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The 3D convolutional neural network is able to make use of the full nonlinear 3D context information of lung nodule detection
from the DICOM (Digital Imaging and Communications in Medicine) images, and the Gradient Class Activation has shown to be
useful for tailoring classification tasks and localization interpretation for fine-grained features and visual explanation for the
internal working. Gradient-weighted class activation plays a crucial role for clinicians and radiologists in terms of trusting and
adopting the model. Practitioners not only rely on a model that can provide high precision but also really want to gain the respect
of radiologists. So, in this paper, we explored the lung nodule classification using the improvised 3D AlexNet with lightweight
architecture. Our network employed the full nature of the multiview network strategy. We have conducted the binary classi-
fication (benign and malignant) on computed tomography (CT) images from the LUNA 16 database conglomerate and database
image resource initiative. The results obtained are through the 10-fold cross-validation. Experimental results have shown that the
proposed lightweight architecture achieved a superior classification accuracy of 97.17% on LUNA 16 dataset when compared with

existing classification algorithms and low-dose CT scan images as well.

1. Introduction

Lung cancer is the most commonly [1] discovered dangerous
cells and additionally one of the most perilous cancer tissues
that lead to fatality among males in 2019. Exactly, bronchi
cancer tissues have actually happened to be a primary risk to
personal everyday lifestyle. Low-dose computed tomogra-
phy (CT) is actually a valuable method for pinpointing lung
cancer tissues [2] early. A choice to recognition through
these predefined features is by using component finding
methods to find first-class depictions straight from the in-
struction [3] and relevant information. Convolutional
neural networks (CNNs), like a swiftly, scalable, and also
end-to-end finding-out neural network, considerably

evolved the landscape of goal findings, such as in image
classification, medical diagnosis [4], and semantic division.

Thoracic CT creates a volume of pieces that may be
regulated to reveal several volumetric pictures of physical
structures in the bronchi. 2D convolution dismisses the 3D
spatial size, indicating that it is actually incapable of making
complete usage of the 3D condition pertinent [5] infor-
mation, and 3D CNN can, definitely, be in harmony with
this. Our goal is to check empirically the trouble of deter-
mining bronchi acnes captured through computed to-
mography (CT) in an end-to-end means making usage of the
3D convolutional neural network (CNN) effectively to
perform a binary distinction [6] (benign and malignant) on
CT pictures [7] from the Lung Image Database Consortium
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picture variety (LUNA 16 Dataset). Our major contributions
are as follows:

(1) 3D CNN is used for the automated distinction of
bronchi blemishes. Reviewed with the 2D design, 3D
CNNs can effortlessly encode richer spatial infor-
mation to eliminate additional unique symbols.

(2) Multiview places are actually utilized in our designs.
Our staff use the multiview-one-network strategy
that contrasts and arises from the one-view-one-
network technique used in the study. Completion
leads to the fact that our technique may achieve a
decreased mistake rate than the one-view-one-net-
work approach while using far fewer requirements.
Note that while the layout used a similar approach
and 2D CNN is simply utilized, our group used 3D
CNN in this paper.

(3) To the best of our knowledge, this is the first study to
use 3D AlexNet substitutes of Inception as well as
Inception-ResNet to categorize lung imperfections.

(4) Our model attained a much better outcome than the
remaining models associated with the differences in
CT.

We utilize 3D CNN for the automatic distinction of lung
Cancer. The 2D multiview areas are actually used in our
styles. Our team used the improvised 3D AlexNet.

Recently, deep neural nets have shown superior per-
formance and classification problems and 2D convolutional
neural networks [8]; they look at a slice of the CT scan
normally. CT scan data is 3D [9], so it will have many
different slices. 2D CNN scans multiple angles [10] of that
CT scan data and then that can allow for higher accuracy. So,
obviously, 2D CNN is one approach but 3D CNN uses the
tull nature of the 3D data. Instead of the 2D data, we are
having higher accuracy and specifically low knowledge
section tasks, and we can think about this from the human
perspective to get a better idea. This allows them to do a
better diagnosis [11] of whether it is a lung nodule or not, so
the same thing applies to the convolutional neural network.

This paper is organized as follows. In Section 2, related
work and gap identification were thoroughly reviewed.
Section 3 deals with the overview 2D convolutional neural
network and 3D CNN and utilization for the current
problem. Section 4 proposed the work, and Section 5 ex-
plains the experimental results and analysis.

