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Summary:

Stepped wedge designed trials are a type of cluster-randomized study in which the intervention is 

introduced to each cluster in a random order over time. This design is often used to assess the 

effect of a new intervention as it is rolled out across a series of clinics or communities. Based on a 

permutation argument, we derive a closed form expression for an estimate of the intervention 

effect, along with its standard error, for a stepped wedge design trial. We show that these estimates 

are robust to mis-specification of both the mean and covariance structure of the underlying data-

generating mechanism, thereby providing a robust approach to inference for the intervention effect 

in stepped wedge designs. We use simulations to evaluate the type I error and power of the 

proposed estimate and to compare the performance of the proposed estimate to the optimal 

estimate when the correct model specification is known. The limitations, possible extensions, and 

open problems regarding the method are discussed.
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1. Introduction

Stepped wedge designed trials (e.g. figure 1) are a type of cluster-randomized study in which 

all clusters (clinics, communities, etc.) receive the intervention but the time when the 

intervention is introduced to each cluster is randomized. Once introduced, the intervention 

continues in the cluster for the duration of the study (i.e. one-way crossover). Stepped wedge 

designs are often used to assess the effect of a new treatment or intervention as it is rolled 

out across a series of clinics or communities (Hussey and Hughes, 2007; Mdege et al., 2011; 

Hemming et al., 2015). Estimation of the intervention effect in a stepped wedge design is 

more difficult, and generally model dependent, compared to a simple parallel cluster-

randomized trial since the stepped wedge design induces a conlinearity between time and the 

intervention. Mixed effects regression analyses are often used to disentangle these effects 

(e.g. Hemming et al. (2015); Hooper et al. (2016)) but this approach depends heavily on 

modelling assumptions, including the functional form chosen for time, the assumption of 

similar time trends across clusters, and the covariance structure within and between cluster-

periods. Misspecification of any of these factors may result in incorrect inference 
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(Thompson et al., 2017). Generalized estimating equations (GEE) provide an alternative 

analysis approach that is robust to misspecification of the covariance structure; however, 

GEE still requires correct modelling of the time trend and gives inflated type I error rates 

when the number of clusters is small (Scott et al., 2017).

Since the cluster is the unit of randomization in a stepped wedge trial, an alternative 

approach to evaluating the intervention may be based on a permutation test that permutes the 

treatment sequences among the clusters. Ji et al. (2017) considered properties of permutation 

tests for stepped wedge designs when the underlying mean (fixed effect) structure of the 

data-generating process is correctly specified, although they do consider situations in which 

the variance structure is misspecified. Wang and DeGruttola (2017) also investigated the 

behavior of permutation tests compared to mixed effects models when the mixed effect 

model fixed effects and variance structure are correctly specified but the error distribution 

may be misspecified. Most recently, Thompson et al. (2018) derive an estimator based on 

combining weighted within-period comparisons (so-called “vertical” comparisons (Davey et 

al., 2015)) of cluster-level summaries, similar in spirit to the estimate we define below. They 

develop both a nonparametric test using a permutation procedure and a parametric procedure 

in which the variance-covariance components of the proposed estimator are derived using 

generalized estimating equations. In the following we consider the characteristics of a 

design-based estimate of the treatment effect when both the mean and variance structure of 

the data-generating model may be misspecified. We show that even with such a highly 

misspecified model the proposed estimate is unbiased for the intervention effect and 

provides valid hypothesis tests and confidence intervals. Further, the estimate and test 

statistic can be computed from closed-form expressions i.e. no computer intensive 

permutation procedure is necessary. The result is a broadly robust procedure for inference in 

stepped wedge randomized trials.

2. Methods

Consider a stepped wedge design with N clusters and T time periods (e.g. in figure 1 N = 4, 

T = 5). Often, N is an integer multiple of T − 1, although that is not required (i.e. the number 

of clusters assigned to each intervention sequence need not be the same). Let yijk be the 

observation on individual k in cluster i at time j. Assume that clusters are independent and 

that the number of individuals measured in each cluster-period is constant i.e. nij = n (we 

evaluate the sensitivity to this second assumption using simulations in Section 3). Let y 
denote the NTn-vector (y111, y112 … yNTn) of outcomes. Let xij indicate whether the 

intervention is provided (xij = 1) or not (xij = 0) in cluster i at time j and let x denote the 

corresponding NTn individual-level vector where each xij is replicated n times.

