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a b s t r a c t 

Post COVID-19 vaccine development, nations are now getting ready to face another challenge: how to 

effectively distribute vaccines amongst the masses to quickly achieve herd immunity against the infec- 

tion. According to some experts, herd immunity for COVID-19 can be achieved by inoculating 67% of the 

population. India may find it difficult to achieve this service level target, owing to several infrastructural 

deficiencies in its vaccine supply chain. Effect of these deficiencies is to cause frequent lead time dis- 

ruptions. In this context, we develop a novel modelling approach to identify few nodes, which require 

additional inventory allocations (strategic inventory reserves) to ensure minimum service level (67%) un- 

der the possibility of lead time disruptions. Later, through an illustrative case study on distribution of 

Japanese Encephalitis vaccine, we identify conditions under which strategic inventory reserve policy can- 

not be practically implemented to meet service level targets. Nodes fulfilling these conditions are termed 

as critical nodes and must be overhauled structurally to make the implementation of strategic inventory 

policy practically viable again. Structural overhauling may entail installation of better cold storage facili- 

ties, purchasing more quality transport vans, improving reliability of transport network, and skills of cold 

storage manager by training. Ideally, conditions for identifying critical nodes for COVID-19 vaccine distri- 

bution must be derived separately by substituting COVID-19 specific parametric values in our model. In 

the absence of the required data for COVID-19 scenario, JE specific criteria can be used heuristically to 

identify critical nodes and structurally overhaul them later for efficiently achieving service level targets. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

This study aims to address an important question “Are there 

ny ways to mitigate the impact of COVID-19?” raised in the 

pecial issue of EJOR on “The role of Operational Research in the 

uture epidemics/pandemics”. This question is addressed by devel- 

ping cost effective vaccine distribution strategies for the masses 

n India. Vaccination is widely recognised as one of the most ef- 

ective methods in controlling the spread of epidemics/pandemics 

ike SARS, Ebola, COVID-19. Massive global effort s are already 

nderway to develop a potent COVID-19 vaccine. Post vaccine 

evelopment, primary concern of all nations will be to acquire 

erd immunity in the least possible time. Importance of achieving 

erd immunity stems from the fact that infection is effectively 

ontained if the population acquires it. Formally, herd immunity is 
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efined by Randolph and Barreiro (2020) as “the indirect protection 

rom infection conferred to susceptible individuals when a sufficiently 

arge proportion of immune individuals exist in a population ”. 

Herd immunity is acquired by a population when the propor- 

ion of individuals, who are immune to the infection, is greater 

han or equal to herd immunity threshold ( Metcalf, Ferrari, Graham 

 Grenfell, 2015 ). Under some simplistic assumptions, researchers 

 Park & Kim, 2020) ; Randolph & Barreiro, 2020 have estimated 

erd immunity threshold for COVID-19 to be 67% of total popu- 

ation. In other words, vaccine supply chains across the globe will 

e required to ensure inoculation of 67% of the population for ac- 

uiring herd immunity against COVID-19 infection. However, low- 

ncome, and middle-income countries (like India, Kenya, Nigeria, 

tc.) may find it difficult to ensure these service level targets owing 

o the frequent lead time disruptions in their vaccine supply chain. 

ead time disruptions render supply chain nodes non-operational 

or a period, which is known as disruption recovery time in supply 

hain literature ( Ivanov, Dolgui, Sokolov & Ivanova, 2017 ). Hence, 

hen a disruption is realized, the total supply lead time for a node 

ill increase by the amount of disruption recovery time of the 

https://doi.org/10.1016/j.ejor.2021.03.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.03.030&domain=pdf
mailto:sinha.priyank25@gmail.com
mailto:skumar@stthomas.edu
mailto:charu@umich.edu
https://doi.org/10.1016/j.ejor.2021.03.030
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Fig. 1. Vaccine Supply Chain in India. 
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receding node. Increment in supply lead time has a direct effect 

n the service level in the vaccine supply chain as demonstrated 

ater. Our following discussion will be focussed on evaluating the 

ffects of lead time disruptions on the performance of vaccine sup- 

ly chain in the Indian context. 

We do not consider the effects of other disruptions (produc- 

ion/yield, quality) in our study as these disruptions mostly occur 

uring the production phases ( Shao, 2018 ). Since vaccines are of- 

en manufactured abroad and later imported in India, these dis- 

uptions cannot be entirely mitigated by the Indian government. 

n the contrary, lead time disruptions occur during vaccine distri- 

ution, and must be mitigated by the Indian government to meet 

he minimum service level targets. 

Lead time disruptions are primarily caused due to various in- 

rastructural deficiencies in the Indian vaccine supply chain (IVSC). 

ome of them are unavailability of reliable power supply in rural 

reas, absence of spare parts for maintaining cold storage, acute 

hortage of trained manpower, and inadequate number of trans- 

ort vans. 1 Apart from causing frequent disruptions, these infras- 

ructural deficiencies are also responsible for reducing the effective 

helf life of the vaccines. In some cases, effective shelf life of vac- 

ine is reduced from 36 months to 2 weeks ( Lala, 2003 ). The com-

ined effect of reduced shelf life of a vaccine along-with increase 

n supply lead time (due to lead-time disruptions), is to cause huge 

astage of vaccines due to expiration, and at the same time, a loss 

n the customer service level. The current vaccine wastage due to 

erishability in Indian vaccine supply chain (IVSC) is nearly 30% 

 Chakraborty & Joardar, 2019 ). 

Lead-time disruptions are rapidly transmitted across the IVSC 

ue to its extensive and scattered structure. IVSC comprises of 

bout 27,0 0 0 nodes with about 95% of the nodes pertaining to the 

rimary Health Centre (PHC) level, while only 5% pertain to higher 

chelons (Block level or above) 2 ( Fig. 1 ). Due to highly scattered 
1 Sharma B.P. National Cold Chain Assessment, 2015. http://www.nccmis.org/ 

ocument/UNICEF _ Cold%20Chain%20Assessment%20Book2014.pdf . 
2 Dr Bhrigu Kapuria. Immunization Supply Chain in India. https://www. 

echnet-21.org/images/TC2015/10 _ Country _ Innovations _ India _ Bhrigu _ Kapuri.pdf . 
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tructure, failure of a single higher echelon node affects the per- 

ormance of many lower echelon nodes ( Atlay & Green, 2006 ). In 

ther words, disruptions at any higher echelon node are readily 

ransmitted rapidly across supply chain. 

To sum up, addressing the infrastructural deficiencies is cru- 

ial for minimizing the lead time disruptions, and consequently 

mproving the service level in IVSC. Service level improvement in 

VSC will help India in rapidly achieving herd immunity for COVID- 

9 in future. Ideally, infrastructural resilience should be increased 

n all supply chain nodes, as all of them are susceptible to fre- 

uent disruptions due to infrastructural deficiencies. However, such 

 solution would be cost-prohibitive and practically infeasible for 

ow-income/middle income country like India. In this context, our 

ain contribution in this paper is development of a modelling ap- 

roach which can be utilized to identify few critical nodes, such 

hat increasing infrastructural resilience of them will be sufficient 

o meet the required service level targets for achieving herd im- 

unity. Increasing infrastructural resilience of few critical nodes is 

bviously more cost-effective solution in comparison to increasing 

nfrastructural resilience of all the nodes. 

In our modelling approach, we first propose a demand forecast- 

ng model to minimize vaccine wastage. Further, a cost-effective 

ulti-echelon inventory model under no disruption scenario is 

roposed, to fulfil forecasted demand. Later, a game theoretic 

odel is developed to identify major disruption scenarios, under 

hich service level targets cannot be met. Inventory hedging strat- 

gy should be implemented to protect service level in these dis- 

uption scenarios. Finally, through an illustrative case study on the 

istribution of Japanese Encephalitis (JE) vaccine in Gorakhpur, In- 

ia; we develop exact condition under which inventory hedging 

trategy becomes infeasible. At this point, service level can only be 

estored by increasing the infrastructural resilience of some criti- 

al nodes. JE has been recognized as an epidemic for many years 

n this area (Gorakhpur, India), and Indian government has not 

een able to eradicate it due to infrastructural deficiencies in In- 

ian vaccine supply chain. Our case study demonstrates how pro- 

osed model can be used to identify critical nodes for JE, which 

an be structurally overhauled to eradicate this disease. To develop 

http://www.nccmis.org/document/UNICEF_Cold%20Chain%20Assessment%20Book2014.pdf
https://www.technet-21.org/images/TC2015/10_Country_Innovations_India_Bhrigu_Kapuri.pdf
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riteria for identifying critical nodes in context to COVID-19, our 

odel can be executed with COVID-19 specific parameters. In the 

bsence of any COVID-19 specific data, JE specific criteria for iden- 

ifying critical nodes can be used heuristically for COVID19 vaccine 

istribution scenario. 