2. Related Works

Lung cancer is the leading cause of cancer deaths for both
men and women, making up almost 26% of all cancer deaths
worldwide. The survival rate for five years is just 17 percent.
Early diagnosis increases the probability of success and
prognosis dramatically. Owing to the amount of data in-
volved, diagnosis of lung nodules is time-intensive and often
suffers from interradiology heterogeneity. A commonly used
method for screening for lung cancer is computed tomog-
raphy (CT). The purpose of screening is to diagnose in-
fection at the earliest possible point.
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In [12], LIDC/IDRI dataset is used where the researchers
have used the intrinsic CNN features, and 431 malignant
nodules and 795 benign nodules were extracted, and the
input for SVM was sequential forward feature method to
construct the classifier. The researchers attained an accuracy
of 85%.

In [13], LUNA 16 dataset is used where the researchers
proposed the deep hierarchical semantic convolutional
neural network with cross-validation and achieved an ac-
curacy of 89%; 1386 nodules were used: 90% is for testing
and 10% is for training.

In [14], LUNA 16 dataset is used where researchers
performed a two-stage convolutional neural network
strategy. The first stage is to refine the input CT image, and
the second stage is simplified Google Nets for improvised
classification. The authors have achieved an accuracy of
89.6% where they used 90% for training and 10% for testing
out of 888 thoracic cancer images. In [15], LUNA 16 dataset
is used where the researchers used 11 Deep CNN models.
Modified CNN architecture integrated them and adopted
transfer learning. An accuracy of 88% was achieved (0.94).

In [16], LUNA 16 dataset was investigated with 3D
convolutional neural network techniques. Researchers tried
to reduce the false-positive ratio in the first stage and used
the classification label over union self-normalization and
interclass variation for density, shape, and size. They
achieved an accuracy of 91% with 888 thoracic images with
90% for testing and 10% for training. The 3D convolutional
neural network was used for differentiating preinvasive le-
sions from invasive adenocarcinomas appearing on ground
glass nodules with diameter <3 cm using HRCT. In [17],
LUNA 16 dataset was used. The authors adopted a 3N
convolutional neural network and processed using the lung
mask extraction and achieved an accuracy of 89%.

In [18], the UCI dataset is used as an input and the
authors used binarization procedure to contrast it with edges
to identify the lung cancer growth. The researchers [19] had
used multiview convolutional neural network and con-
ducted binary classification and ternary classification. They
achieved an accuracy of 70.7% on the LIDC-IDRI dataset.
The authors stated that by using multiview convolutional
neural network, the error rate can be decreased. Soft acti-
vation mapping [20] techniques were used for finding the
low-grade malignant nodule. For feature selection, the au-
thors used a high-level feature enhancement scheme to
localize the shape nodule. The researchers in [21] used the
pretrained weighted model on the LIDC-IDRI dataset and
feature selection and handcrafted texture descriptors and
achieved an accuracy of 78%. The literature survey from
[12-18] clearly shows that classification of the lung nodule
should be improvised with better accuracy, and in [19-21],
the authors had proposed a heavyweight model due to which
the training process takes an enormous amount of time, and
also it will give different results on different machines. It is
not interpretable to individuals in the domain, no matter
how strong the deep learning model is. It is very difficult for
them to follow it. So, all models have recently been known to
have very strong accuracies, particularly deep learning
models. But if the domain specialist does not believe the
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model, it does not mean much. Since it will not really gain
acceptance, the idea is how we can use techniques such as
gradient-weighted class activation mapping or Grad-CAM
to visualize the decision-making of the model and increase
the trust of radiologists and enhance adoption in the field by
employing the lightweight process model.

3. Convolutional Neural Network

A new architecture called a convolutional neural network
(CNN) [22] consists of the input and output like any other
deep learning method and it will have layers called con-
volutional layers and max-pooling layers. The general idea
summary is shown in Figure 1.

The general idea is that the input will go through a series
of convolution and max-pooling layers, just like other re-
searchers [23], and then this will map some fully connected
layers at the end which map an output.

3.1. Convolutional Layer. The kernel will convolve [24] over
the input, so it will start at the left and will go to the next
layer, and then dot product is taken between the kernel and
the input. This output feature map like convolution neural
layers can detect certain features in the image. Figure 2
explains the working of 2D Kernal and the sliding of Kernal
over the input image. The feature was extracted from the
convolution layer.

