ ∣ Z . Here, exp(·) can be replaced by another monotone link function, which may take 

different forms in the models for QT1 τ ∣ Z  and QT2 τ ∣ Z .

Ji et al. (2014) studied the estimation of the marginal quantile regression models (15) with 

competing risks data. To mitigate the identifiability issue, additional modeling is imposed 

for the dependence structure between T1 and T2. Specifically, it is assumed that

Peng Page 13

Annu Rev Stat Appl. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pr T > t1, D > t2 ∣ Z = H Pr T > t1 ∣ Z , Pr D > t2 ∣ Z , (16)

where H(·, ·) is a known copula function, for example, the Clayton copula (Clayton 1978), 

i.e. H u, v = u−r + v−r − 1 − 1
r , r > 0, and the Frank copula (Genest 1987), i.e., 

H u, v = logr 1 + ru − 1 rv − 1
r − 1 , r > 0 and r ≠ 1. Here r is a known copula parameter, which 

may be specified based on prior knowledge on the strength of the association between T1 

and T2. In practice, one may perform a sensitivity analysis to obtain bounds for QT (τ|Z) by 

varying r in a plausible range.

To estimate β0,k(τ) in (15), Ji et al. (2014) utilized the martingales associated with cause-

specific hazard functions. Let Nk(t) ≐ I(X ⩽ t, ϵ = k) denote the counting process for Tk and 

define Mk t = Nk t − ∫0
tI X ⩾ u λk* u ∣ Z du, where 

λk* t ∣ Z = limℎ 0Pr t ⩽ Tk < t + ℎ, ϵ = k ∣ T1 ⩾ t, T2 ⩾ t; Z /ℎ, which is the cause-specific 

hazard function for type-k failure. As shown by Kalbfleisch & Prentice (2002), Mk(t) is a 

martingale with respect to the filtration, ℱt, k = Nk t , Y t + , Z . This implies 

E Nk t − ∫0
tI X ⩾ s λk* s ∣ Z ds = 0 for all t ⩾ 0. Under models (15) and (16), it can be 

shown with stochastic integral manipulations that

∫0
t
I X ⩾ s λk* s ∣ Z ds = ∫0

FTk t ∣ Z
I X ⩾ QTk u ∣ Z ϕk

1 − u, 1 − ∫0
1

I exp ZiTβ0, 3 − k v ⩽ QTk u ∣ Z dv du,

where FTk t ∣ Z = Pr Tk ⩽ t ∣ Z , ϕk v1, v2 = ∂log H v1, v2 / ∂vk, and k = 1, 2. These facts 

motivate the estimating equations,

n
1
2Sn

k β1, β2, τ = 0,  k = 1, 2, (17)

where Sn
k β1, β2, τ = n−1∑i = 1

n Zi Nki exp Zi
⊤βk τ − ∫0

τI Xi ⩾ exp Zi
⊤β3 − k u

× ϕk 1 − u, 1 − ∫0
1I Zi

Tβ3 − k v ⩽ Zi
⊤βk u dv du

.

Note that β0,k(τ) may not be identifiable for all τ ∈ (0, 1) due to censoring to Tk (k = 1, 2). 

Truncating the time scale by an upper bound, min(exp{Z⊤β0,1(τU,1)}, exp{Z⊤β0,2(τU,2)}), 

leading to a modified estimating equation,

n
1
2Sn

* k β1, β2, τ = 0,  k = 1, 2, (18)

where Sn
* k β1, β2, τ = n−1∑i = 1

n Zi Nki exp Zi
⊤βk τ I log Xi ⩽ Zi

⊤β3 − k τU, 3 − k

− ∫0
τI Xi ⩾ exp Zi

⊤βk u I Zi
⊤βk u ⩽ Zi

⊤β3 − k τU, 3 − k

× ϕk 1 − u, 1 − ∫0
τU, 3 − kI Zi

⊤β3 − k v ⩽ Zi
⊤βk u dv du

.