Assume that y has been generated with mean and variance

EY (y) = μ + xδ + zβ
V Y (y) = Σ (1)

where z is the design matrix for the temporal trend, Σ is a (block diagonal) variance-

covariance matrix, and μ, δ and β are the parameters for the baseline mean, intervention 
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effect and time effect, respectively. We explicitly do not make any distributional assumptions 

in (1).

Suppose we completely ignore the underlying time trend, zβ, and the true covariance 

structure, Σ and fit the following model

y μ⋆ + xδ⋆, σ2I . (2)

In this model, provided nij = n, identical estimates are obtained regardless of whether the 

model is fit based on individual-level data or cluster-period means. Therefore, let Y be the 

vector of cluster-period level means, (Y11, Y12, … YNT), where Y ij = ∑kyijk/n and, 

similarly, let X denote the cluster-period level vector (x11, x12, … xNT). The least squares 

estimate of (μ⋆, δ⋆) is

μ⋆, δ⋆ = WTW −1WTY (3)

where W = [1, X] is a NT × 2 matrix with the first column all ones and the second column 

equal to X. Letting f denote the proportion of the cluster-periods that are assigned to the 

intervention condition (often, f = 1/2) (e.g., in figure 1, f = 1/2), it is straightforward to show 

that

WTW = NT 1 f
f f

so

WTW −1 = 1
f(1 − f)NT

f −f
−f 1 .

Then, based on (3),

δ⋆ = 1
f(1 − f)NT ∑

ij
Y ij xij − f . (4)

δ⋆ is, of course, a biased estimate of δ (Rao, 1971). However, consider the distribution of δ⋆

with respect to the permutation distribution of the stepped wedge design. As noted above, 

the permutation distribution is obtained by permuting the sequences (rows) of the stepped 

wedge design matrix in figure 1. Importantly, (WTW)−1 is the same for any permutation of 

the rows in figure 1. sequences.

Let EP and V P denote expectation and variance, respectively, under the permutation 

distribution. Then

EP xij = xj (5)
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V P xij = xj 1 − xj (6)

CovP xij, xi′j′ = xj 1 − xj′ i = i′, j < j′
= − 1

N − 1xj 1 − xj′ i ≠ i′, j ⩽ j′ (7)

where xj = ∑ixij/N. These results make use of the stepped wedge design feature that an 

intervention is never removed once introduced (i.e. xij ⩽ xij′ for j < j′).

Since Y is constant with respect to the permutation distribution then, based on (5),

EP δ⋆ = 1
f(1 − f)NT ∑

ij
Y ij xj − f (8)

and combining (4) and (8) gives

Δ = δ⋆ − EP δ⋆ = 1
f(1 − f)NT ∑

ij
Y ij xij − xj . (9)

Now consider the expectation of Δ under the (true) distribution of Y. From (1)

EY Y ij = μ + xijδ + zijβ (10)

where zij is the row (vector) of z corresponding to the i, j’th observation. Most stepped 

wedge models assume that the temporal component of the model is constant across all 

clusters. This implies that zijβ does not depend on i. Then, since ∑i xij − xj = 0 and 

xij2 = xij,

EY (Δ) = δ 1
f(1 − f)NT ∑

ij
xij 1 − xj = δ 1

f(1 − f)T ∑
j

xj 1 − xj (11)

Importantly, this implies that, using the permutation distribution, the treatment effect, δ, can 

be estimated unbiasedly even if the temporal portion of the model is ignored. Specifically,

δ = Δ
1

f(1 − f)T ∑jxj 1 − xj
= ∑ijY ij xij − xj

N∑jxj 1 − xj
. (12)

If the assumption of temporal constancy across clusters is violated then permutations could 

be done within strata for which the assumption is met, and the argument carries through (see 

the appendix A1 for formulas).

Now consider the variance of δ . Assuming independence between clusters, straightforward 

calculations based on (12) give
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V Y (δ)

=
∑i ∑jVar Y ij xij − xj

2 + 2∑j < j′Cov Y ij, Y ij′ xij − xj xij′ − xj′

N∑jxj 1 − xj
2

(13)

In the special case where the covariance matrix of Y does not depend on cluster (i.e. 

Var Y ij = σj2 and Cov(Yij, Yij′) = σj,j′) (13) reduces to

V Y (δ) = ∑jσj2xj 1 − xj + 2∑j < j′σj, j′xj 1 − xj′

N ∑jxj 1 − xj
2 (14)

Expressions (13) and (14) depend on the true variance-covariance matrix and are, therefore, 

of limited utility in practice. Instead, we seek a variance estimator that does not depend on 

knowledge of the true variance of the data-generating process. We accomplish this by 

considering the variance of δ  across the permutation distribution and derive two unbiased 

variance estimates that can be used for inference (see appendix A2 for derivation).