3.2. Max-Pooling Layers. The idea is that convolution layers
can detect the edges of the little edges on the CT scan. The
convolutional layers can detect certain parts of the CT scan
which may be the benign nodule or the malignant nodule,
and finally, the last few layers will detect the entire benign
nodule. Figure 3 shows a 3D kernel for the proposed ar-
chitecture. So, this is the main layer that makes up the
convolutional neural network.

But another critical layer is also the max-pooling layers
which basically take the max value in a certain area and pull
it into a singular value. Max pooling is actually a merging
procedure that decides on the maximum component coming
from the area of the attribute chart dealt with due to the
filter. Hence, the outcome after max-pooling level would
certainly be a feature chart having the most prominent
highlights of the previous feature map. The max-pooling
layer reduces the dimensions [25] of the data and this allows
for quicker computation.

Max-pooling layers which reduce dimensions allow for
better computational speed and reduce overfitting. So, each
CNN layer has features of increasing complexity. The first
layer learns edges and corners things like that, and then, as
we go further, the intermediate layers will learn more
complex parts of the object, and finally, the last layers will
detect full objects.

3.3. 3D Convolutional Neural Network. 3D CNN is essen-
tially the same thing except for the fact that your input will
be 3D data, instead of being a singular layer. Filters will also

be 3D. So instead of detecting 2D features such as edges and
corners, it will detect the same features but in the 3D fashion
[26], which is really critical especially in this lung nodule
case because all the data is of 3D nature.

The working idea is that this 3D data is inputted. It goes
through some 3D kernels and then it is classified as either
healthy or diseased; in this case, one module exists in that CT
image or a long module does not exist. So, in addition to this
CNN, other deep neural network medical image analyses [27]
have been black boxes giving users no intuition as to how they
are predicting. Figure 4 shows the architecture of 3D CNN.

4. Proposed Model

The superior outcome in real-time environments is not
proven to be effective; however, due to the lack of trans-
parency in the previous models, there are esteem challenges
for real-life implementation. By highlighting discriminative
areas, gradient-weighted class activation mapping (Grad-
CAM) offers visual descriptions. This research produces a
3D CNN for better confidence and acceptance with state-of-
the-art precision and visual perspectives. In the process of
debugging and optimization, visual perspectives help. The
first study reveals that in lung nodule classification, Grad-
CAM techniques [28] will provide visual interpretations for
model decisions. 3D convolution neural networks that make
good use of the 3D structure of input data detect lung
nodules with greater precision. The flow of the suggested
architecture is shown in Figure 5.

4.1. Gradient Weight Class Activation. Gradient-weighted
class activation mapping techniques can provide visual
explanations for model decisions in lung nodule detection by
highlighting discriminative regions. This is a very powerful
approach for figuring out how we can make the model
interpretable for people in the domain. We provide visual
insights into how exactly the model is making its decision.
This will allow for better trust and adoption in the field, in
addition to validating the model and updating it across the
debugging and optimization process. We can look at these
visual insights and see where the model is failing and why the
model is failing, and we can address this by changing the
architecture of the model. This study demonstrates Grad-
CAM techniques for visual nations on one module classi-
fication. The objective here is to research and develop 3D
CNN to detect lung nodules and CT scan data with better
accuracy and higher trust in existing models, and this is to
ultimately aid in the early detection of lung cancer to im-
prove chances of survival and prognosis.

1
a 1
YGrad—Cam = Z wg; Z 1 Z Ag (1)
p i
Let us define J? to be average pooled global output.

1
=2 x DAL (2)
J

i

Grad-CAM computes the end scores by



Feature maps

|

[ Sub-sampling
Convolutions

Feature maps

Journal of Healthcare Engineering

Feature maps Output

| N Fully

Sub-sampling connected

Convolutions

Figure 1: Convolutional neural network.

s L] =
pusag- 8 e i

Input feature maps Output feature maps

FIGURE 2: Input and output feature maps over convolutional layer.