Peng Page 14

Annu Rev Stat Appl. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equations in (18) may be solved via an iterative algorithm:

Step B.1 Set m = 0. Choose the initial value β2
m τ , τ ∈ 0, τU, 2 .

Step B.2 Solve Sn
* 1 β1, β2

m , τ = 0 for β1
m + 1 τ , τ ∈ 0, τU, 1

m + 1 . Update τU,1 with 

τU, 1
m + 1 .

Step B.3 Solve Sn
* 2 β1

m + 1 , β2, τ = 0 for β2
m + 1 τ , τ ∈ 0, τU, 2

m + 1 . Update τU,2 

with τU, 2
m + 1 .

Step B.4 Let m = m + 1. Repeat Steps B.2 and B.3 until convergence criteria are met.

Here, the initial value in Step B.1 can be set as Peng & Huang (2008)’s estimator which 

treats T1 and T2 are independent. The equations in Steps B.2–B.3 can be solved by L1 

minimization problems along similar lines of Peng & Huang (2008).

Asymptotic properties were established for the resulting estimators of β0,k (k = 1, 2), 

including uniform consistency and weak convergence to a Gaussian process. Inference can 

be conducted through a standard bootstrapping procedure.

3.3. Quantile regression with semi-competing risks data

Semi-competing risks (Fine et al. 2001) refers to as a situation where time to a nonterminal 

event (e.g. a non-fetal disease landmark event) can be censored by time to a terminal event 

(e.g. death or dropout) but not vice versa. Let T1, T2, and C denote time to the nonterminal 

event, time to the terminal event, and time to random censoring, respectively. Let Z be a p × 

1 vector of covariates and Z = 1, Z⊤ ⊤
. Define X = T1 ∧ T2 ∧ C, Y = T2 ∧ C, δ = I(T1 < Y), 

and η = I(T2 < C). The standard semi-competing risks data consist of n replicates of (X, Y, 

δ, η, Z), denoted by {(Xi, Yi, δi, ηi, Zi), i = 1, …, n}. In a standard semi-competing risks 

setting, T2 is only subject to random censoring by C; thus quantile regression for T2 can 

follow the approaches developed for randomly censored data; see section 2.

Semi-competing risks methods are usually focused on the inference about T1, which is 

complicated by the dependent censoring by T2. Intuitively, one may first coerce semi-

competing risks data into classic competing risk data by ignoring the extra information on 

T2 when δ = 1, and then apply quantile regression approaches developed for competing risks 

data. For example, targeting crude quantities for the nonterminal event, one can directly 

perform competing risks cumulative incidence quantile regression presented in section 3.2.1. 

Of note, this approach does not incur information loss from only using the competing risks 

portion of the data. This is because when δ = 1, the cumulative incidence function for the 

non-terminal event, by definition, does not involve the extra information on the terminal 

event after the occurrence of the non-terminal event. An exception arises when left 

truncation is present. In that case, the semi-competing risks data are observable only when Y 
> L, where L is a known left truncation time. Coercing semi-competing risks data into 

competing risks data induces artificial left truncation defined as X > L, thereby leading to 

information loss.
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Li & Peng (2011) developed an extension of Peng & Fine (2009)’s method for competing 

risks cumulative incidence quantile regression tailored to semi-competing risks data subject 

to left truncation. In this case, the observed data include n i.i.d. replicates of (X*, Y*, δ*, 

η*, L*, Z*), which follow the conditional distribution of (X, Y, δ, η, L, Z) given L < Y. 

Assume the cumulative incidence quantile regression model for T1, which is model (13) 

with k = 1. The basic estimation idea is to employ the IPCW technique with an inverse 

weight derived to properly account for both censoring by C and left truncation Y. Under the 

assumption of (L, C) is independent of (T1, T2, Z), an estimating equation is given by

n−1/2 ∑
i = 1

n
Zi*

I Xi* ⩽ exp Zi
* Tb , δi* = 1, ηi* = 1

W Y i*, Zi*
− τ = 0, (19)

where W y, z = G y /G z  with

α z = ∫0
ν

ST2 u ∣ z FL du ,  G y = 1
n ∑

i = 1

n I Li* < y ⩽ Yi* α Zi*
ST2 y − ∣ Zi*

.