The first is suitable for any stepped wedge design and is given by

V δ
1(δ) = ∑

i
∑

j
Y ij − xijδ 2xj 1 − xj

+ 2 ∑
j < j′

Y ij − xijδ Y ij′ − xij′δ xj 1 − xj′

− 2
N − 1 ∑

i < i′
∑
j, j′

Y ij − xijδ Y i′j′ − xi′j′δ xmin j, j′ 1 − xmax j, j′

/ N∑
j

xj 1 − xj

2
.

(15)

V δ
1(δ) has expectation (with respect to the distribution of Y) equal to V Y (δ) when the 

covariance matrix of Yi does not depend on cluster (i.e. (14)). If δ  is used in place of δ in 

(15) then V δ
1(δ) is a biased estimate of V Y (δ). The bias is a complex expression that depends 

in part on the true variance of Y (see appendix A3). Nonetheless, in simulations we have run 

so far, the simple adjustment of multiplying V δ
1(δ) by N/(N − 1) provides an approximately 

unbiased estimate, especially for large N (some justification for this choice is given in the 

appendix). We investigate the behavior of both V δ
1(δ) and V δ

1(δ) in simulations in Section 3.

The restriction that (15) is unbiased only when the variance of Yi does not depend on cluster 

is non-trivial. Two examples where this assumption is violated are i) there is a cluster × 

intervention interaction (random intervention effect); in the presence of a random 

intervention effect the covariance of Yi depends on the intervention sequence and hence on 

cluster; ii) the sample size varies by cluster. The second proposed variance estimate does not 

depend on the assumption that the variance of Yi is independent of i. However, this 
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alternative variance estimate does require that each intervention sequence (each row of 

figure 1) is replicated at least once (i.e. there are two or more clusters with each sequence). 

Specifically, suppose there are m(h) clusters with intervention sequence h (m(h) > 1 for all 

h). Let Yhij denote the cluster-period mean for cluster i in sequence h (i = 1 … m(h)) at time 

j and similarly for the intervention indicators xhij. Then

V 2(δ) = ∑
ℎ

∑
i = 1

m(ℎ)
∑

j
Y ℎij

2 xℎij − xj
2 + 2 ∑

j < j′
Y ℎijY ℎij′ xℎij − xj xℎij′ − xj′

− 2
m(ℎ) − 1 ∑

i < i′
∑
j, j′

Y ℎijY ℎi′j′ xℎij − xj xℎi′j′ − xj′ /{N∑
j

xj 1 − xj }2
(16)

has expectation equal to (13) for any covariance matrix structure. In addition, V 2(δ) does not 

depend on δ. We evaluate the performance of V 2(δ) using simulations in Section 3.

No distributional assumptions have been necessary for the development thus far. For 

inference, we assume that either individual observations are normally distributed or the 

central limit theorem holds, which is a reasonable assumption in most cases since the 

analysis is based on (sums of) cluster-period level means. In that case, the estimates and 

variances derived above can be used to test the hypothesis Ho: δ = δo using a Z statistic such 

as

Z1 = δ − δo

V δo
1 (δ)

or Z2 = δ − δo

V 2(δ)
(17)

Further, a 100 * (1 – α)% confidence interval for δ  may be defined as

δ:Zα/2 ⩽ (δ − δ)/ V δ
1(δ) ⩽ Z1 − α/2 (18)

or by the interval

δ ± Z1 − α/2 * V 2(δ) (19)

where Zα is the α’th percentile of the standard normal distribution.

3. Simulation Results

We simulate datasets for a stepped wedge design with T = 5 time periods and varying 

numbers of clusters. Data were simulated from a mixed model that includes random cluster, 

time and intervention effects:

Y ijk = μ + βj + xijδ + ai + bij + cixij + eijk (20)

where μ = 10, β = (0, −0.1, −0.2, −0.3, −0.4) in all simulations and

ai N 0, τ2
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bij N 0, ψ2

ci N 0, η2

eijk N 0, σ2

Table 1 gives the values of the variance components used in five specific simulation 

scenarios.

Table 2 shows bias and confidence interval coverage of the proposed estimator across the 

five scenarios shown in table 1 for N = 12, 24 and 36 clusters and where the number of 

observations per cluster per time period (n) is either constant (n = 10) or varies between 

clusters (with average = 10) according to a lognormal distribution (rounded to the nearest 

integer) with standard deviation 0.2 (low var) or standard deviation 1.0 (high var). The 

estimator is approximately unbiased for all cluster sizes, sample sizes and scenarios. 