FIGURE 3: Max pooling in CNN.
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where w} is the weight connecting the Kth Feature map.
Taking the gradient class score (J#) w.r.t to feature map,
we get
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Taking partial derivation (4) w.r.t. Af}, we can see that
oJP /SAZ =1/z. Substituting this into (4), we get
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From (3), we get

Summing both sides of (6),
8y°
Z Z wi = Z z % . (7)
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77 P04y
Therefore,
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W =2 2 5ar (8)

We may thus conclude that Grad-CAM is a strict CAM
generalization. This generalization helps the researcher to
produce a visual description from the 3D CNN-based model
for professional developers that will make the method
streamlined and convoluted. As a result, in the computer
tomography images, we can get the same nodule area. We
execute a weighted combination of activation maps of
forwarding and follow it with a ReLu to obtain the following
equation for the nonlinearity. Activation function has been
applied to each layer component of the output feature map;
thus, due to this, it will add nonlinearity to the CNN. We
have used the rectified linear unit as the activation function
in the proposed algorithm. It works as follows:

a c Ak
LNE 4 cam = ReLu<Z al A > (9)
k

5. Experimental Results and Discussion

5.1. LUNA 16 Dataset. LUNA 16 dataset [29] includes 888
clinical thoracic CT scans. CT scans with slice thickness
greater than 3 mm or with inconsistent slice spacing were
excluded. Image annotation was done by four experienced
thoracic radiologists. Each radiologist marked the lesions
they identified as nonnodule, nodule <3 mm, and nodules
>=3mm. The reference standard is all nodules >=3mm
accepted by atleast 3 out of 4 radiologists. Figure 6 shows the
benign and malignant images.

5.2. Study Design. We split the data into training and testing
datasets as well as validation. We design and implement a
model, and we train that model to validate that model on the
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FIGURE 5: Proposed architecture.

validation dataset. And we iterate through this process to
know how our model is performing. We can change the
architecture, we can put on average pooling, and we can add
more layers to change the filter sizes. We want to know how
exactly we can make the model as good as possible and then
we evaluate our test dataset, so the idea here is that the test
dataset can only be used once because we do not want to
train for test dataset or optimize the model for the test
dataset. The idea is that we hold out a test dataset to be used
at the very end only once, and finally we visualize a model
using Grad-CAM. Figure 7 shows the study design.

5.3. Split and Preprocess Data. A balanced dataset of 1,000
nodules and 1,000 nonnodule volumes was used. Data were
divided into three sets for training, validation, and testing,
randomized, and split into 1,400 volumes for training and
600 for testing. 10% of the training data (140 volumes) was
used for validation.

5.4. Architecture and Implementation. From the tables, we
will summarize various architecture models. Table 1 explains
the AlexNet 2D (H. Xie et al., 2019) [3], Table 2 explains the
AlexNet 3D (IEEE Signal Processing Society, n.d.) [16]
model, and Table 3 summarizes the proposed architecture
network model. In our improvised algorithm, the network
size used was 27:27:27:16, and we have chosen random
weight max values as 1. The generalization behavior of our

network with various obtained results was fixed size but the
network training size was increasing.

5.5. Training Process. Figure 8 explains the training process
on the LUNA 16 dataset. Images X from the training dataset
were fed into the model. The output was compared with the
training label y, the loss is computed, and the model is
updated with new parameters. During the iterative training
process, a SoftMax activation function was used on the
estimates before the loss was calculated. Cross-entropy was
used as the loss function to be optimized. All the models
used Adam optimizer with a learning rate of 0.0001 and
default parameters f1=0.9 and 52 =0.999. Table 4 explains
the key matrices.