Here FL y  represents the Lynden-Bell estimator of FL y ≐ P L ⩽ y , and ST2 u ∣ z  is an 

adequate estimator of P(T2 > u|z). In practice, given T2 is only subject to random right 

censoring by C and random left truncation by L, ST2 ∣ Z = z t  may be obtained by using any 

existing regression method for left truncated and right censored data, such as the Cox 

proportional hazards model. After obtaining W Y i*, Zi* , equation (19) can be solved by an 

algorithm similar to that presented for equation (14). Desirable theoretical properties, 

including uniform consistency and weak convergence to a Gaussian process, can also be 

established for the resulting estimator.

When interests lie in net quantities related to the latent time to nonterminal event T1, 

utilizing the extra information in semi-competing risk data (beyond its competing risks 

portion) generally leads to better identifiability as well as improved statistical efficiency. 

Along this line, Li & Peng (2015) developed a quantile regression method tailored to study 

the conditional quantile of T1 in the semi-competing risks setting. Specifically, Li & Peng 

(2015) assumed the following models:

Pr T1 > s, T2 > t ∣ Z = C 1 − FT1 s ∣ Z , 1 − FT2 t ∣ Z ; g ZTr0 , (20)

QT1 τ ∣ Z = exp ZTβ0 τ ,  QT2 τ ∣ Z = exp ZTα0 τ ,  0 < τ < 1, (21)

where Z is a subvector of Z or Z itself, C(·, ·; α) is a known copula function with a given 

copula parameter α, and g(·) is a known function. In copula model (20), the unknown 

parameter r0 depicts how covariates may influence the copula parameter, which is often 

closely linked to the association between T1 and T2. In (21), the non-intercept coefficients in 

β0(τ) and α0(τ) represent covariate effects on the τ-th quantile of T1 and T2 respectively, 
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which are permitted to change with τ. When these coefficients are constant over τ, the 

models in (21) reduce to AFT models for T1 and T2.

To estimate models (20) and (21), a useful fact is that (20) implies

Pr X > t ∣ Y > t, Z = KA Pr T1 > s ∣ Z , Pr T2 > t ∣ Z , g Z⊤r0 ,  t > 0, (22)

Pr X ⩽ s ∣ Y > t, Z = KB Pr T1 > s ∣ Z , Pr T2 > t ∣ Z , g Z⊤r0 ,  s ⩽ t, (23)

where KA(u, v, θ) = C(u, v; α)/v and KB(u, v, α) = {v – C(u, v; α)}/v. In addition, the 

model assumptions in (21) imply Pr(T1 ⩽ exp{ZTβ0(τ)} | Z) = τ and 

Pr T2 ⩽ t ∣ Z = ∫0
1I t ⩾ exp ZTα0 u du. Li & Peng (2015) utilized these results to 

construct the following estimating equations,

n−1/2 ∑
i = 1

n
ZiI Zi

Tβ τ ⩽ Zi
Tα τU, 2 Pi β, α, r, τ = 0,  n−1/2 ∑

i = 1

n ∫τa

τb
ZiQi β, α, r, τ = 0,

where α ⋅  is Peng & Huang (2008)’s estimator of α0(·) given T2 is only subject to random 

censoring by C, τU,2 is an upper bound of a τ-range where α0(τ) is identifiable, and

Pi β, α, r, τ = I log Xi > Zi
Tβ τ − I log Y i > Zi

Tβ τ × KA τ,∫0

τU, 2
I Zi

Tβ τ ⩾ Zi
Tα u du, g Zi

Tr ,

Qi β, α, r, τ = ∫t ∈ 0, ∞ I Zi
Tβ τ ⩽ log t ⩽ Zi

Tα τU2 ∧ log Y i

× I log Xi ⩽ Zi
Tβ τ − KB τ,∫0

τU, 2
I log t ⩾ Zi

Tα u du, g Zi
Tr dt .