. Literature review 

IVSC is almost entirely controlled by the government of India, 

ith only 3% −5% of the demand being met by the private sector 

 Sharma, Kaplan, Chokshi & Zodpey, 2016 ). Hence, the onus of its 

fficient operation solely lies with the government. Recently, the 

ndian government has taken several initiatives, including the im- 

lementation of a vaccine intelligence network program (VIN) and a 

old chain tracking program to prevent stock-outs and improve the 

erformance of IVSC. Nevertheless, these initiatives have only been 

arginally successful in improving the operational efficiency of 

VSC. Marginal or unsatisfactory success of these initiatives can be 

ttributed to acute lack of infrastructure in terms of number and 

apacity of cold storages, transport vans, lack of trained personnel, 

tc. 3 Capacity issues, along with their prospective solutions, have 

een discussed in several assessment studies. 4 , 5 However, none of 

hese assessment studies or government initiatives have addressed 

he frequent lead time disruptions, their affect, and their mitiga- 

ion in IVSC. 

In literature too, researchers have only focused on 

ield/production disruptions in vaccine supply chains, while 

ompletely disregarding other forms of disruptions ( Duijzer, van 

aarsveld & Dekker, 2018 ). Some important researches addressing 

he production disruptions in vaccine supply chains are Begen, 

un and Yan (2016) , Chick, Mamani and Simchi-Levi (2008) , De 

reville et al. (2014) , Federgruen and Yang (2009) , Kazaz, Webster 

nd Yadav (2016) , Teunter and Flapper (2006) , Cho and Tang 

2013), Eskandarzadeh, Eshghi and Bahramgiri (2016) , etc. These 

tudies have focused on evaluating and minimizing the effects 

f production disruption on supply chain performance through 

arious strategies (contracts, support prize, etc.), and cannot be 

xtended to mitigate the lead-time disruption in our problem, as 

VSC only comprises of distribution nodes (none of the nodes is 

edicated to vaccine manufacturing). 

Some prominent studies in literature focusing on lead time 

isruption in supply chain /transportation network are Cannella, 

ominguez and Framinan (2017) , Garcia, Ibeas, Herrera and 

ilanova (2012) , Konstantaras, Skouri and Lagodimos (2019) , 

awik (2015) , Schmitt, Kumar, Stecke, Glover and Ehlen (2017) , 

az and Escobar (2018) , Wichapa and Khokhajaikiat (2018) , 

ranada-Echeverri, Toro and Santa (2019) , Bhuiyan, Medal and 

arun (2020) , Paquay, Crama and Pironet (2020) , Prak, Teunter 

nd Syntetos (2017) , Gupta, Starr, Farahani and Matinrad (2016) , 

i, Chen, Collignon and Ivanov (2020) . 

Garcia et al. (2012) have used adaptive control methodology to 

ptimize inventory stock sizes under lead time uncertainty. It is 

ssumed that the global demand parameters are known to each 

upply chain node in advance. Contrarily, demand information in 

VSC is transmitted upstream from the PHC nodes. Our forecast- 

ng model in Section 3.1 minimizes the forecasting deviation or 

he bullwhip effect in this setting, which would otherwise be sig- 

ificant for a large supply chain in the absence accurate demand 

nformation on each node. Schmitt et al. (2017) have conducted 
3 Jhalani et al. (2018). Techno-Economic Assessment of Electronic Vaccine 

ntelligence Network. https://nhm.gov.in/New _ Updates _ 2018/NHM _ Components/ 

mmunization/Guildelines _ for _ immunization/eVIN _ Assessment _ Report.pdf . 
4 https://nhm.gov.in/New _ Updates _ 2018/NHM _ Components/Immunization/ 

uildelines _ for _ immunization/cMYP _ 2018-22 _ final _ pdf . 
5 https://mohfw.gov.in/sites/default/files/5628564789562315.pdf . 
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imulation-based study to evaluate the performance of the sup- 

ly chain in terms of effectiveness and efficiency under lead time 

isruptions. Sawik (2015) has proposed a combinational stochas- 

ic model to optimize efficiency and effectiveness under lead time 

isruptions. These studies have evaluated the effect lead time dis- 

uptions have on performance metrics like stock levels, service lev- 

ls, cost, etc. In our study, we have measured the effects of lead 

ime disruptions on the service level. An important difference in 

ur modelling approach is that we have integrated our inventory 

odel with a novel multi echelon demand forecasting model. This 

ifference in modelling approach is aimed at minimizing the vac- 

ine wastage in IVSC. 

We also propose a game-theoretic model to identify the major 

isruption scenarios from the disruption scenario set. This model 

s motivated by the work of Jalali, Seifbarghy and Niaki (2018) , 

ahiri, Zhuang and Mohammadi (2017) , and Zhang, Snyder, Ralphs 

nd Xue (2016) . Jalali et al. (2018) has proposed an interdictor 

ame-based model for identifying vulnerabilities and addressing 

hem through optimal supply chain design. Zahiri et al. (2017) has 

sed novel metric for measuring resilience and sustainability and 

ater propose a model to evaluate the performance of supply chain 

esign according to these metrics under production uncertainty. 

hang et al. (2016) have proposed a bilevel optimization model to 

epresent the supply chain designing problem under the disrup- 

ion risk, when two competitors are competing for the same mar- 

et space. Problem is modelled as Stackelberg game. These stud- 

es use game-theoretic based models to optimally design supply 

hains through efficient location of sites. In contrast, objective of 

ur game theoretic model is to identify major disruption scenarios 

n a vaccine supply chain which is already in operation. 

Major disruption scenarios are characterised by the failure of 

ne or more nodes such that the intended service level cannot be 

et. To ensure service level in these scenarios, appropriate pro- 

ection strategy must be implemented. Protection strategies in lit- 

rature can be broadly classified as proactive strategies and re- 

ctive strategies. Reactive strategies are implemented to minimize 

he loss after the occurrence of disruptions, while proactive strate- 

ies are implemented to protect the supply chains from any future 

isruptions. 

Tomlin (2009) , in this context, has provided an excellent ex- 

osition on several protection strategies (proactive and reactive) 

ike inventory hedging, contingent sourcing, supplier diversifica- 

ion, demand switching, etc. Inventory hedging strategy is defined 

s extra inventory carried by the nodes to hedge against disruption 

isk ( Ivanov, 2020 ). It is usually not considered appropriate for per- 

shable products, as its implementation under a no disruption sce- 

ario might result in huge wastage due to perishability ( Tomlin, 

009 ). Since shelf life of vaccines is greater than other conven- 

ional perishable products (fruits, vegetable, dairy), we consider 

his strategy to be appropriate for our case. Further, our forecasting 

odel and perishability constraints in the inventory model ensures 

hat no vaccine is wasted due to perishability. 

Other protection strategies suggested by Tomlin (2009) are not 

ppropriate to IVSC due to the following reasons. Demand switch- 

ng (reactive strategy) cannot be used as it is inconsistent with the 

overnment target of achieving the herd immunity for COVID-19, 

r complete eradication of JE infection. Implementing supplier di- 

ersification (proactive strategy) strategy requires working in part- 

ership with many suppliers for the same products, which is not 

easible in IVSC as it must adhere to a strict regulatory require- 

ent related to suppliers. Contingent sourcing strategy (reactive 

trategy) requires sourcing the supplies from an alternate supplier 

n an event of disruption (Paranjuli et al., 2017). This strategy is 

lso not recommended for IVSC, as its implementation may lead to 

everal quality assurance issues ( Gray, Roth & Leiblein, 2011 ). 

https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_immunization/eVIN_Assessment_Report.pdf
https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_immunization/cMYP_2018-22_final_pdf
https://mohfw.gov.in/sites/default/files/5628564789562315.pdf
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Table 1 

Model assumptions. 

1 Multi-echelon, multi-period, single product supply chain is considered. 

2 Periodic inventory policy under lost sales case is considered. 

3 There is exactly one path between the initial supply node and PHC node 

(consistent with the divergent supply chain structure, Dominguez 

et al., 2014 ). 

4 Expiration time of vaccine is greater than the maximum lead time on 

any path under no disruption scenario. 

5 Failure of each node is independent of the failure of other nodes. 
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6 F n (n + i ) is an unbiased estimator of demand ˆ d n + i in the period n . 
Summing up, we implement inventory hedging strategy to pro- 

ect customer service level under major disruption scenarios. Our 

ase study on distribution of Japanese Encephalitis vaccine enables 

s to identify critical disruption scenarios , in which inventory hedg- 

ng strategy fails. Critical disruption scenarios are characterised by 

ailure of one or more critical nodes . Infrastructural resilience of 

hese critical nodes can be increased to ensure minimum service 

evel. 

. Model development 

Important model assumptions are listed in Table 1 

Periodic review inventory model is suitable for IVSC as vaccine 

ransport vans are shared amongst the nodes and are not available 

o any node in all time periods. Supply chain nodes can only re- 

lenish their stock in the periods when the van is available. 