Coverage using the variance estimator V δ
1(δ) achieves the nominal 95% across all scenarios, 

even in the scenarios where Var(Yi) varies across clusters (scenarios 3 and 5, and the 

scenarios with nonconstant n). V δ
1(δ) (multiplied by the correction factor N/(N − 1)) also 

generally gives good coverage although we note some undercoverage when N = 12 (the 

undercoverage is much more severe if V δ
1(δ) is used without the correction factor - data not 

shown). In contrast, use of the variance estimator V 2(δ) generally results in confidence 

intervals with greater undercoverage, although this also improves as N increases.

Table 3 gives type I error rates and power from 10,000 simulations for tests of the null 

hypothesis Ho: δ = 0 using the variance estimators in equations (15) and (16). When δ = δ  is 

used in (15) a correction factor of N/(N−1) is applied to the variance estimate. Interestingly, 

even though the assumptions for using V δ
1(δ) are only met when n is constant and η2 = 0, the 

type I error rates using this variance estimate are quite close to nominal levels under all 

scenarios. The type I error rates for V δ
1(δ) show only slight sensitivity to the variance of the 

random treatment effect and essentially none to the variation in the number of individuals 

per cluster-time period, at least across the ranges investigated in these simulations. When 

V δ
1(δ) is used some slight type I error inflation is observed across all N, particularly for N = 

12 (we speculate that use of a t-distribution as a reference may produce type I error rates 

close to nominal levels over the entire range of N; however, the correct degrees of freedom 

calculation is unclear). Use of the variance estimate V 2(δ) results in substantial type I error 

inflation for N = 12 (type I error rates of 0.08 – 0.10); the type I error rates approach, but do 

not achieve, nominal levels as N increases to 36.
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In all cases, power declines as either cluster size variance or treatment effect variance 

increases. We note, however, that power must be interpreted cautiously and is not 

comparable between the different variance estimates since the type I error rates are not 

uniformly maintained at the nominal level.

Figure 2 shows power curves (power vs effect size), based on 1000 simulations, of a test 

based on the proposed estimator (using variance equation (15)) for testing Ho: δ = 0 versus a 

test based on the correct model that includes an appropriate time effect and within-cluster 

correlation structure, implemented using the R function lmer() (Bates et al., 2015), for five 

scenarios - i) independence, ii) random cluster effect iii) random cluster and treatment 

effects iv) random cluster and time effects v) random cluster, treatment and time effects 

(table 1). Across the five scenarios the variance components were chosen so that the power 

curves for the robust test (solid line in figure 2) are (virtually) identical (specifically, σ2 was 

varied and the intracluster correlations (ICC) for the cluster, treatment and time random 

effects were set at 0.17, 0.091 and 0.038, respectively). Except for the independence 

scenario, the proposed estimator is less efficient than the maximum likelihood estimate 

based on the correct model since the latter uses both within-cluster and between-cluster 

information to estimate the treatment effect. However, this gain in efficiency must be 

balanced against the potential for inflation of the type I error rate when the covariance 

structure used for the analysis does not match the data generating mechanism. In general, the 

type I error will be inflated if the model used for analysis does not include all the random 

effects from the data-generating mechanism. The proposed estimator is robust to such model 

misspecification, as well as misspecification of the time trend.

As noted previously, no assumptions are made about the distribution of y in (1). Thus, 

motivated by the example in the next Section, we conducted a second set of simulations with 

a binomial endpoint. Specifically, datasets were generated with 22 clusters and 5 time 

intervals (with 6, 6, 6 and 4 clusters following the four possible sequences - identical to the 

design of the Washington EPT trial discussed in the next Section). Binomial observations for 

each cluster-period were simulated from a linear model with μ = 0.09, a linearly decreasing 

time effect (−0.005 per time period), a random cluster effect (τ = 0.015) and varying random 

treatment effects (η = 0, 0.002, 0.008). Two different sample size scenarios were simulated. 