To compute Qi(β, α, r, τ), one only needs to evaluate the integration over 

t ∈ 0, maxi = 1
n Y i ∧ exp Zi

⊤α τU, 2 . Confining β(·) to be a cadlag step function, the integrand 

in Qi(β, α, r, τ) is a piecewise constant function of τ, and hence Qi(β, α, r, τ) can be 

calculated as a finite sum. Li & Peng (2015) presented an iterative algorithm to solve these 

estimating equations. Li & Peng (2015) showed that the resulting estimator of r0 is 

consistent and asymptotic normal. Desirable theoretical properties, including uniform 

consistency and weak convergence to a Gaussian process, were established for the resulting 

estimator of β0(τ) for τ ∈ [ν1, τU,1], where 0 < ν1 < τU,1 < 1.

4. Quantile Regression and Its Adaptations for Recurrent events data

Recurrent events data are frequently encountered in clinical or epidemiological studies when 

the event of interest, such as infection and hospitalization, can occur repeatedly over time. 

Consider a general recurrent events data setting, where the observation of recurrent events is 
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subject to an observation window specified as a time interval (L, R] (Nelson 2003). The 

counting process for the observed recurrent events is given by 

Nre t = ∑j = 1
∞ I L ⩽ Tj

i ⩽ t ∧ R , where T(j) denotes time to the jth recurrent event (j = 1, 2, 

…), and the at-risk process is given by Yre(t) = I(L < t ⩽ R). Let Z be a p×1 vector of 

covariates and Z = 1, Z⊤ ⊤
. The observed recurrent events data include n i.i.d. replicates of 

Nre(·), Z, L, and R, denoted by Ni
re ⋅ , Zi, Li, Ri i = 1

n
. In this section, we introduce three 

different ways to apply or adapt quantile regression to recurrent events data.

4.1. Quantile regression of recurrent event gap time.

Luo et al. (2013) proposed to model the gap time between recurrent events, namely, 

Gi, j ≐ Ti
j − Ti

j − 1 . By this approach, it is assumed that conditioning on Zi and a 

nonnegative subject-specific frailty variable γi, Ni
re ⋅  is a renewal process, and furthermore,

QGi, j τ ∣ Zi = exp Zi
⊤β0 τ ,  τ ∈ 0, τU . (24)

Consider the case where Li = 0 and Ri is independent of γi and Ti
j

j = 1
∞

 given Zi. Let 

mi = Ni
re Ri , mi* = max mi − 1, 1  and Δi = I(mi > 1). Define Xi,j = Gi,j if j < mi and 

Xi, j = Ri − Ti
mi − 1

 if j = mi. Define Ni,j(t) = I(Gi,j ⩽ t, Δi = 1), Ri,j(t) = I(Gi,j ⩾ t), H(x) = 

−log(1 – x). Note that uncensored gap times, {Xi,j, j = 1, …, mi − 1}, combined with the 

censored first gap time, Xi,1 with Δi = 0, can be viewed as clustered event times subject to 

random censoring. Under this view and by adapting the estimation framework of Peng & 

Huang (2008), Luo et al. (2013) proposed the following estimating equation for model (24):

n−1/2 ∑
i = 1

n
Zi Ni* exp Zi

⊤β τ − ∫
0

τ
Ri* exp Zi

⊤β u dH u = 0, (25)

where Ni* t = mi*
−1∑j = 1

mi* Ni, j t  and Ri* t = mi*
−1∑j = 1

mi* Ri, j t . An efficient algorithm to 

solve equation (25) can be developed along the lines of Peng & Huang (2008).

