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Abstract

This article reviews the evidence for sex differences in vulnerability to addiction with an emphasis 

on the neural mechanisms underlying these differences. Sex differences in the way that the 

gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in 

sex differences in motivated behaviors, including drug seeking. In rodents, repeated 

psychostimulant exposure enhances incentive sensitization to a greater extent in females than 

males. Estradiol increases females’ motivation to attain psychostimulants and enhances the value 

of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. 

This, along with females’ dampened ability to alter decisions regarding risky behaviors, enhances 

their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may 

be protective against susceptibility towards drug-preference.

Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding 

how future research might enhance understanding of the mechanisms of sex differences in 

addiction-related behaviors, which are dependent on estradiol receptor subtype and the region of 

the brain they are acting in. A comprehensive review of the distribution of ERα, ERβ, and GPER1 

throughout the rodent brain are provided along with a discussion of the possible ways in which 

these patterns differentially regulate drug-taking between the sexes.

The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry 

of the stress system, including the hypothalamic pituitary adrenal axis and regulation of CRF. Sex 

differences in the stress system can also contribute to females’ enhanced vulnerability towards 

addiction.
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Introduction

This article discusses how drug taking differs between males and females, with a focus on 

sex differences in the psychostimulants and the transition from initial drug use to repeated 

chronic abuse, which can make females more vulnerable. “Vulnerability” is defined here as 

the extent to which an individual is susceptible to experience the neuroplastic changes that 

result in addiction or addiction-like behaviors. For example, depression, which occurs more 

frequently in females than males, contributes to increased consumption of drugs of abuse1,2. 

The gonadal hormone estradiol, and estradiol receptor localization, influence motivation for 

drugs of abuse and in turn can induce neuroplastic changes that result in drug addiction, also 

referred to as substance use disorder.

Male and female brains differ as a consequence of sexual differentiation during prenatal and 

postnatal development. The sexually differentiated brain interacts with hormone events in 

the adult, related to the reproductive cycle in females, for the expression of sex differences in 

addiction3. The developmental path of an individual depends on early exposure to hormones 

produced by the fetal testes or the absence of these hormones in females. Testosterone 

produced by the testes, crosses the blood brain barrier, and is converted to estradiol by 

aromatase4. Thus, estradiol is the hormone that plays a primary role in the development, and 

sexual differentiation, of the brain thereby masculinizing the naïve brain4 and is important 

for reproductive function in the adult male brain5. In females, without the actions of these 

gonadal steroids, DNA methylation actively represses the masculinization of DNA, and 

allows for feminization to occur6.

Through the actions of estradiol signaling, altered gene expression causes differential 

patterns of neuronal cell death, growth, and connectivity that have lasting effects on neural 

circuitry and behavior7. For example, in the dorsal striatum, a region implicated in addiction, 

there are sex differences in the effects of estradiol on dopamine release that are dependent on 

these developmental processes8. In the adult female brain estradiol treatment enhances drug-

induced dopamine increases in dorsal striatum and motivation for drugs of abuse9–11.

The neurobiological differences between males and females prior to drug exposure influence 

vulnerability to addiction. Addiction has been categorized into different “stages” where there 

are sex differences in each stage12. In women, initiation of drug use is often driven by 

psychological factors such as anxiety and depression, or after experiencing negative life 

events; whereas more men report initial drug use in social settings13,14. Continued drug use 

causes sex differences in neuroplastic changes in the reward system and in stress 

mechanisms in the brain, which contribute to sex differences in drug-seeking after initial 

use. Women who have sought treatment for addiction report their drug consumption 

escalated more rapidly than do men in treatment, this phenomenon of rapid escalation of 

drug use in women is known as “telescoping”3,15 After escalation of drug use, during 

maintenance, an individual is constantly thinking about obtaining the next drug dose3. With 

continued use of a drug there is a transition to chronic substance use disorder which is 

characterized by repeated attempts at abstinence and relapse16,17. During abstinence, women 

report greater craving than do men, which is modulated to some extent by their hormone 

cycles18. Finally, women are more sensitive to environmental cues and report more 
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spontaneous relapse19. One aspect of the environment that is key to sex differences in 

addiction is activation of the stress axis. After we have discussed sex differences in the 

neural systems mediating addiction we will return to how the stress system interacts with 

these systems differentially in males and females to put everything in context.

The neural systems that mediate the transition from casual use to substance use disorder are 

known as the reward system, as neurons in these regions are activated by endogenous 

rewards in addition to drugs of abuse. The neural projections from the midbrain regions of 

the substantia nigra and ventral tegmental areas to the nucleus accumbens, dorsal striatum, 

amygdala, and prefrontal cortex are key to the development of substance use disorders or 

addiction. These projections use the neurotransmitter, dopamine, and sex differences in the 

dopamine-mediated processes of the reward system will be reviewed next.

Sex differences in dopamine-mediated processes

Dopaminergic neurons within the ascending mesotelencephalic pathway are activated in 

response to adaptive rewarding stimuli, such as food consumption, sexual behavior, and 

social interactions, all of which are necessary functions for health and reproductive 

success20–23. Drugs of abuse also induce dopamine neurotransmission and sustained drug 

use causes numerous temporary and permanent physiological changes in the brain24–29. The 

various theories of how dopamine regulates motivated behaviors were developed in male 

animals. Implications for sex differences in vulnerability and propensity towards addiction 

are examined next, within the context of these different theories.