In the first, all clusters had a fixed size of 305. In the second, cluster size followed a 

lognormal distribution with mean equal to log(171) and standard deviation equal to 1.06, 

giving a mean sample size of 305 (these parameters and sample size variation reflect values 

estimated from the Washington EPT trial). We evaluated type I error rate for the hypothesis 

Ho: δ = 0 and power against the alternative Ha: δ = −.01 where δ represents a risk 

difference. Results are shown in table 4. Absolute bias in δ (not shown) was less then 10−4 

across all all sample size and random treatment effect scenarios. Similar to the results shown 

in table 3 type I error rates were maintained across scenarios for tests based on V δ
1(δ) and 

slightly inflated for tests based on V δ = δ
1 (δ) and V 2(δ). Power declined as the treatment 

effect standard deviation increased and with increased cluster size variability.
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4. Example

The Washington state EPT trial was a stepped wedge trial of expedited partner treatment (the 

practice of treating the sex partners of persons with sexually transmitted infections without 

prior medical evaluation of the partner) for the prevention of chlamydia and gonorrhea 

infection. The trial was conducted between July, 2007 and August, 2010. The primary 

outcome for the trial was chlamydia positivity, measured in sentinel sites throughout 

Washington state during the course of the trial, and incidence of reported gonorrhea, both in 

women aged 14–25. Twenty two local health jurisdictions (LHJs - equal to counties or 

clusters of counties in the state) were randomized to one of four different intervention 

sequences which were initiated in 7–8 month intervals. Outcomes were measured during the 

last 3 months of each interval. Additional details are provided in Golden et al. (2015).

Tables Web 1 and Web 2 in the supporting information show the trial design and chlamydia 

positivity by LHJ and time. The median sample size per cluster-period was 171 (IQR: 78 – 

396). We tested the hypothesis of no intervention effect (i.e. Ho: δ = 0) using V δ = 0
1 (δ) as in 

equation (17) and constructed a 95% confidence interval for the risk difference using 

equation (18). The intervention risk difference was estimated as −0.015 (95% CI: −0.033 – 

0.003; p = 0.10). For comparison, Golden et al. (2015) reported a relative risk of 0.89 (95% 

CI: 0.77 – 1.04; p = 0.15) from a baseline positivity rate of 0.082, equivalent to a risk 

difference of −0.009 (95% CI: −0.019 – 0.009). The results from both analyses are 

qualitatively similar and show a small, non-significant intervention effect.

5. Discussion

We have developed a design-based approach for obtaining unbiased estimates of the 

intervention effect and robust inference (confidence intervals and hypothesis tests) in a 

stepped wedge study design. Although the methods are motivated by permutation 

arguments, closed form expressions for the intervention effect estimate and its variance are 

derived, so the approach is computationally simple. The proposed methods do not depend on 

detailed knowledge of the temporal mean structure, covariance structure or distribution of 

the data-generating mechanism. Similar to Thompson et al. (2018), the intervention effect 

estimate derived here is a “vertical” estimate (Davey et al., 2015) i.e. it relies only on 

between-cluster information on the intervention effect. This explains the robustness to 

misspecification of the time-trend - a comparison of intervention and control clusters at a 

point in time (between-cluster comparison) does not depend on the underlying time trend 

whereas any within-cluster comparison of intervention and control periods must first correct 

for time trends. While the reliance on between-cluster comparisons helps explain the 

robustness of the proposed intervention effect estimate, this also explains the loss of 

efficiency relative to the intervention effect estimate from a correctly specified model that 

uses both between-cluster and within-cluster information.

We have developed three variance estimates that can be used for inference, namely, V δ
1(δ), 

V δ
1(δ) and V 2(δ). The first two (collectively, V1) assume that Var(Yi) does not depend on i 

while the last (V2) does not depend on this assumption. However, V1 appears to be relatively 
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insensitive to violations of this assumption and in simulations V δ
1(δ) performs well across a 

range of scenarios and maintains the nominal type I error rate better than either of the other 

two variance estimates. Thus, we recommend the use of V δ
1(δ) in practice. V δ

1(δ) is a biased 

estimate of V Y (δ) and the bias depends on the true variance. Although multiplying V δ
1(δ) by 

a correction factor of N/(N − 1) improves the performance, further research is needed before 

this approach can be broadly recommended.

In developing the proposed estimator, we assumed constant sample size across all clusters. 

This assumption greatly facilitates the computation of expectations and variances under the 

permutation distribution. Nonetheless, as demonstrated in our simulations, the proposed 

estimator is approximately unbiased and maintains type I error rate control and confidence 

interval coverage across a range of scenarios (particularly for V δ
1(δ)) even when sample sizes 

vary, assuming cluster size is uninformative for the treatment effect (Williamson et al., 

2003). We do note, however, a loss of power in table 3 as cluster size variation increases.