4.2. Generalized accelerated recurrence time model.

Huang & Peng (2009) and Sun et al. (2016) adopted a different strategy to adapt quantile 

regression modeling to recurrence events data. The main idea is to utilize the concept of time 

to expected frequency, which is a generalized version of conditional quantile that fits the 

recurrent events setting. Specifically, time to expected frequency is defined as 

τZ u ≐ inf t ⩾ 0:μZ t ⩾ u  for u > 0, where N t = ∑j = 1
∞ I T j ⩽ t  and 

μZ t = E N t ∣ Z . It is easy to see that when the event of interest is not recurrent (i.e. T(j) 

= ∞ for j ⩾ 2), τZ(u) becomes the conditional quantile QT(1)(τ|Z). With recurrent events 

data, an adaptation of quantile regression modeling is to formulate covariate effects on 

τZ(u). This leads to the generalized accelerated recurrence time model, which is given by
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τZ(G(u)) = exp Z⊤β0 u ,  u ∈ 0, U , (26)

where G(·) is a known positive increasing function, the non-intercept coefficients in β0(u) 

represent covariate effects on time to expected frequency G(u), and U > 0 is a prespecified 

constant.

The estimation of model (26) is facilitated by the counting process representation of model 

(26) justified in Sun et al. (2016). That is, model (26) is equivalent to

E Nre exp Z⊤β0 u ∣ Z = E ∫
0

u
Y re(exp Z⊤β0 s g s ds ∣ Z ,  u

∈ 0, U ,
(27)

where g(u) = dG(u)/du. This motivates a stochastic integral equation taking the form,

n−1/2 ∑
i = 1

n
Xi Ni

re exp Xi
⊤β u − ∫

0

u
Y i

re exp Xi
⊤β s g s ds = 0,  u ∈ (0,

U] .
(28)

As commented in Sun et al. (2016), the theoretical and computational framework of Peng & 

Huang (2008) can be readily extended to study the recurrent events model (26). The 

algorithm to solve equation (28) is very similar to that for Peng & Huang (2008)’s 

martingale-based estimator (see section 2). The key modifications include adopting a grid on 

the frequency scale (instead of the τ-scale), {0 = u0 < u1 < ⋯ < uL(n) = U}, and replace the 

objective function in Step 2 by

lk h = ∑
i = 1

n
∑

j = 1

∞
I Li ⩽ Ti

j ⩽ Ri log Ti
j − Xi⊤h + R* − ∑

i = 1

n
∑

j = 1

∞
I Li ⩽ Ti

j ⩽ Ri −Xi
⊤h

+ R* − ∑
i = 1

n
2Xi⊤h ∑

m = 0

k − 1
Yi exp Xi⊤β um ∫um

um + 1
g s ds, ,

where R* is an extremely large number. Theoretical arguments for Peng & Huang (2008)’ 

estimator can also be generalized to establish the asymptotic properties of the estimator 

derived based on equation (28), including the uniform consistency for u ∈ [v, U], where 0 < 

v < U, and weak convergence to a Gaussian process at the root n rate.

4.3. Quantile regression of individual recurrent risk measure.

More recently, Ma et al. (2020) proposed quantile regression of a sensible individual risk 

measure formulated upon the intensity process of recurrent events. Let 

N t ≐ ∑j = 1
∞ I T j ⩽ t  denote the underlying recurrent event process. Ma et al. (2020) 

assumed that given a nonnegative random variable γi, Ni t  is a nonstationary Poisson 

process with the intensity function,
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λ t ∣ γi = γi ⋅ λ0 t . (29)

Here λ0(t) stands for an unknown baseline intensity function, which is nonnegative and 

continuous, and is subject to the constraint, ∫0
ν * λ0 t dt = 1, with a predetermined constant 

ν*. This constraint is necessary for the purpose of model identifiability.

Under model (29), γi captures the scale shift of subject i’s intensity process from the 

unknown baseline intensity λ0(t). A special case of model (29) is Wang et al. (2001)’s semi-

parametric multiplicative intensity model, where γi = ξiexp Zi
⊤b0 , and ξi is an unobservable 

frailty. This connection suggests that γi can serve as a sensible measure of the latent subject-

specific risk of recurrent events, which may naturally account for both observed covariates 

and unobservable frailty.