As stated, earlier IVSC has a divergent structure. Therefore, we 

ocus only on vaccine distribution, while discounting its manufac- 

uring. Vaccines are often imported; hence it is not possible for 

he government to directly address the manufacturing uncertain- 

ies. Moreover, as discussed in the previous section, yield uncer- 

ainty in vaccine supply chain has already been addressed by many 

esearchers. 

Our assumption of lost sales case is motivated by the fact that 

VSC majorly serves the poor, for whom, getting any family mem- 

er vaccinated could mean the loss of single day wages. Loosing 

aily wages for more than one day for getting vaccinated, is un- 

ffordable to many and consequently demand cannot be backo- 

dered. 

We further consider only single product type (vaccine) distribu- 

ion, as all vaccines have different demand, shelf life, in transit rec- 

mmended temperature, and service level requirements. Vaccines 

ith different recommended storage temperature cannot be trans- 

orted in a single batch by a refrigerated van, as no single tem- 

erature setting will be ideal for all vaccines. We further consider 

hat a disruption scenario can only be realized after the supply 

hain has fully recovered from the preceding disruption scenario. 

his assumption is consistent with other models in literature ( Li 

t al., 2020 ; Sinha, Kumar & Prakash, 2020 ). We discuss a novel

emand forecasting model in the next section. Problem notations 

re described in Table 5 . 

.1. Demand forecasting modelling 

We refer to Graves and Willems (20 0 0) , and Schoenmeyr 

nd Graves (2009) when developing this model. Graves and 

illems (20 0 0) have developed a forecasting model for a conver- 

ent type multi-echelon supply chain. Later, they use a dynamic 

rogramming-based algorithm to allocate safety stock at various 

odes in the supply chain. Schoemeyr and Graves (2009) have ex- 

ended this model to a generic case of convergent supply chain 

n which the demand forecast evolves over time. Although, these 

odels are typically valid for the assembly type supply chain as 

escribed in Ben-Ammar, Dolgui and Wu (2018) , they can be modi- 
342 
ed, and later extended to divergent supply chain structure of IVSC 

 Fig. 1 ), as discussed below. 

Let (V, A ) represent the IVSC network consisting of node set 

 , and arc set A . Further, let F n (n + i ) denote the demand fore-

ast in the period n for the period n + i , where i ∈ { 1 , 2 , ......I} ;
, (n + i ) ∈ N. I represents the forecasting horizon and is defined as

he length of time in the future for which our model can forecast 

r estimate demand. Similarly, N denotes the total time periods for 

hich inventory is planned. Actual demand in the period n is de- 

oted by random variable d n . By convention, we know F n (n ) = d n . 

e make a demand forecast in period n for period n + i , and re-

ise our forecast in each period according to the realized demand. 

orecast deviation can be expressed as 

F n (n + i ) = F n (n + i ) − F n −1 (n + i ) ∀ i ∈ { 0 , 1 , ....., (I − 1) }; n, (n + i ) ∈ N 

(1) 

Demand can be estimated as a function of F . (. ) according to the 

ollowing expression 

ˆ 
 n = F n −I (n ) + 

I ∑ 

i =1 

�F n −I+ i (n ) ∀ n ∈ N (2) 

We assume forecast deviation to be random (independent of 

ny special cause 6 ), hence 

[�F n (n 

′ )] = 0 ∀ n, n 

′ ∈ N; n 

′ ≥ n ; (n 

′ − n ) ≤ I (3)

By intuition, we know that the variance in forecasting error (de- 

oted by d n − ˆ d n ) increases as we increase i ∀ i ∈ I. 

We discuss our results for the sequential multi-stage supply 

hain as depicted in Fig. 2 , and later extend these results to multi- 

chelon IVSC as depicted in Fig. 1 . v d represents an end customer 

ode (PHC, Fig. 1 ). We assume a constant node processing time of 

 as t v (in no disruption scenario). 

Node processing time may vary for each node and is the time 

aken by each cold storage to process and appropriately stock the 

accines, after the receipt of orders. Under a no disruption sce- 

ario, each node is required to fulfil an order in a service time 

enoted by ω v , v ′ , where v ′ is the successive node being supplied 

y node v . 
Service time may also vary for different lower echelon nodes 

 v ′ ) in a multi-echelon system due to various operational con- 

traints (number of transport vans, terrain to be traversed, number 

f trained inventory managers at each node, etc.). When a node 

 places an order to upstream node v − 1 at time period n , then

he order must be fulfilled by time period n + ω v −1 , v . Node v after

eceiving this order at time period n + ω v −1 , v incurs t v time peri- 

ds to process it and makes the product available for v + 1 node

t time period n + ω v −1 , v + t v ( Fig. 2 ). Similarly, an order received

y node v at n time period from the downstream node (lower ech- 

lon node) v + 1 must be fulfilled in n + ω v , v +1 . Therefore, order 

ead time can be expressed as 

v , [ v −1 , v +1 ] = t v + ω v −1 , v − ω v , v +1 (4) 

We assume that λv , [ v −1 , v +1] > 0 in our model. If this condition 

s not met, then there is no need to carry any inventory at node 

 . In this case, to fulfil any order from the node v + 1 at n th time

eriod, node v can place the same order to node v − 1 at n th time

eriod. In other words, if this condition is violated, our system will 

unction as a JIT system ( Lee & Ebrahimpour, 1984 ). Obviously, JIT 

mplementation is not possible for IVSC, hence we completely dis- 

ount this possibility. 

It should be noted that processing time t v depends substan- 

ially on node infrastructure like the number of trained person- 

el, capacity, and efficiency of stocking facilities, etc.; while service 
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End customer node

v-1 v v+1 vd

Fig. 2. Node sequence. 
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ime chiefly depends on the transportation infrastructure between 

odes. Order lead time, as given in Eq. (4) , can be summed over

ll the successive nodes in the path to obtain cumulative lead time 

or a node. Mathematically, it can be expressed as 

 

p v d 
v = 

j= v ∑ 

j= r 
λ j, [ j ′ , j ′′ ] ∀ j, j ′ , j ′′ ∈ p v d , ( j ′′ , j) , ( j, j ′ ) ∈ A ; r ≥ v (5)

 

p v d 
v represents the time required for the vaccines at node v to 

each PHC node along the path p v d under no disruptions. Hence, 

stimated demand at the v th node along the path p v d during the 

ead time l 
p v d 
v is given by 

ˆ 
 

n p v d 
v = F n (n + l 

p v d 
v ) + 

l 
p v d 
v ∑ 

i =1 

�F n (n + i ) ∀ l 
p v d 
v ≤ I (6)

In multi echelon divergent IVSC ( Fig. 1 ), each node is connected 

o multiple PHC nodes through several paths. Hence, the total es- 

imated demand for each node v at the n th time period is given as 

ˆ 
 

n 
v = 

∑ 

v ∈ P 
( F n (n + l 

p v d 
v ) + 

l 
p v d 
v ∑ 

i =1 

�F n (n + i )) ∀ p v d ∈ P, l 
p v d 
v ≤ I (7)

As stated earlier, for a non-JIT implementation, l 
p v d 
v is 

on-increasing as we move downstream and λ j, [ j ′ , j ′′ ] > 0 

 ( j ′′ , j) , ( j, j ′ ) ∈ A . Further, while deriving the above expression,

e have assumed that no cycles are present in the supply chain. 

his enables us to topologically order the supply chain network 

 Haeupler, Kavitha, Mathew, Sen & Tarjan, 2012 ). In a topologically 

rdered supply chain network, l 
p v d 
v > l 

p v d 
v ′ ∀ v ′ > v ;λ j, [ j ′ , j ′′ ] > 0 . We

urther assume that a PHC is supplied by a single precursor node. 

ence, there is a maximum of one path between the NVS node 

nd PHC node pair ( v s → v d ). This assumption is consistent with 

he divergent structure of IVSC ( Dominguez, Framinan & Cannella, 

014 ). 
ˆ d 
n p v d 
v denotes the forecasted demand at the node v along path 

p v d at n th time period. ˆ D 

n 
v denotes the total forecasted demand at 

he node v in n th time period. Hence order size must be optimized 

o fulfil ˆ D 

n 
v under space, expiration, and service level constraints. 

n appropriate periodic review multi-echelon inventory model is 

roposed in the next section for this purpose. 