A key assumption (which is necessary for all approaches to the analysis of stepped wedge 

trials) is that the underlying time trend is the same for all clusters. If this assumption is 

violated then δ  may be biased and estimates of V (δ) may be incorrect as well. However, if 

clusters can be grouped into strata with similar temporal trends (ideally, these strata would 

be defined apriori) then it is possible to derive an estimate of the intervention effect and its 

sampling variance based on a stratified permutation distribution. The resulting estimate is 

unbiased and has correct sampling variance (under the same constraints/assumptions as (15) 

and (16)). As previously noted, formulas for these stratified estimates are given in appendix 

A1.

The approach outlined here uses cluster-period level summaries and should, therefore, be 

robust to the underlying distribution of individual data points, provided the cluster-period 

sample sizes are moderately large. Thus, the proposed methods may be used with 

continuous, binary or count data, and the intervention effect will be interpretable as a mean 

difference, risk difference, or rate difference, respectively. Critically, however, the 

equivalence between an individual-level analysis and an analysis of cluster-period means 

used to derive δ  only holds for the identity link (with equal cluster sizes). Specifically, if δ  is 

computed using (nonlinearly) transformed cluster-period level summaries (e.g., log(Yij) or 

logit(Yij)), it will be a biased estimate of the intervention effect from an individual-level 

model with the corresponding nonlinear link. An extension of the proposed methods to other 

links to allow unbiased estimation of e.g. risk ratios is an area of ongoing research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A1. Stratified Estimation

The following estimators can be used for stratified estimation, where Yhij represents the 

observation on the i’th cluster in stratum h at time j (note that i takes on values from 1 … mh 

in these formulae):

δ =
∑ℎijYℎij xℎij − xℎj

∑ℎNℎ∑jxℎj 1 − xℎj
.

V δ(δ) = ∑
ℎi

∑
j

Yℎij − xℎijδ 2xℎj 1 − xℎj + 2 ∑
j < j′

Yℎij − xℎijδ Yℎij′ − xℎij′δ xℎj 1 − xℎj′

− 2
Nℎ − 1 ∑

ℎ
∑

i < i′
∑
j, j′

Yℎij − xℎijδ Yℎi′j′ − xℎi′j′δ xℎ, min j, j′ 1 − xℎ, max j, j′

(∑
ℎ

Nℎ∑
j

xℎj(1 − xℎj))2 .

A2. Permutation variance of δ

The estimated intervention effect is

δ =
∑ijY ij xij − xj
N∑jxj 1 − xj

.

Letting V P denote variance with respect to the permutation distribution,

V P(δ) =
V P ∑ijYij xij − xj

N∑jxj 1 − xj
2

since xj is constant across permutations. Further, since Yij is also constant with respect to the 

permutation distribution, one can use equations 5 – 7 to show that the variance of δ  over all 

possible permutations is

V P(δ) = ∑
i

∑
j

Y ij2 xj 1 − xj + 2 ∑
j < j′

Y ijY ij′xj 1 − xj′

− 2
N − 1 ∑

i < i′
∑
j, j′

Y ijY i′j′xmin j, j′ 1 − xmax j, j′ /(N∑
j

xj(1 − xj))2 .

Unfortunately, however, V P(δ) is a biased estimator of V Y (δ). To find the expected value of 

V P(δ) with respect to the distribution of Y we make use of
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EY Yij2 = Var Y ij + E Yij
2

EY Yij, Y ij′ = Cov Yij, Y ij′ + E Yij E Yij′
EY Yij, Y i′j′ = E Yij E Yi′j′

as well as xij2 = xij and xijxij′ = xij for j < j′, to derive

EY V P(δ) =
∑i ∑jVar Y ij xj 1 − xj + 2∑j < jCov Yij, Y ij′ xj 1 − xj′ + δ2C

N∑jxj 1 − xj
2

C = ∑
i

∑
j

xijxj 1 − xj + 2 ∑
j < j′

xijxj 1 − xj′ − 2
N − 1 ∑

i < i′
∑
j, j′

xijxi′j′xmin j, j′ 1 − xmax j, j′ .

Comparing this to equation (13), we see that the bias depends only on δ and not other 

parameters of the mean model for Y. In fact, the bias of V P(δ) does not depend on any 

covariate that is constant within a column of the stepped wedge design matrix (e.g. the time 

parameters βj). Using this same approach, one may show that V δ
1(δ) is unbiased i.e.

E V δ
1(δ) = V Y (δ) .