6. Results and Discussion

The “Area Under Curve” (AUC) is revealed once we make a
distinction between the binary classification effectiveness
and that of additional classifiers. The curve explains the
receiver operating characteristic (ROC), a normal strategy
for concise classifier enactment over a range of compromises
among actual positive along with false-positive mistake
prices. The AUC is an approved typical efficiency statistic for
a ROC curve and approaches the chance that the classifier or
feature will absolutely place randomly selected beneficial
circumstances above arbitrarily chosen damaging circum-
stances. That is, the AUC can be made to represent the
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FIGURE 6: (a) Nodule image. (b) Nonnodule image.
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FiGure 7: The study design of the proposed model for lung cancer classification.
TaBLE 1: AlexNet 2D CNN model. TaBLE 2: AlexNet 3D CNN model.
Layer Output shape Param (#) Layer Output shape Param (#)
Conv 2d (conv 2D) (None 32, 32, 16) 272 Conv 3d_1 (conv 3D) (None 32, 32, 32, 16) 8208
Batch_normalization_v1 (None 32, 32, 16) 64 Batch_normalization_v1l (None 32, 32, 32, 16) 64
Max_pooling 2D (None 32, 32, 16) 0 Max_pooling 3D_1 (None 16, 16, 16, 16) 0
Conv2d_1 (None 32, 32, 32) 4640 Conv3d_1 (Conv 3D) (None 16, 16, 16, 32) 13856
Batch_normalization_v1_1 (None 32, 32, 32) 128 Batch_normalization_v1_2 (None 16, 16, 16, 32) 128
Max_pooling 2d_1 (None 32, 32, 32) 0 Max_pooling3d_2 (None 8, 8, 8, 312) 0
Conv2d_2 (None 32, 32, 64) 18496 Conv3d_3 (None 8, 8, 8, 64) 55360
Batch_normalization_v1_2 (None 32, 32, 32) 256 Batch_normalization_v1_3 (None 8, 8, 8, 64) 256
Conv2d_3 (None 32, 32, 32) 36928 Conv3d_4 (None 8, 8, 8, 64) 110656
Batch_normalization_v1_3 (None 32, 32, 32) 256 Batch_normalization_v1_4 (None 8, 8, 8, 64) 256
Conv2d_4 (conv 2D) (None 8, 8, 32) 18454 Conv3d_5 (conv 2D) (None 8, 8, 8, 32) 53328
Batch_normalization_v1_4 (None 8, 8, 32) 128 Batch_normalization_v1_5 (None 8, 8, 8, 32) 128
Max_pooling 2d_2 (None 8, 8, 32) 0 Max_pooling2d_3 (None 4, 4, 4, 32) 0
Flatten layer (None, 512) 0 Falatten_1 (flatten layer) (None, 2048) 0
Dense layer (None, 200) 102600 Dense_1 (dense layer) (None, 200) 409800
Batch_normalization_v1_5 (None, 200) 800 Batch_normalization_v1_6 (None, 200) 800
Dropout (dropout) (None, 200) 0 Dropout_1 (dropout) (None, 200) 0
Dense_1 (dense layer) (None, 75) 15075 Dense_2 (dense layer) (None, 75) 15075
Batch_normalization_vl_6 (None, 75) 300 Batch_normalization_v1_7 (None, 75) 300
Dropout_1 (dropout) (None, 75) 0 Dropout_2 (dropout) (None, 75) 0
Dense_2 (dense) (None, 2) 152 Dense_3 (dense) (None, 2) 152

classifier’s capability to recognize examples. High AUC
numbers close to 1 indicate a good measure of separability.
The proposed 3D CNN performed the best with an AUC of
97%. Figure 9 shows the performance matrices.

Model performance key metrics and also visual insights
were generated through the area elevation curve (AEC). The
CNNs had good AEC close to one showing that they have a
good supper ability and they are able to perform well in the
detection task. Alex 3D CNN with an AEC of 95% per-
formed better than the 2D CNN with 94%, and the proposed
3D CNN performed the best with an AUC of 97%, which
shows that these optimizations that are done over iterations
and validated are effective in increasing the model classi-
fication ability.

We need to highlight that this 94% recall value might
only be three percent greater than Alex Net 2D CNN, but
even a point zero one increase in the recall is like saving
another patient living out of 100. This recall value is really
critical. In particular, by maintaining the same precision, we
able to increase this recall without sacrificing too much in
precision. We are basically finding patients who were not
suffering from cancer and found them by early detecting this
long module.

The accuracy of the AlexNet of the 3D CNN is better
than that of the 2D CNN. The optimized 3D CNN per-
formed the best and it also has better recall precision values
compared to the 2D CNN. So this is probably the most
critical part of it as it provides visual insights into the model
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Layer Output shape Param (#)
Conv 3d_1 (conv 3D) (None 27, 27, 27, 16) 3472
Batch_normalization_v1l (None 27, 27, 27, 16) 64
Conv3d_1 (Conv 3D) (None 27, 27, 27, 16) 2064
Batch_normalization_v1_2 (None 27, 27, 27, 16) 64
Conv3d_3 (None 27, 27, 27, 16) 16400
Max_pooling3d_2 (None 8, 8, 8, 312) 0
Batch_normalization_v1_3 (None 23, 23, 23, 16) 64
Max_pooling3d_1 (None 11, 11, 11, 16) 0
Conv3d_4 (None 10, 10, 10, 32) 4128
Batch_normalization_v1_4 (None 10, 10, 10, 32) 128
Conv3d_5 (conv 2D) (None 9, 9, 9, 32) 8224
Batch_normalization_v1_5 (None 9, 9, 9, 32) 128
Max_pooling3d_2 (None 4, 4, 4, 32) 0
Conv3d_6 (conv 2D) (None, 3, 3, 3, 64) 16448
Dense_1 (dense layer) (None, 200) 409800
Batch_normalization_v1_6 (None, 3, 3, 3, 64) 256
Max_pooling3d_3 (None, 1, 1, 1, 64) 0
Flatten_1 (Flatten layer) (None, 64) 0
Dense_1 (dense layer) (None, 256) 16640
Batch_normalization_v1_7 (None, 256) 1024
Dropout_1 (dropout) (None, 256) 0
Dense_2 (dense) (None, 2) 514
Updated