.2. Optimal ordering policy in no disruption scenario 

Let Q 

′ z 
v be the maximum order size which can be placed by 

ode v at the node z such that z ∈ in (v ) . in (v ) denotes the set of

ower echelon nodes directly connected to node v by arc. Q 

z 
v n is the 

ctual order size of the node v to the node z at n th time, and is the

ummation of all aged inventory from the higher echelon node z, 

ence Q 

′ z 
v = 

∑ j v = n 
j v =1 

q 
j v n 
zv . q 

j v n 
zv denotes the quantity of j v age inven- 

ories in the order Q 

z 
v n . We defined the age of the inventory as the

umber of time periods for which it stays in the system, hence we 

ave 

 n 

( j v +1)(n +1) 
v = I n 

j v n 
v −

∑ 

z∈ out(v ) 

q j v n v z ∀ j v ≤ n (8) 

At time period n = 0 , inventory level at all nodes is 0, hence 

n 

j v 0 = 0 ∀ v ∈ V (9) 
v 

343 
nd, 

j v = 0 ∀ n = 0 , v ∈ Su (10) 

lso, 

j v ≤ n ∀ n ∈ N, v ∈ V (11) 

Su denotes the initial supply node (NVS node in our case, 

 Fig. 1 )). Total inventory level at a node v in n th time period is the

um of inventories of all ages 

 N 

n 
v = 

j v ≤n ∑ 

j v =1 

I n 

j v n 
v (12) 

As stated earlier, due to inadequate storage facilities in IVSC, 

helf life and potency of vaccines are rapidly deteriorated (from 

6 weeks to 2–3 weeks). Our modelling approach ensures that the 

otal time taken by vaccines to traverse the distribution network 

hould not exceed their reduced shelf life. 

If 67% service level is required by all nodes, then 

 N 

n 
v = I N 

n −1 
v + 

∑ 

z∈ in (v ) 
O 

z 
v (n −ω z, v ) 

. Q 

z 
v (n −ω z, v ) 

−
⌈

0 . 67 ∗ ˆ D 

n 
v 
⌉

≥ 0 ∀ n ∈ N, v ∈ V 

(13) 

In Eq. (13) , O 

z 
v (n −ω z, v ) 

is the binary variable (0,1) which denotes 

hether an order was placed or not at the (n − ω z, v ) th time pe- 

iod, that is scheduled to arrive at n th period. Q 

z 
v ( n −ω z,y ) 

denotes 

eather an order was placed in this time period which is expected 

o be received in the nth time period. Further, as L.H.S. ≥ R.H.S, we 

nsure that a 67% service level is maintained according to the des- 

gnated target in IVSC. Let ρv , and h v denote the ordering cost, and 

nventory holding cost per unit respectively at node v . Let �z 
v fur- 

her denote transportation cost per unit from z th and v th node. 

ulti-echelon inventory problem (1) aims to minimize the total 

ost while maintaining a 67% service level under the no disruption 

cenario. 

Problem (1): 

inimize : 

N ∑ 

n =1 

V ∑ 

v =1 

∑ 

z∈ in (v ) 
O 

z 
v n ∗ ( ρv + �z 

v ) + 

V ∑ 

v =1 

h v 

N ∑ 

n =1 

IN 

n 
v (14) 

Subjected to: 

N 

n 
v + 

∑ 

z∈ in (v ) 
Q 

′ z 
v −

∑ 

z∈ out(v ) 

Q 

′ v 
z ≥ 0 ∀ n ∈ N, v ∈ V (15) 

N 

n 
v d ≥ 0 ∀ n ∈ N, v d ∈ V (16) 

 

z 
v n ≤ Q 

′ z 
v ∀ v ∈ V, n ∈ N, z ∈ in (v ) (17)

N 

n 
v ≤ S p v ∀ n ∈ N, v ∈ V (18) 

v [ v ′ , v ′′ ] ≥ 0 ∀ v , v ′ , v ′′ ∈ p v d ; p v d ∈ P ; ( j ′′ , j) , ( j, j ′ ) ∈ A (19)

 

z j v p v d 
v n ∗ ( j v + l 

p v d 
v + ω z, v ) ≤ �∀ n ∈ N, z ∈ in (v ) , p v d ∈ P, j v ≤ n, l 

p v d 
v ≤ I 

(20) 

 

′ z 
v n ≥ 0 ; O 

z 
v n , b 

z j v d p v d 
v n ∈ { 0 , 1 }; 0 ≤ a 

z j v p v d 
v n ≤ 1 (21)
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Eq. (14) represents the total inventory cost comprising of total 

rdering, inventory holding costs, and transportation cost of all the 

odes over planning horizon N. Constraint (15) makes sure that all 

odes can place their maximum order size in any valid time pe- 

iod n . If this constraint is not satisfied, then the maximum order 

ize parameter ( Q 

′ z 
v ) becomes meaningless. Constraint (16) is the 

ervice level constraint and ensures a 67% service level on all the 

ustomer nodes v d over N. Constraint (17) ensures that the maxi- 

um order size limitation is not violated by any node in any time 

eriod. Constraint (18) addresses space limitation on each node. In- 

entory stock in any time period and at any node should not be 

arger than what is permitted by available space for storage de- 

oted by S p v . Constraint (19) ensures that the inventory replenish- 

ent time is strictly nonnegative (following our arguments from 

ection 3.1 ). Constraint (20) ensures that the summation of age of 

nventory and the allocated path lead time does not exceed the re- 

uced shelf life denoted by � . Hence, this constraint ensures that 

igher aged inventories on a node are allocated to the path with 

ess lead time. Eq. (21) defines the range of values for decision 

ariables Q 

z 
v n , O 

z 
v n , b 

z j v p v d 
v n , a 

z j v p v d 
v n respectively. 

The optimal solution to problem (1) minimizes the total cost, 

hile ensuring a designated service level under the no disrup- 

ion scenario. It must be noted that multi-echelon inventory prob- 

em must ideally be solved through backward optimization-based 

ethod as ensuring service level at the PHC node is more impor- 

ant than the service level at any preceding node. However, our 

ost minimization inventory model is integrated with a forecasting 

odel (proposed earlier) in which demand forecasts at the higher 

chelon nodes are derived from the demand forecasts at the PHC 

odes. Therefore, MATLAB solution to our integrated model is same 

s the solution that would be obtained by solving multi-echelon 

nventory problem through any backward optimization-based algo- 

ithm. In the next section, we propose a game-theoretic model to 

dentify disruption scenarios in which minimum service level can- 

ot be ensured. 

.3. Game theoretic model to identify major disruption scenarios 

A major disruption scenario is defined as the one in which the 

ervice levels cannot be met even when order size at each node 

s maximized. Due to the extensiveness of the IVSC, size of the 

isruption scenario set is very large. Therefore, identifying major 

isruption scenarios is computationally non-trivial task as service 

evel of the supply chain must be evaluated under each disruption 

cenario. To reduce the computational complexity of the problem, 

e propose a novel game-theoretic model which efficiently identi- 

es major disruption scenario from the disruption scenario set. In 

ur game-theoretic setting, two agents namely leader and follower 

ave conflicting objectives. At the onset of disruption, the follower 

ncreases the order size to maintain the service level. The leader 

s aware of the follower’s response and tries to identify a disrup- 

ion scenario under which the follower’s best response (maximiza- 

ion of order size within the permissible limits so that constraint 

17) is not violated) will be insufficient in meeting service level tar- 

ets. Problem (2) (described by Eqs. (27) – (32) ) is formulated to 

aximize the leader objective (disrupting the service level), and its 

easibility implies that minimum customer service level cannot be 

nsured over all disruption possibilities. Each feasible solution to 

roblem (2) corresponds to a major disruption scenario, if it fulfils 

he conditions stated in Section 3.3.1 . 

To represent disruption possibilities, we use scenario-based 

odelling. In scenario-based modelling, each disruption scenario 

s characterized by a failure of one or several nodes simultaneously 

nd is denoted by �. Each node failure is associated with the fail- 

re probability and disruption recovery time as described by Babai, 

yntetos, Dallery and Nikolopoulos (2009) , and Paul, Sarker and Es- 
344 
am (2015) . Disruption recovery time of the node is defined as the 

ime required by a supply node to resume its normal operation af- 

er the onset of disruption, and is denoted by δ�
v . Disruption sce- 

ario set S comprises of all the possible disruption scenarios. 

The failure probability τ�
v of a node is determined by some ran- 

om discrete probability distribution. Disruption at each node is 

onsidered an independent event, and joint probability of simulta- 

eous disruptions at multiple nodes is calculated accordingly. Joint 

robability value is compared with design parameter α to identify 

ritical disruption scenarios. Parameter α denotes the probability at 

hich designated service level targets (67% in our case) should be 

et over the entire planning period N. 

As discussed earlier, lead time along the path increases when a 

isruption scenario is realized. Numerically, under any disruption 

cenario, it can be obtained by modifying the Eq. (5) as under 

 

�p v d 
v = 

j= v ∑ 

j= r 
λ j, [ j ′ , j ′′ ] + arg max 

x> v 
δ�

x ∀ j, j ′ , j ′′ , x ∈ p v d ; j ′′ > j > j ′ 

(22) 

Intuitively, for no disruption scenario �′ , δ�′ 
v = 0 ∀ v ∈ V . Hence,

q. (22) reduces to Eq. (5) for �′ . Further, we have l 
�p v d 
v ≥ (l 

p v d 
v =

 

�′ p v d 
v ) . When disruption scenario � is realised, then Eq. (6) , ( 7 ),

nd ( 13 ) transforms to Eq. (23) , ( 24 ), and ( 25 ) respectively. 