Ma et al. (2020) proposed to use quantile regression to explore the heterogeneity in γi which 

quantifies the subject-specific risk of recurrent events. Specifically, it is assumed that

Qγi τ ∣ Zi = exp Zi
⊤β0 τ . (30)

The non-intercept coefficients in β0(τ) represent covariate effects on the τ-th quantiles of γi.

A main challenge to estimate model (30) is that γi’s are not observed. Considering the 

setting with Li = 0 and assuming Ri is independent of Ni ⋅  given γi, and Ri is independent 

of γi given Zi, Ma et al. (2020) employed the principle of conditional score (Stefanski & 

Carroll 1987) and proposed the estimating equation,

n1/2Sn β, μ, τ = 0, (31)

where Sn β, μ, τ ≐ n−1∑i = 1
n ∫rZi ⋅ ψτ log r − Zi

⊤β τ f r ∣ mi, Ci, Zi; β ⋅ , μ ⋅ dr and 

μ t = exp H t  with H t = − ∫t
ν * ∑i = 1

n dNire s

∑i = 1
n I Ri ⩾ s Nire s

. Here ψτ(v) = τ – I(v < 0), and

f γ ∣ m, C, X; β ⋅ , μ ⋅ = ρ m ∣ γ, C; μ ⋅ g γ ∣ X; β ⋅
∫rρ m ∣ r, C; μ ⋅ g r ∣ X; β ⋅ dr ,

where ρ m ∣ γ, C; μ ⋅ = γμ C m
m! exp −γμ C  and 

g γ ∣ X; β ⋅ = limδ 0
δ

exp X⊤β τγ + δ − exp X⊤β τγ
, with τγ = {τ ∈ (0, 1) : exp{XTβ(τ) = 

γ}. It can be shown that f{γ|m, C, X; β0(·), μ0(·)} denotes the conditional density of γ given 

m, C and X under the assumed models, and hence E[Sn(β0, μ0, τ)] = 0.

To solve equation (31), Ma et al. (2020) approximated β(τ) by using splines with K(n) knots, 

and developed an iterative algorithm to find an estimate for the β0(τ) in model (30) based on 

equation (31). The details are omitted here. Under certain regularity conditions, the resulting 
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estimator was shown to be uniformly consistent for τ ∈ [ζ1, ζ2], where 0 < ζ1 < ζ2 < 1. 

Weak convergence to a Gaussian process was also established.

5. Illustrations of quantile regression for survival data

5.1. An example of quantile regression analysis with randomly censored data

We use a dataset from a dialysis study that investigated predictors of mortality in a cohort of 

191 incident dialysis patients with chronic renal failure, aged 20 years and older, who started 

on chronic hemodialysis or peritoneal dialysis therapy between July 1996 and August 1997, 

recruited from metro-Atlanta area (Kutner et al. 2002). Of particular interest is a risk factor 

on symptoms of restless legs syndrome (RLS), which negatively affect quality of life and 

mortality risk as evidenced by prior studies. In this study, baseline measures were collected 

between 1996 and 1997 and vital status was monitored to December, 2005. In this dataset, 

the survival time T of 35% dialysis patients were censored due to renal transplant or end of 

study.

Figure 1 plots the Kaplan-Merier curves for survival time stratified by the binary variable 

indicating moderate to severe RLS symptoms versus mild RLS symptoms (denoted by 

BLEGS). It is noted that the 25th percentiles of survival time for the the severe RLS group 

and the mild RLS groups are 0.95 versus 2.45 years, which are statistically significantly 

different. The 75th survival time percentiles for these two groups are rather similar, both 

between 7 and 8 years. This observation suggests that BLEGS may have an inhomogeneous 

effect on the distribution or quantile function of T. We next consider BLEGS, along with 

other potential predictors including patient’s age (AGE), the indicator of fish consumption 

over the first year of dialysis (FISHH), the indicator of baseline HD dialysis modality 

(BHDPD), the indicator of eduction equal or higher than college (HIEDU), and the indicator 

of being black (BLACK). We fit the data with the standard Cox PH model and AFT model. 