model

Model

.
- @
n— S = model

parameter

FiGure 8: The training process of the model.

TaBLE 4: Key matrices with definitions.

Total population

True condition

Condition positive

Condition negative

Predicted condition
Predicted positive
condition Predicted condition
negative

True positive

False negative (type II error)

True positive rate (TPR), recall, Sensitivity = ) true

positive/Y condition positive

Accuracy (ACC) = (Y true positive + ) true

negative)/ total population

F1 score=1/((1/recall + 1/precision)/2)

False positive (type I error)

True negative

False-positive rate (FPR) = ) false positive/

Y condition negative

Precision = ) true positive/) predicted

condition positive

Specificity (SPC), selectivity = ) true

negative/ condition negative
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FIGURE 9: Performance metrics of the proposed model with other models.

TABLE 5: Accuracy of CNN with different models.

CNN AUC Accuracy F-score Precision Recall
AlexNet 2D-CNN 0.94 87.67 0.89 0.85 0.91
AlexNet 3D-CNN 0.95 89.17 0.91 0.91 0.88
Proposed 3D-CNN 0.97 97.17 0.92 0.87 0.94

TaBLE 6: Comparison between the existing system and the proposed system on LUNA 16 dataset.

Experimental results

LUNA 16 dataset information Existing method Proposed method
;0 SI;I;.p ;)efs Tr;z;:;ng Te(s(;oi;g Authors Results (%) 2D 1(&(;::))(Net 3D 1(\01/:))(Net Proposed(;l? AlexNet
1 888 90 10 Xie et [21] 2019 A;c;{;cy A;C;j‘;cy A;%‘gzcy Accuracy =97.17
2 1018 % o TeRelEh 209 Ay Ay AGEY Accuracy=9717

FiGure 10: Visualizing the trained CNN original images on the left. Grad-CAM images on the right.

of a full CT scan, we can show exactly what point on that
huge CT scan is giving an insight into the radiology.

The effectiveness of applying gradient-weighted class
activation mapping shows how it can really provide good
visual explanations to the fact that why the model is pre-
dicting what it is predicting, so this is quite critical because,
sometimes, the general theme is that if you can really make

decision-making. Tables 5 and 6 show the performance of
the proposed model in comparison to other models.
Finalized CNN was visualized using Grad-CAM to
understand how the model is making decisions.
In Figure 10, the images on the left are the input images
that are fed into the network. We used the images on the
right for the Grad-CAM-generated maps. From the map out
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the model interpretable, it can be really useful to clinicians
and radiologists in terms of trusting and adopting the model,
and all practitioners do not just want to have a model that
can provide high accuracies but really wanted to do
something in the actual field, so that is why this Grad-CAM
analysis is so critical.

7. Conclusions

In this paper, three crucial deep neural networks were made
and also widely assessed. The forecast in the classification of
benign and malignant lung blemishes was contrasted in
LUNA 16 dataset. The experimental outcomes suggest that
the improvised 3D-CNN archived the very best efficiency
than the 2D AlexNet and 3D AlexNet. The layers of the
semantic network in this paper are reasonably tiny and light,
because of the constraints of the data collections. The
proposed approach can be expected to boost the accuracy of
the other data sources. The technique can be generalized to
the style of high-performance CADx systems for other
medical imaging jobs in the future.

8. Future Work

In turn, the class activation maps are analyzed to refine the
network to succeed in conditions where it does not perform
well. The CNN uses max-pooling to address the problem
which is class invariants, but for the biomedical images, we
need class equivalence, but the major issue here is that a lot
of significant data is lost in the process, and also CNN is a
bad representation to the human visual system. Capsule
neural network is the best and uses class equivalence to store
and mimic the human vision system. Its significance indi-
cates that capsule neural networks can train on far less data
and produce more accurate results.
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