ˆ 
 

�n p v d 
v = F n (n + l 

�p v d 
v ) + 

l 
�p v d 
v −1 ∑ 

i =0 

�F n (n + i ) ∀ p v d ∈ P, l 
�p v d 
v ≤ I (23)

ˆ 
 

�n 
v = 

∑ 

v ∈ P 
( F n (n + l 

p v d 
v ) + 

l 
�p v d 
v −1 ∑ 

i =0 

�F n (n + i )) ∀ p v d ∈ P, l 
�p v d 
v ≤ I 

(24) 

N 

�n 
v = IN 

�n −1 
v + 

∑ 

z∈ in (v ) 
O 

z 
v (n −ω z, v −δ�

z ) 
Q 

z 
v (n −ω z, v −δ�

z ) 
− D 

n 
v 

≥ 0 ∀ n ∈ N, v ∈ V, 0 < T � ≤ min 

v ,z 
(n − ω z, v ) (25) 

Inventory level at nodes under the follower’s best response 

maximization of order size) 

N∗�n 
v = IN 

�n −1 
v + 

∑ 

z∈ in (v ) 
Q 

′ z 
v (n −ω z, v −δ�

z ) 
−

∑ 

z∈ out(v ) 

Q 

′ v 
z(n −ω v ,z −δ�

z ) 
∀ T �

= min 

z, v 
(n − ω z, v ) , v ∈ V (26) 

For a PHC node v d , we have 

 N∗�n 
v d = I N 

�n −1 
v d + 

∑ 

z∈ in (v ) 
Q 

′ z 
v (n −ω z, v −δ�

v ) 
− d 

n p v d 
v d ∀ T � = min 

z, v 
(n − ω z, v ) 

(26a) 

We have slightly abused the notation of maximum order size in 

q. (26) to emphasize that after the onset of disruption scenario �

t the time T � such that 0 < T � < N, maximum orders are placed 

y every node to maintain the service level. Eq. (26a) reiterates 

his condition for a PHC node. To identify major disruption scenar- 

os, Problem (2) is formulated as under - 

roblem (2): 

aximize : 
∏ 

S,P 

v ∈ p v d , �∈ S (τ�
v y �v + (1 − τ�

v )(1 − y �v )) (27) 

Subjected to: 

N∗�n 
v ≤ S p v ∀ n ∈ N, v ∈ V d (28) 
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N∗�n ′ 
v ′ 

d 

< 0 ∀ v ′ d ∈ V d , n 

′ ∈ (1 , N) (29) 

v [ v ′ , v ′′ ] ≥ 0 ∀ v , v ′ , v ′′ ∈ p v d ; p v d ∈ P ; v ′′ > v > v ′ (30)

 

z j v p v d 
v n ∗ ( j v + l 

p v d 
v + ω z, v ) ≤ �∀ n ∈ N, z ∈ in (v ) , p v d ∈ P, j v ≤ n, l 

p v d 
v ≤ I 

(31) 

 ≤ τ�
v ≤ 1 ; y �v = { 0 , 1 }∀ v ∈ V, � ∈ S (32)

Eq. (27) chooses a disruption scenario from the set S with max- 

mum probability of occurrence along a path. Each disruption sce- 

ario is characterised by a failure of some nodes, and non-failure of 

thers across the path. Constraint (28) , (30) , and (31) , are the same

s constraint (18) , (19) , and (20) , respectively. Constraint (29) en- 

ures that the intended customer service level at a PHC is not sat- 

sfied for a disruption scenario. Eq. (32) defines the range of values 

or decision variables τ�
v , y 

�
v respectively. 

In other words, any feasible solution to the above problem 

ould imply that for at least one disruption scenario, the service 

evel at any PHC node in a particular time period could not be met, 

ven by maximizing the order size for all the nodes. 

.3.1. Total number of major disruption scenarios 

Problem (2) in the previous section enabled us to identify dis- 

uption scenarios under which service level cannot be ensured. 

hese disruption scenarios can be further classified as major dis- 

uption scenarios if their probability of occurrence is significantly 

igh, or in other words objective_function (Problem (2)) > (1 −
) . We now describe a simple method (procedure 2.1), for extract- 

ng all such critical disruption scenarios from the set S. Let us define 

 

′ as the set of critical disruption scenarios such that S ′ ⊂ S. 

Procedure 2.1: 

Step 0: S ′ = 0 

Step 1: Identify � for which problem (2) is feasible and optimum such that 

� ∈ S, or else go to step 4. 

Step 2: If objective function (Problem (2)) > (1 − α) then 

S ′ = S ′ + { �} , S = S − { �} , or else go to step 4. 

Step 3: Go to step 1. 

Step 4: Stop. 

Emptiness of set S ′ (S ′ = φ) , and feasibility of problem (2) indi-

ate the presence of disruption scenarios under which service level 

t all customer nodes (PHC) cannot be fulfilled. However, likeli- 

ood of the occurance of these disruptions is not significantly high. 

ence, presence of these disruption scenarios does not warrant any 

dditional response. 

On the other hand, non-emptiness of set S ′ (S ′ 
 = φ) indicates 

he presence of major disruption scenarios which are capable of 

isrupting the service level with a significantly high probability. It 

ust be noted that for set S ′ to be non-empty (S ′ 
 = φ) , problem

2) must be feasible. To protect the service level in major disrup- 

ion scenarios, we recommend the use of inventory hedging strategy 

s described in the following section. 

.4. Inventory hedging strategy when S ′ 
 = φ

Inventory hedging strategy refers to allocating extra inventory 

t some nodes to protect the customer service level in major dis- 

uption scenarios. In our earlier model, maximum inventory size 

t each node was restricted by space constraints. We now assume 

hat additional inventory space can be created at some nodes at 

ome incremental cost. This may require purchasing an extra re- 

rigerator (for vaccine storage) in our context. 
345 
Purpose of this model is to cost effectively allocate additional 

nventories at several nodes to protect the customer service level in 

he major disruption scenarios. In other words, this strategy aims 

o render the problem (2) infeasible over disruption scenario set S. 

he amount of excess inventory to be carried for protection against 

isruption has been termed as strategic inventory reserve by Schmitt 

2011) . It must be noted that we don’t explore the possibility of 

olding strategic inventory reserve in a central warehouse as it ag- 

regates the risk of disruption (Pan et al., 2002; Schmitt, Sun, Sny- 

er & Shen, 2015 ). Factors like regulatory requirements and coun- 

erfeiting measures may also make the centralized strategic inven- 

ory warehousing solution infeasible. Further, cost of building and 

perating a central warehouse may be prohibitive while fortifying 

gainst disruption scenarios which are ever changing in magnitude 

nd probability of occurrence. 

Let Sp ′ v be the maximum allowable space over designated in- 

entory space S p v such that Sp ′ v ≥ S p v ∀ v ∈ V . We define βv as the

nteger decision variable whose value depends on whether excess 

nventory space of the node v is utilized for strategic inventory 

llocation. Let the holding cost for excess inventory be h ′ v . Total 

trategic inventory reserve allocated at the node v is denoted 

y q v . C v is the fixed cost of increasing the inventory space of a 

ode v from S p v to Sp ′ v . If excess space cannot be created on any

ode, then we substitute C v = M. Cost optimal strategic inventory 

llocation problem (3) is formulated as below. 

Problem (3) 

inimize : 
∑ 

v ∈ V 
h 

′ 
v q v + βv C v (33) 

Subjected to: 

V 
 

i> v 

βi q i ≥ (−IN∗�∗n 
v d ) + ∀ δ

′ �∗
v = max 

�∈ S ′ 
(δ�

v ) ; i, v ∈ p v d ; v d ∈ V d ; n ∈ N 

(34) 

∑ 

 ∈ p v d 
βv q v ≥ arg max 

�∈ S ′ 
(−IN∗�n 

v d ) 
+ ∀ p v d ∈ P, n ∈ N (35) 

 

v ∈ V 
βv q v ≥ arg max 

�∈ S ′ 
(−IN∗�n 

v d ) 
+ ∀ p v d ∈ P, n ∈ N (36) 

v q v + IN∗n 
v ≤ Sp ′ v ∀ v ∈ V, n ∈ N (37) 

v ∈ { 0 , 1 } , q v ≥ 0 (38) 

Constraint (33) minimizes the total inventory cost of carry- 

ng excess inventory. Constraint (34) allocates strategic inventory 

uantities on the lower echelon nodes if a major disruption sce- 

ario is characterised by a failure of a higher echelon node. Hence, 

t is ensured that the movement of vaccines across IVSC is not 

isrupted. Constraint (35) ensures that total excess inventory al- 

ocations along a path are greater than or equal to the maximum 

uantity disrupted over all major disruption scenarios. Constraint 

36) ensures that such allocations protect the customer service 

evel for all the subsequent time periods after the onset of disrup- 

ion. Constraint (37) honours the excess space allocation constraint. 

onstraint (38) defines the range of values that decision variables 

an take. 