In Table 1, we present the estimation results including the estimated coefficients and the 

associated p values. It is shown that both Cox PH model and AFT model do not suggest a 

significant effect of BLEGS on dialysis survival, though Figure 1 demonstrates its potential 

influence on the lower part of the survival distribution.

We next conduct quantile regression based on model (4) using Peng & Huang (2008)’s 

method for the same dataset. Figure 2 displays Peng & Huang (2008)’s estimator of β0(τ) 

along with 95% pointwise confidence intervals. In Figure 2, we observe that the coefficient 

for BLEGS diminishes gradually with τ whereas estimates for the other coefficients seem to 

be fairly constant. We apply the second-stage inference to formally investigate the constancy 

of each coefficient. The results confirm our observation from Figure 1, suggesting a varying 

effect of BLEGS and constant effects of the other covariates. This may lead to an interesting 

scientific implication that BLEGS may affect the survival experience of dialysis patients 

with short survival times but may have little impact on that of long-term survivors. The 

confirmed nonconstancy of the BLEGS coefficients further indicates the lack-of-fit of an 

AFT model for this dialysis data.
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We also estimate the average quantile effects defined as ∫l
uβ0

i u du i = 2, …, 7 . The results 

are given in Table 2. We observe that the estimated average effect of BLEGS based on 

quantile regression has a larger magnitude compared to that based on the AFT model. The 

associated p value is less than 0.05, providing some evidence for the association between 

RLS and dialysis survival. This example suggests that naively treating varying effects as 

constant ones may lead to attenuated covariate effect estimates and consequently result in 

biased conclusions.

5.2. An example of quantile regression analysis with competing risks data

We use the dataset from the breast cancer trial E1178 by the Eastern Cooperative Oncology 

Group (Cummings et al. 1993). In this study, patients were followed-up until breast cancer 

recurrence (BCR) or non-recurrence related death (NRD), whichever occurred first. This 

dataset includes 82 patients assigned to placebo and 85 patients assigned to tamoxifen. In the 

tamoxifen group, 42 patients experienced breast cancer recurrence and 23 died without 

recurrence; in the placebo group, 59 patients had breast cancer recurrence and 19 died 

without recurrence.

We apply the quantile regression strategy to evaluate the difference between two-year 

tamoxifen therapy versus placebo, while adjusting for other potential risk factors, including 

age, tumor size, number of positive nodes. Since it is more clinically relevant to evaluate 

BCR in the presence of NRD than with the unrealistic exclusion of NRD, we choose to use 

the cumulative incidence quantile regression method (Peng & Fine 2009) to analyze this 

competing risks dataset.

In Figure 3, we plot the BCR and NRD cumulative incidence functions separately for patient 

groups stratified by treatment, or age, number of positive nodes, and tumor size 

dichotomized at their median values, which are 71 years, 3, and 25mm, respectively. From 

Figure 3, we observe that all BCR cumulative incidence curves exceed 0.45 in the right tails. 

In contrast, the cumulative incidence curves for NRD are below 0.20. A visual impression 

from Figure 3 is that tamoxifen, number of positive nodes and tumor size may impact the 

cumulative incidence of BCR but not NRD, and their effects on BCR may not be constant.