A3. Bias of the plug-in variance estimator

Assume, as in equation (14), that Var(Yi) does not depend on cluster. Although V δ
1(δ) is 

unbiased for V Y (δ), V δ
1(δ) is biased. Specifically,

E V δ(δ) = [1 + 1
N − 1

Σjxj2 1 − xj
2 + 2Σj < j′xj2 1 − xj′

2

Σjxj 1 − xj
2 ]V Y (δ) − 2N

N − 1
B1 + B2 + B3

NΣjxj 1 − xj
3

where

B1 = ΣiΣjxijxj 1 − xj Σl xil − xl σj, l
B2 = ΣiΣj < j′xijxj 1 − xj′ Σl xil − xl σj′, l
B3 = ΣiΣj < j′xij′xj 1 − xj′ Σl xil − xl σj, l

and σj,l is the covariance between Yij and Yil. Dividing both sides by V Y (δ) gives the relative 

bias

bias = 1 + 1
N − 1

Σjxj2 1 − xj
2 + 2Σj < j′xj2 1 − xj′

2

Σjxj 1 − xj
2

− 2
N − 1

B1 + B2 + B3
Σjxj 1 − xj ΣiΣjxj 1 − xj σj2 + 2ΣiΣj < j′xj 1 − xj′ σj, j′
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In the special case where the covariance matrix is diagonal with σj2 = σ2, however, the third 

term on the right hand side equals the second, aside from the leading 2/(N − 1). Therefore, in 

this special case, the relative bias is

bias = 1 − 1
N − 1

Σjxj2 1 − xj
2 + 2Σj < j′xj2 1 − xj′

2

Σjxj 1 − xj
2

For a regular stepped wedge design in which N = k(T − 1) (k an integer) and each sequence 

occurs in an equal number of clusters (so xj = j/T ), the relative bias becomes

bias = 1 − 1
N − 1

2(T − 1)4 + 5(T − 1)2 − 7
5(T − 1)4 − 10(T − 1)2 + 5

Remarkably, this function is reasonably well approximated by 1 − 1/N for any k, suggesting 

that the plug-in estimator is biased down by a factor of approximately N − 1
N  under these 

conditions. Our simulations suggest that this approximation holds even when then the 

covariance matrix is not diagonal.
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Figure 1. 
Schematic representation of stepped wedge designs with 4 intervention sequences, one 

cluster per sequence, and 5 time periods. 0 indicates control condition and 1 represents 

treatment.
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Figure 2. 
Power curves for testing Ho: δ = 0 computed across 1000 simulations for the robust test 

proposed here (solid line, using V δ = 0
1 (δ) versus an asymptotic test based on the correctly 

specified model for the five scenarios described in table 1 (dashed and dotted lines labeled 1 

– 5). Note: The scenarios were constructed so that the power curves for the robust test were 

identical across scenarios; specifically, the intraclass correlations (ICC) for the cluster, 

intervention and time random effects (when included) were set at 0.17, 0.091 and 0.038, 

respectively, and σ2 was varied by scenario.
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Table 1

Scenarios for stepped wedge simulations

Scenario

1 2 3 4 5

Random Effects None Cluster Cluster Intervention Cluster Time Cluster Intervention Time

σ2 1 1 1 1 1

τ2 0 0.2 0.2 0.2 0.2

η2 0 0 0.1 0 0.1

ψ2 0 0 0 0.04 0.04
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Table 2

Bias (a) and confidence interval coverage (b), based on 10000 simulations, of the proposed estimator for the 

five simulation scenarios described in table 1. Number of clusters (N) is 12, 24 or 36. Number of time periods 

(T) is 5 with a linearly decreasing time effect (β = 0, −0.1, −0.2, −0.3, −0.4). Intercept (μ) is 10 and treatment 

effect (δ) is 5. Number of individuals per cluster per time period (n) is either constant (n = 10) or varies 

between clusters (average = 10) according to a lognormal with standard deviation 0.2 (low var) or lognormal 

with standard deviation 1.0 (hi var). Coverage is shown for the three variance formulas described in the text; 

nominal coverage is 95%.

(a) Bias

Simulation scenario

N n 1 2 3 4 5

12

constant 0.000 −0.002 0.000 0.003 −0.004

low var 0.001 0.002 0.007 −0.003 0.004

hi var 0.000 0.002 −0.003 0.003 0.004

24

constant 0.000 0.001 −0.004 0.001 0.001

low var 0.001 0.002 0.000 0.001 0.001

hi var 0.000 −0.003 0.002 0.001 0.001

36

constant −0.001 0.000 −0.001 0.000 0.000

low var 0.000 0.000 0.000 −0.002 −0.002

hi var 0.000 −0.004 0.003 −0.001 0.003

(b) Coverage

V δ
1(δ) N

N − 1V δ
1(δ) V 2(δ)