By intuition, we see that problem (2) and problem (3) are mu- 

ually exclusive in terms of feasibility. Feasibility of problem (2) 

mplies infeasibility of the problem (3) and vice versa. Problem 

3) is feasible if objective_function(Problem (3)) << M . Feasibility 

f the problem (3) depends on total allowable excess space for 

he excess strategic inventory level. It is feasible if the total ex- 

ess space allocated can accommodate strategic inventory reserves 
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reater than or equal to the total service level loss over scenario 

et S ′ . A heuristic H1 is described next to efficiently solve the prob-

em (3). 

H1: 

Step 0: Compute q ∗v d = arg max �∈ S ′ (−IN∗�n 
v d ) 

+ ∀ v d ∈ V, n ∈ N, K = 0 

Step 1: For a node v ∈ p v d , identify a scenario �∗ such that 

δ�∗
v = arg max �∈ S ′ (δ�

v ) 

Step 2: Compute K v v d = (−IN∗�∗n 
v d ) + ∀ v d ∈ V . 

Step 3: Allocate q v ′ = min ((K v v d −
∑ 

i> v q i ) , (S ′ v − S v )) ∀ v ′ > v ; v ′ , v , i ∈ p v d ; if 
C v ′ + h ′ v ′ ( min ((K v v d −

∑ 

i> v q i ) , (S ′ v ′ − S v ′ ))) 

= arg min v ∗∈ p v d , v ∗> v ( C v ∗ + h ′ v ∗( min (k v v d −
∑ 

i> v q i ) , ( S v ∗ − S ′ v ∗))) ∀ i ∈ p v d 
Step 4: K v v d = S ′ v ′ − S v ′ = K v v d − min ((K v v d −

∑ 

i> v q i ) , (S ′ v ′ − S v ′ )) , βv = 1 , co 

= co + K v v d ∀ v ∈ p v d . 
Step 5: If K v v d = 0 then go to step 6 else repeat step 3 and step 4. 

Step 6: Repeat step 1 to step 5 for all nodes v ∈ p v d . 
Step 7: Repeat the step 0 to step 6 for all v d ∈ V 
Step 8: Compute St = 

∑ 

v ∈ V ( βv C v + h ′ v q v ) 
Step 9: Stop 

roposition. Optimality gap of heuristics H1 is proportional to 

o − ∑ 

v d ∈ V d q 
∗
v d 

roof. q ∗v d represents the maximum service level loss of the de- 

and node v d over disruption scenario S ′ . Hence an optimal solu- 

ion will allocate no more than q ∗v d units (strategic inventory re- 

erves) to ensure service level greater than or equal to 67% (herd 

mmunity threshold for COVID-19). Therefore, optimality gap of H1 

s proportional to co − ∑ 

v d ∈ V d q 
∗
v d . An exact algorithm must reallo- 

ate the strategic inventory reserves by ensuring that the condition 

o − ∑ 

v d ∈ V d q 
∗
v d ≤ 0 is not violated. However, computational effort 

equired for exact algorithm in a large supply chain network is pro- 

ibitively large. Efficiency of heuristic H1 can be evaluated by ex- 

ression ηH1 = 1 − co−∑ 

v d ∈ V d q 
∗
v d ∑ 

v d ∈ V d q 
∗
v d 

. Clearly, ηH1 = 1 , if co = 

∑ 

v d ∈ V d q 
∗
v d . 

n other words, efficiency of the heuristic depends upon the num- 

er of strategic inventory reserves units allocated at various nodes 

n comparison to the number of strategic inventory reserve units 

llocated by the optimal algorithm. Computational time compari- 

on and efficiency comparison on 10 sample problem instances are 

iven in Table 4 for illustrative purposes. 

. Illustrative case study on distribution of Japanese 

ncephalitis (JE) vaccine 

In this section, we demonstrate the efficacy of our model in 

valuating performance of IVSC. An instance of IVSC for distribu- 

ion of Japanese Encephalitis vaccines is considered for this pur- 

ose. Japanese Encephalitis (JE) is a common mosquito borne vi- 

al encephalitis, mostly prevalent in south-east Asia due to its 

emperate climate. It mostly affects children and young adults 

ausing them long term serious neurological morbidities like fre- 

uent tremors, paralysis, learning and behavioural problems, etc. 

 Vashishtha & Ramachandran, 2015 ). The mortality rate from the 

nfection is reported to be 25% −30% across south-east Asia ( Tiwari, 

ingh, Tiwari & Dhole, 2012 ). Though underreported, 67,0 0 0 chil- 

ren get infected and 15,0 0 0 die annually of JE ( Hills et al., 2019 ).

nderreporting of JE cases can be chiefly attributed to the fact 

hat clinical diagnosis of the infection is very difficult. Only 1 in 

00 cases develops the detectable clinical symptoms ( Tiwari et al., 

012 ). Consequently, preventive measures like vaccination, proper 

anitation, etc. are recognized as the most effective interventions 

or controlling the JE outbreak. 

In India, JE vaccines were introduced into the IVSC schedule in 

he year 2006, after a significant outbreak of infection in many 

istricts of eastern Uttar Pradesh and Bihar states, which affected 
346 
737 children and caused 1344 deaths. 7 Since 2006, Gorakhpur 

istrict, in the state of Uttar Pradesh, has been regarded as the 

picentre of the JE outbreak in Northern India. According to some 

stimates, at least 50,0 0 0 children have died of the infection in 

orakhpur in the last four decades. Actual morbidity figures are 

xpected to be much higher. 

Gorakhpur district is located in eastern Uttar Pradesh at about 

00 kilometers from Nepal border. It is one of the most flood vul- 

erable district in eastern Uttar Pradesh due to its unique location 

longside the rivers Rapti and Ami. Any increase in water level of 

haghara river blocks the flow of Rapti and Ami leading the flood- 

ng of nearby villages and towns. At least two flood incidents are 

ecorded each year. Outbreak of the infection in the Gorakhpur oc- 

urs every year between the months of April and October due to ir- 

igation patterns ( Tiwari et al., 2012 ), and the ongoing rainy season 

hich causes the river Rapti and Ami to flood. During this time of 

ear, paddy fields are waterlogged and provide excellent breeding 

ites for mosquitoes. To contain the outbreak during this period, 

he government ramps up the vaccine supply to meet the increased 

ervice level requirements. However, supply side disruptions, due 

o the ongoing rainy season, prevents any significant improvement 

n the service level through an increased supply. The rainy season 

uring this period causes frequent power cuts, reduced accessi- 

ility to rural areas by roads due to water clogging, flooding etc. 

hese disruptions increase the supply lead time as discussed ear- 

ier. Further, frequent power cuts in cold storages during this pe- 

iod also reduce the shelf life of the vaccine from 18 months to 

nly 2 weeks. 8 Reduced shelf life coupled with frequent lead time 

isruptions result in huge wastage of vaccines, and poor vaccine 

overage during peak months (April-October) in the district each 

ear. 

We consider three stages of IVSC (comprising of DVS, BVC, and 

HC nodes) for our further analysis. The DVS node represents vac- 

ine storage in the district of Gorakhpur. We have randomly se- 

ected five blocks within the Gorakhpur district (represented as 

VC nodes in Fig. 1 ) namely Sardarnagar, Urwa, Belghat, Bansgaon, 

nd Bhathat, and three PHC nodes under each BVC node. Selection 

f Gorakhpur district for our analysis is motivated by the fact that 

overnment’s inability to inoculate children in or before peak sea- 

on due to infrastructural deficiencies of IVSC, is one of the impor- 

ant reasons for not being able to eradicate this infection in this 

rea. Therefore, if not addressed properly, these deficiencies will 

revent the attainment of herd immunity targets for COVID-19. 

.1. Problem parameters 

As stated earlier, demand in IVSC is forecasted. Initial demand 

orecasts are generated by the population estimates considering 

he net migration rate, and birth cohorts each year. Population 

rowth is considered as 1% while mortality rate is assumed to 

e 25 per 10 0 0 ( Debellut et al., 2019 ). These forecasts are re-

ised monthly by the PHC manager, according to their judgement 

n the net migration rate and demand in earlier months. In the 

eak months (April-October), order size is increased by additional 

5% −20% to address the seasonality in demand. We accessed the 

ecords of the last two years on demand forecasts of all 15 PHC’s 

 Table 2 ) and used our model to generate forecasts at higher ech- 

lon nodes. Due to seasonality of the demand, we consider the 

orecasting horizon as I = 7 months (April-October). The total time 

https://wonder.cdc.gov/wonder/prevguid/p0000008/p0000008.asp
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Table 2 

Demand forecast by PHC managers during the peak demand time (As per the records). 