We apply Peng & Fine (2009)’s method to fit the data with the competing risks quantile 

regression model (13), where the failure type corresponds to BCR and the exponential link 

function is replaced by the identify function. The number of positive nodes is incorporated 

into the model after log-transformation. Based on the results in Figure 3, we let [τL, τU] = 

[0.10, 0.45]. The analysis results displayed in Figure 4 suggest that patients who received 

placebo tend to experience breast cancer recurrence sooner than those on tamoxifen. In this 

example, age does not show a significant effect on the timing of breast cancer recurrence in 

the presence of nonrecurrence death. The effects of tumor size and number of nodes 

demonstrate some interesting increasing trend. The coefficient estimates, coupled with the 

95% confidence intervals, suggest that tumor size and node number may only have a 

significant influence on the BCR cumulative incidence quantiles with relatively larger τ’s, 

such as τ = 0.35 or 0.4. The changing trend of the effects of tumor size and node number 

over τ is confirmed by second-stage constancy tests. The clinical implication may be that 
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either tumor size or number of positive nodes may significantly shorten the time to BCR for 

patients with moderate or low risk of BCR (corresponding to large τ’s), while such an 

impact may vanish when patients are subject to high risk of BCR (corresponding to small 

τ’s) possibly due to worse pre-existing health condition or other unknown factors. The 

treatment coefficients are rather constant, and are significantly above zero for many τ’s. This 

reflects the beneficial effect of Tamoxifen treatment in term of prolonging the progression to 

BCR.

6. Remarks

Applying quantile regression to analyze survival data can provide robust and dynamic 

insight about the association between covariates and survival outcomes, which may not be 

offered by traditional survival regression methods. There have been rich developments of 

quantile regression methods for survival data in the last two decades. In this paper, we 

provide a selective review of approaches available to handle various types of survival data, 

including randomly censored data, competing and semi-competing risks data, truncated data, 

recurrent events data. Most of these methods are easy and stable to implement. This feature 

can help foster the applications of quantile regression in survival analysis.

Due to space limit, we omit many important relevant method developments. These include, 

but are not limited to, cure rate quantile regression methods (Wu & Yin 2013, 2017b,a) and 

censored quantile regression methods attending to regression quantile monotonicity across 

quantile levels, such as semiparametric copula quantile regression (De Backer et al. 2017).

Some important problems not covered in this paper but worth attention are quantile 

regression for survival data with high-dimensional covariates, survival data with time-

dependent covariates, and survival data with missing covariates. This paper also does not 

discuss scenarios where the collection of survival data is attached to a special epidemiologic 

design, such as case-cohort design, and nested case-cohort design. Another interesting 

direction for extending survival quantile regression is to integrate quantile regression with 

causal inference. Work has emerged along these directions and merits further research 

efforts.
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Figure 1. 
The dialysis example: Kaplan Meier curves of survival time stratified by the status of RLS 

symptoms
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Figure 2. 
The dialysis example: Peng and Huang’s estimator (solid lines) and 95% pointwise 

confidence intervals (dotted lines) of regression quantiles.
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Figure 3. 
E1178 Trial Example: Estimated Cumulative Incidence Functions.
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Figure 4. 
E1178 Trial Example: Estimated Regression Coefficients for the Breast Cancer Recurrence 

Endpoint. Bold Solid Lines Represent Coefficient Estimates; Dotted Lines Represent 95% 

Pointwise Confidence Intervals; Dashed Lines Represent Estimates for Trimmed Mean 

Covariate Effects.
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Table 1

Results from fitting the Cox PH model and AFT model to the dialysis dataset.

Cox Model AFT Model

Coef p value Coef p value

AGE 0.059 <0.001 −0.035 <0.001

FISHH −0.831 <0.001 0.485 <0.001

BHDPD 0.837 <0.001 −0.473 <0.001

BLEGS 0.264 0.197 −0.173 0.232

HIEDU 0.625 0.009 0.364 0.024

BLACK −1.014 <0.001 0.591 <0.001

Coef: coefficient estimate; SE: standard error
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Table 2

Estimation of average covariate effects based on quantile regression.

AveEff SE p value

AGE −0.030 0.003 < 0.001

FISHH 0.327 0.116 0.005

BHDPD −0.489 0.162 0.003

BLEGS −0.369 0.161 0.022

HIEDU −0.350 0.137 0.011

BLACK 0.654 0.144 < 0.001

AveEff: Estimated average effect; SE: standard error
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