Simulation scenario

N n 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

12

constant 0.96 0.96 0.95 0.96 0.95 0.94 0.93 0.92 0.93 0.93 0.91 0.90 0.90 0.90 0.90

low var 0.95 0.96 0.95 0.96 0.95 0.94 0.93 0.92 0.93 0.92 0.91 0.90 0.90 0.90 0.90

hi var 0.94 0.95 0.95 0.95 0.95 0.93 0.93 0.92 0.93 0.92 0.90 0.90 0.90 0.90 0.90

24

constant 0.95 0.96 0.95 0.95 0.95 0.95 0.94 0.93 0.94 0.94 0.93 0.93 0.93 0.93 0.93

low var 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.93

hi var 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93

36

constant 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

low var 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94

hi var 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.94
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Table 3

Type I error rate (a) and power (b) for testing the null hypothesis Ho: δ = 0 based on 10000 simulations. Data 

are simulated from equation (20) with a random cluster effect (τ2 = 0.2), random treatment effect (η2 = 0, 0.1, 

0.4) and random error (σ2 = 1). Number of individuals per cluster per time period (n) is either constant (n = 

10) or varies between clusters (average = 10) according to a lognormal with standard deviation 0.2 (low var) or 

lognormal with standard deviation 1.0 (hi var). Number of clusters (N) is 12, 24 or 36. Number of time periods 

(T) is 5 with a linearly decreasing time effect (−0.1 per time period).

(a) Type I error rate (nominal level = 0.05)

V δ = 0
1 (δ) N

N − 1V δ = δ
1 (δ) V 2(δ)

Treatment variance (η2)

N n 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4

12

constant 0.05 0.05 0.05 0.06 0.07 0.07 0.09 0.09 0.10

low var 0.05 0.05 0.05 0.06 0.07 0.07 0.10 0.09 0.09

hi var 0.05 0.05 0.05 0.07 0.07 0.07 0.09 0.08 0.08

24

constant 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07

low var 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07

hi var 0.04 0.04 0.05 0.05 0.05 0.05 0.07 0.06 0.06

36

constant 0.05 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06

low var 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06

hi var 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06

(b) Power (for the alternative Ha : δ = 1)

V δ = 0
1 (δ) N

N − 1V δ = δ
1 (δ) V 2(δ)

Treatment variance (η2)

N n 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4

12

constant 0.59 0.57 0.51 0.64 0.61 0.55 0.65 0.62 0.55

low var 0.59 0.56 0.49 0.63 0.60 0.53 0.64 0.60 0.54

hi var 0.42 0.41 0.38 0.46 0.45 0.42 0.48 0.47 0.42

24

constant 0.90 0.87 0.81 0.90 0.88 0.82 0.90 0.88 0.80

low var 0.89 0.87 0.81 0.90 0.88 0.82 0.90 0.88 0.81

hi var 0.78 0.76 0.71 0.79 0.78 0.72 0.82 0.79 0.73

36

constant 0.97 0.97 0.94 0.98 0.97 0.94 0.97 0.97 0.93

low var 0.97 0.96 0.93 0.97 0.96 0.94 0.97 0.96 0.93

hi var 0.84 0.83 0.79 0.85 0.84 0.80 0.84 0.82 0.78
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Table 4

Type I error rate (a) and power (b) for testing the null hypothesis Ho: δ = 0 based on 10000 simulations with 

characteristics similar to the WA EPT study. Binomial observations for 22 clusters in 5 times intervals are 

simulated from a linear model with μ = 0.09, a linearly decreasing time effect (−0.005 per time period), a 

random cluster effect (τ = 0.015) and random treatment effect (η = 0, 0.002, 0.008). Number of individuals per 

cluster per time period (n) is either constant (n = 305) or variable between clusters according to a lognormal 

distribution with mean log(171) and standard deviation 1.06 (giving a mean cluster size of 305).

(a) Type I error rate (nominal level = 0.05)

V δ = 0
1 (δ) N

N − 1V δ = δ
1 (δ) V 2(δ)

Treatment standard deviation (η)

n 0 0.002 0.008 0 0.002 0.008 0 0.002 0.008

constant 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08

variable 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.07 0.07

(b) Power (for the alternative Ha : δ = −0. 01)

V δ = 0
1 (δ) N

N − 1V δ = δ
1 (δ) V 2(δ)

Treatment standard deviation (η)

n 0 0.002 0.008 0 0.002 0.008 0 0.002 0.008

constant 0.29 0.29 0.26 0.31 0.31 0.28 0.33 0.32 0.30

variable 0.18 0.17 0.08 0.20 0.18 0.09 0.22 0.20 0.12
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