M 

Sadarnagar Urwa Belghat Bansgaon Bhathat 

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

Year 2017 

(April-October) 

1 142 155 120 166 176 130 179 156 180 128 123 107 117 107 113 

2 157 107 118 162 168 132 103 117 114 100 152 164 165 134 179 

3 153 140 173 114 141 112 178 104 174 163 135 104 159 167 167 

4 153 111 129 113 152 102 154 133 157 120 137 156 125 138 121 

5 147 102 124 160 126 104 171 138 110 128 128 139 146 108 144 

6 117 155 173 106 142 153 176 167 114 136 114 179 159 166 106 

7 155 142 156 141 117 125 145 125 135 105 144 133 106 143 107 

Year 2018 

(April-October) 

1 115 159 121 102 120 116 165 165 147 100 118 154 135 172 157 

2 154 133 152 100 109 157 103 129 134 145 103 125 166 152 121 

3 133 137 173 110 169 135 130 110 107 154 126 127 137 137 101 

4 144 114 158 150 168 129 115 128 179 119 100 155 135 134 148 

5 105 174 147 100 173 159 165 114 115 160 117 135 126 117 124 

6 115 105 146 155 122 148 165 154 127 164 105 129 108 157 146 

7 162 119 177 116 114 132 163 118 110 112 157 171 161 123 108 

M- Month corresponding to peak demand in two years (April-October). 

P- PHC node under various BVC. 

Table 3 

Model parameters representative values. 

Model parameter DVS nodes BVC nodes PHC nodes 

Inventory holding cost (including syringes) (Rupees/unit-period) 4–5 7–9 10–12 

Ordering cost (Rupees/order) 85–125 170–220 230–280 

Disruption lead time (days) 2–3 4–5 –

Disruption probability 0.21–0.28 0.43–0.57 –

Maximum order quantity (units/order) 775–850 350–425 100–130 

Node processing lead time (days) 1–2 0.25–0.75 –

Service Time (days) 3–5 2–4 –

Inventory holding capacity (number of units) 990–1050 450–600 100–350 

Enhanced inventory capacity at additional cost (Number of increased units) 150–250 80–150 40–60 

Cost of additional inventory space (Rupees) 2000 2500 3200 

Service level coefficient α = 0 . 92 

Table 4 

Performance of heuristic (H1). 

Problem instance ηH1 (%) Computational time advantage (%) 

1 83.5 22.4 

2 77.6 27.1 

3 86.3 19.2 

4 84.0 22.8 

5 85.2 21.1 

6 80.9 24.7 

7 81.2 23.5 

8 89.5 25.5 

9 79.6 22.2 

10 83.4 19.8 
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eriod for which the inventory model is valid is N = 12 months. 

accine shelf life is further assumed to be � = 15 days. 

To limit the complexity of the problem, we consider only one 

isruption possibility at each node, characterized by a fixed disrup- 

ion recovery time and associated probability value. Recovery time 

nd associated probability values have been estimated through dis- 

ussions with cold storage managers. A more accurate analysis can 

e carried out by assuming that disruption recovery time varies 

ith probability according to geometric distribution as described 

y Warsing Jr, Wangwatcharakul and King (2013) . Parameters of 

eometric distribution can be estimated using the moment gen- 

rating method on the disruption data as explained by Mallick and 

oshi (2018) . 

The representative values of other relevant parameters (as per 

he discussion with PHC, and BVC managers) is given in Table 4 . 

e vary the parameters within the range as described in Table 4 to 

enerate 78 random feasible instances of the problem, out of 

hich major disruption scenarios are identified in 50 instances. 
347 
ervice level of each problem instance is evaluated over entire 

orecasting horizon ( I = 7 ). It must be noted that these prob-

em instances (generated by varying the parameters within the 

ange described in Table 4 ) are representative of an actual sce- 

ario. These problems are implemented on MATLAB and results 

re analysed to develop important managerial insights in the next 

ection. 

.2. Data analysis and managerial insights 

We first discuss the problem instances in which no critical dis- 

uption scenario was identified (problem (2) in Section 3.3 is not 

easible for these problem instances). Disruptions (if encountered) 

re small in magnitude and the service level can be protected by 

ncreasing the order size within the permissible levels. From Fig. 3 

a, b) below, it is apparent that our multi echelon inventory model 

s effective in reducing the cost in IVSC under both conditions (dis- 

uption and no disruption scenarios). Under disruption possibilities 

owever, the total inventory cost of our policy is slightly higher 

 Fig. 3 b), due to the cost of carrying extra inventory ( strategic in-

entory reserve ) for protecting customer service level under dis- 

uptions. According to Fig. 4 , our model is effective in improving 

he service levels also. In Fig. 4 , service level is evaluated for all

0 problem instances over entire forecasting horizon of 7 periods 

 I = 7 ). In other words, service level is evaluated over 350 ( = 50 ×7)

ime periods. 

An in-depth understanding of model behaviour with respect 

o disruption intensity (measured as lead time increment), is 

ssential for generating practical insights, that might be useful in 

ddressing future COVID-19 related challenges. To understand the 

elationship better, we vary the disruption lead time and examine 

he trend of inventory size at various nodes. Our analysis shows 
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Table 5 

Notations used in model. 

I Forecast horizon. 

N Time period for which inventory model is valid. 

V Node set in a supply chain network. 

| V | Cardinality of the set V . 

n Time period such that n ∈ N. 

F n (n + i ) Demand forecast in period n for the period n + i . 
ˆ d n Estimated demand in the period n . 

v Node in supply chain network. 

�F n (n + i ) Forecast deviation in the period n for period n + i . 

E[�F n (n ′ )] Expected value forecast deviation over forecast horizon I∀ n ′ ≥ n . 

t v Node processing lead time. 

ω v , v ′ Service time of the node v for node v ′ . 
λv , [ v ′ , v ′′ ] Inventory replenishment time of node v when node v ′ and node v ′′ are its predecessor 

node and successor node respectively on a specific path. 

v s NVS node. 

v d PHC node. 

V d Set of demand node such that v d ∈ V d . 
p v d Path connecting the demand node v d . 

l 
p v d 
v Lead time for the node v for the path p v d . 
ˆ d 
n p v d 
v Estimated demand at the node v th at time n due to lead time along the path p v d . 

P Set of all valid path in the supply chain network. 

ˆ d 
�n p v d 
v Estimated demand at the node v th at time n due to lead time along the path p v d in 

disruption scenario �. 
ˆ D n v Cumulative demand at the node v in the n th time period. 
ˆ D �n 

v Cumulative demand at the node v in the n th time period in disruption scenario �. 

in (v ) Set of nodes in the higher echelon connected to node v . 
out(v ) Set of nodes in the lower echelon connected to node v . 
Q 

′ z 
v Maximum order that can be placed by node v at node z such that z ∈ in (v ) 

Q z v n Actual order size by the node v to the node z at n th time period. 

j v Age of the inventory when at the node v . 
Su Set of initial supply nodes. 

In j v n v Number of j v aged inventory at the node v at n th time period. 

IN n v Total inventory at the node v at n th time period of all ages. 

IN �n 
v Total inventory at the node v at n th time period of all ages in disruption scenario �. 

q j v n zv Number of j v age inventories in the order Q z v n . 

ρv Ordering cost of the node v . 
IN∗�n 

v Total inventory at the node v at n th time period of all ages when all the nodes place 

maximum orders after the initiation of disruption scenario �. 

h v Inventory holding cost at the node v . 
h ′ v Excess inventory holding cost at the node v . 
O z v n Binary variable whose value depends on whether an order is placed by node v to the 

node v such that z ∈ in (v ) . 
S p v Space available for inventory storage at node v . 
Sp ′ v Total additional space available at node v by incurring extra cost for allocating strategic 

inventory reserves. 

b 
z j v p v d 
v n Binary value variable whose value depend on whether any j v age inventories supplied 

by node z to node v in time period n has been allocated to path p v d such that z ∈ in (v ) . 
� Expiration constant in terms of number of time periods. 

S Disruption scenario set. 

S ′ Set of critical disruption scenarios. 

� Disruption scenario such that � ∈ S. 

δ�
v Disruption recovery time for the node v for the disruption scenario �. 

l 
�p v d 
v Lead time of the node v for the path p v d in disruption scenario �. 

�′ No disruption scenario. 

T � Time period at which disruption � is initiated. 

y �v Binary variable (0,1) whose value depends on whether a node v has been disrupted in 

scenario �. 

q v Total strategic inventory reserve allocated at node v . 
q ∗v d Maximum strategic inventory reserve to be allocated on the path connecting v d . 
l 
�p v d 
v Lead time of the node v for the path p v d in disruption scenario �. 

C v Fixed cost of creating an excess fixed inventory space from S p v to Sp ′ v . 
α Design parameter for service level. 

M Large number (Model constant). 

K v v d Maximum service level loss at the demand node v d due to disruption at the node v . 
ηH1 Efficiency of heuristic H1. 

�z 
v Transportation cost per unit from z th node to v th node 
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i

a

hat as we increase the lead time, inventory size at the lower 

chelon starts increasing. In Fig. 5 , high average inventory cost 

orresponds with larger inventory allocations at lower echelon 

odes (PHC). Lower echelon nodes (PHC) are characterised by 

arge inventory carrying costs. This result can be explained as 

ollows. Large lead time increases the risk of vaccine wastage due 
348 
o expiration. Hence, our model allocates the inventories at lower 

chelon nodes so that the total transit time does not violate the 

xpiration time constraint. Consequently, it is seen that even with- 

ut the realization of a major disruption scenarios, inventory cost 

ncreases rapidly as disruption recovery time increases. From our 

nalysis on sample problems, it is seen that our model allocates all 
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Fig. 3. (a) and (b). Comparison of total inventory cost. 
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he strategic inventory reserve on PHC nodes for disruption sce- 

arios characterised by probability greater than or equal 0.28, and 

isruption recovery time greater than or equal to 18% of service 

ime. These disruption scenarios are termed as critical disruption 

cenarios , and nodes failing in them are termed as critical nodes . 

ntire allocation of strategic inventory reserves on PHC nodes can 

e interpreted as the failure of inventory hedging strategy . 

Large inventory allocations on PHC nodes is cost prohibitive and 

ractically infeasible solution for the IVSC due to its skewed struc- 

ure. Skewed structure of IVSC also restricts the reallocation of in- 

entories from one PHC to other, during the demand disruption. 
349
ence inventory hedging strategy fails if critical disruption sce- 

arios are present. To protect the customer service level in these 

cenarios, increasing infrastructural resilience of the critical nodes 

s necessary. Increasing infrastructural resilience of the nodes may 

ntail installation of better cold storage facilities, purchasing more 

uality transport vans, improving reliability of transport network, 

nd skills of cold storage manager by training, etc., which is aimed 

t reducing the probability of occurrence of critical disruption sce- 

arios. This is an interesting insight as it lets us identify exact condi- 

ions under which infrastructural investment to improve IVSC becomes 

ecessary. 
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Fig. 4. Service level comparison. 

Fig. 5. Effect of disruption lead time on inventory cost‘. 
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difficult. 
It must be noted that disruption parameters (especially the 

robability of disruption) are prone to misestimation. These pa- 

ameters determine the size of strategic inventory reserve on 

odes, which in turn enable us to classify a node as critical or 

on-critical. Robustness of the model in this sense is the abil- 

ty to correctly identify critical nodes under the possibility of 

isestimation in the disruption parameters. To measure the ro- 

ustness of the model, we vary the probability value, and dis- 

uption recovery time separately within the range of ±10% , and 

ecord the corresponding changes in the size of strategic inven- 

ory reserve on various nodes. Our numerical analysis suggest that 

he quantity of strategic inventory reserves is less sensitive to 

he variations in probability values of disruptions as compared to 
350 
he variations in disruption recovery lead time. This can be at- 

ributed to our modelling approach in which we focus only on 

ajor disruption scenarios. As stated earlier, a major disruption 

cenario is one which satisfies the conditions stated in Section 

.3.1 . Hence, overestimation and underestimation in the probabil- 

ty value of major disruption scenarios, and non-major disruption 

cenarios respectively, affect the quantity of strategic inventory re- 

erves on PHC nodes for a very small range of values. Misestima- 

ion of probability values beyond this range does not cause strate- 

ic inventory level quantities to change. Robustness of our model, 

ith respect to variation in probability values, increases its prac- 

ical utility as estimating disruption probabilities in IVSC is very 
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Our forecasting model is valid if l 
p v d 
v ≤ I. Simply put, the total 

umulative lead time along any path cannot be greater than 

he forecasting horizon. This condition may get violated during 

arge epidemic breakouts, as forecasting horizon must be reduced 

o maintain the forecasting accuracy ( Petropoulos, Makridakis, 

ssimakopoulos & Nikolopoulos, 2014 ). According to our data 

nalysis, reduction in forecasting horizon from 7 months to 5 

onths, makes 69 out of 78 problem instances infeasible. Further, 

ur data analysis also suggests that about 60% −70% of the useful 

ife of the vaccine is already exhausted by the time the vaccine 

eaches PHC. The cumulative effect of these two factors may result 

n a major supply-demand mismatch and wastage due to expira- 

ion, while distributing the COVID-19 vaccine in the future. Hence, 

he Indian government must invest in developing better forecasting 

echniques (to increase the forecasting horizon) and transportation 

nfrastructure (to reduce the extent of total useful life spent during 

ransportation) for addressing the future challenges related to the 

istribution of the COVID-19 vaccine. 

. Theoretical contribution 

An important theoretical contribution of this paper is the devel- 

pment of strategic inventory model for divergent supply chain. As 

entioned earlier, constraint (34) in our model allocates strategic 

nventory quantities on the lower echelon nodes if a major dis- 

uption scenario is characterised by a failure of a higher echelon 

ode. Hence, it is ensured that the movement of vaccines across 

VSC is not disrupted. This would require an optimal algorithm to 

dentify the disruption scenarios under which a node fails and up- 

ate strategic inventory at all downstream nodes for each disrup- 

ion scenario. Therefore, complexity of the optimal algorithm will 

epend on the number of supply chain nodes and the size of dis- 

uption scenario set. Hence, for an extensive supply chain like IVSC, 

n optimal algorithm will incur a huge computational time. 

To reduce the computational time, we propose an efficient 

euristic which starts allocation at the higher nodes and reallo- 

ates strategic inventory reserves only when downstream nodes 

ail under major disruption scenario. While developing this heuris- 

ic, we have exploited an important property of the IVSC that 

nventory carrying cost of downstream node is higher as com- 

ared to the inventory holding cost at upstream node, and failure 

f downstream node is less critical to service level than the failure 

f upstream node (due to divergent structure of IVSC). Our heuris- 

ic can be implemented to allocate strategic inventory reserves 

n any divergent supply chain with similar characteristics. For 

eneral extensive supply chains with divergent structure (without 

his property), evolutionary heuristics can be developed. Recent 

dvances in literature on application of these methods on exten- 

ive supply chains can be referred for this purpose. For example, 

hishtandar (2019) has developed chance constrained model for a 

iogas supply chain, and later proposed a hybrid Monte Carlo – ge- 

etic algorithm-based method to solve it. Similarly, Cheraghalipour, 

aydar and Hajiaghaei-Keshteli (2019) has developed a bi-level 

athematical model for rice supply chain, and later proposed a 

ybrid Taguchi-genetic algorithm-based method to solve it. 

We have compared the performance of our heuristic, on ran- 

omly chosen 10 problem instances and solved them optimally and 

euristically in MATLAB. Comparison results are shown in Table 4 . 

t can be clearly seen for small number of sample problem in- 

tances, heuristic H1 renders a significant computational time ad- 

antage at the cost of smaller loss in efficiency. 

. Limitations and future developments 

Demand for JE vaccine at PHC node is forecasted according to 

he factors like birth rate, infant mortality rate, etc. Since the ob- 
351 
ective of the Indian government is the complete eradication of the 

nfection, ideally 100% service level is desired. In other words, de- 

and for JE vaccine in a region is equal to the number of eligible

hildren who have not been inoculated up till now. In contrast, 

bjective of COVID-19 vaccine distribution is attainment of herd 

mmunity which can be achieved by inoculating 67% of the pop- 

lation. Therefore, to make our analysis more representative for 

he COVID-19 vaccine distribution, we have used 67% as the de- 

ired service level instead of 100%. In other words, we evaluate the 

ffects of infrastructural deficiencies on achieving herd immunity 

argets for COVID-19 infection. 

However, certain limitations still persist which can be ad- 

ressed to make the analysis more accurate for COVID-19 scenario. 

or instance, some parameters for the distribution of COVID-19 

accine may not honour the representative values for the distri- 

ution of JE vaccine in our case study (ordering cost, shelf life, ser- 

ice time, maximum order quantity, may be different for JE and 

OVID-19 scenario). Hence, we recommend to analyse small sec- 

ion of IVSC by using COVID-19 specific parameters in our model 

o develop COVID-19 specific criteria for identifying nodes as criti- 

al or non-critical. In the absence of COVID-19 specific data, criteria 

eveloped for JE can be used heuristically to identify critical nodes 

n COVID-19 vaccine distribution scenario. Nodes identified as crit- 

cal, must then be considered for infrastructural overhaul to ensure 

ervice level targets for achieving herd immunity. 

In contrast with JE, COVID-19 is a contagious disease, so de- 

and of the vaccine would depend upon other factors like repro- 

uction number, transmission rate, etc. Since immunological mem- 

ry of the human body from the infection is now estimated to be 

 months ( Dan et al., 2021 ), efficient delivery schedules can be de- 

eloped by prioritizing the inoculation in people who have never 

ot infected or have recovered from the infection since more than 

 months. In this context, SIR and SIS models must be used to 

orecast demand at the PHC node for COVID-19. Demand forecast 

t the upstream nodes can later be calculated by our forecasting 

odel as described in Section 3.1 . In our case study, we have used 

actors like birth rate, infant mortality rate, etc. to forecast demand 

n the PHC node to illustrate the traditional forecasting as done 

y PHC manager in Indian Vaccine Supply Chain. It must be men- 

ioned here that our modelling approach assumes demand forecast 

t the PHC nodes to be already given and hence there is no re- 

triction on using any forecasting technique (SIS and SIR models) 

o forecast demand at the PHC node. 
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