The incentive sensitization theory posits that repeated psychostimulant exposure results in 

sensitization of dopamine neurons which increases ‘wanting’ of the drug.30. These 

neuroadaptations also increase the salience of drug cues which underlie the drive from 

casual drug use to compulsive drug taking27,30,31. Females are more susceptible to incentive 

sensitization than are males, which may explain the enhanced vulnerability of females’ 

transition from intermittent drug use to chronic use32.

Repeated exposure to psychostimulants also causes behavioral sensitization25,27. Though 

both males and females show behavioral sensitization to psychostimulants, females exhibit 

greater enhancement in rotational movements and stereotyped behaviors (i.e. behavioral 

sensitization), than males do, after repeated amphetamine or cocaine administration33–35. 

Females also sensitize at lower doses of cocaine than males36.

Sensitization is regulated by circulating estradiol in females37–39. Intact female rodents show 

varying degrees of behavioral sensitization based on levels of gonadal hormones during their 

estrous cycle40–43. This effect of estradiol to enhance sensitization is not seen in males37. 

Furthermore, testicular hormones do not regulate sensitization in males38,44. Thus, sex 

differences in sensitization of the ascending dopamine system is a candidate to mediate sex 

differences in the neural mechanisms of addiction.

An alternate theory is the opponent process theory of addiction which proposes that 

addiction emerges due to avoidance of withdrawal and the related anhedonia28,45. In this 

theory, an initial pleasurable “high” accompanies drug use, which drives motivation for 
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reuse. Over time sustained drug use results in tolerance to the pleasurable effects of the drug 

and a transition to increased unpleasant effects of withdrawal. Eventually, motivation for 

continued use is sustained to avoid the unpleasant effects of drug withdrawal46.

Women report enhanced negative aspects of withdrawal effects from psychostimulants, 

along with most other classes of drugs14,47,48. The severity of withdrawal is reported to be 

cyclic with gonadal hormones, suggesting that estradiol is mediating both the positive and 

negative effects of drug use for women49. Unexplained by this theory, however, is the fact 

that relapse occurs long after drug withdrawal symptoms subside49,50. Spontaneous relapse 

also occurs disproportionally in females compared to males49. Thus, while sex differences in 

withdrawal likely contribute to sex differences in the pattern of drug taking behavior and 

relapse, the opponent process theory alone is not sufficient to explain all of the sex 

differences reported in substance use disorders.

Finally, risky decision making is associated with enhanced dopamine release dynamics in 

the nucleus accumbens shell51. Decision-making and risk-taking are related to the choice to 

consume drugs of abuse. Males are more likely to make “risky” choices in order to receive a 

higher value reward52. Various studies have investigated the role of the ovarian cycle on 

decision-making in females and reported no effect52,53. The stability of females decision 

making, including their inability to enhance performance on risk-related tasks across 

training session compared to males, may be due to their hypersensitivity to punishment54. 

On the other hand, ovariectomy increased risky decision making in females, and estradiol 

reversed this effect, demonstrating that ovarian hormones maintain this sex difference55. In 

women, the sex difference of reduced risk taking may be reflected in the pattern of drug use, 

where women are more likely to take drugs of abuse or relapse due to stress and lack of 

social support, compared to men56.

To summarize, estradiol modulates dopamine-mediated processes that underlie behaviors 

associated with sex differences in addiction. Estradiol enhances sensitization in females, 

which is implicated in craving, telescoping of drug use from intermittent to chronic, and 

relapse to drug-related cues. Estradiol also enhances the negative components of drug 

withdrawal associated with the opponent process theory of addiction, but decreases risky 

decision making, both of which may escalate drug use in women.

Estradiol enhances addiction vulnerability in females

Rodents provide an experimental model to study the effect of ovarian hormones on 

addiction-like behaviors. Similar to humans, the female rat’s ovarian hormones, estradiol 

and progesterone, vary systematically in a cyclic pattern. The rodent estrous cycle is 4–5 

days57. During a 14:10 light dark cycle, estradiol reaches its peak during the first half of the 

light phase of proestrus to trigger the LH surge; progesterone peaks during the second half 

of the light phase of proestrus to initiate the onset of behavioral receptivity that follows 

about 6 hours later during the dark phase in association with ovulation and behavioral 

estrus57. During the days after estrus, the follicular phase is re-initiated (metestrus and 

diestrus) and estradiol and progesterone are lower, with estradiol gradually rising again late 

during diestrus.
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In the laboratory, escalation of drug taking can be measured by the rate at which rodents 

acquire self-administration of a drug after initial drug exposure. Exogenous estradiol is 

sufficient to enhance cocaine acquisition in ovariectomized females58–60. Estradiol does not 

facilitate or enhance acquisition of cocaine taking in males61. Sex differences in self-

administration models are more robust in extended access paradigms versus short or 

intermittent access paradigms. This suggests that acquisition may be accelerated in females 

under certain conditions of drug accessibility62,63. The escalation of drug use is more 

difficult to pinpoint in humans, in part, due to changing environmental factors such as drug 

availability48. Historically, drug availability has largely influenced women’s use of opiates 

and psychostimulants as they were prescribed medications or marketing techniques to 

advance use of these drugs48.

Under progressive ratio self-administration paradigms, when the “cost” of cocaine is high, 

females are more motivated to work for cocaine than are males32. In intact female rodents, 

motivation for cocaine is modulated by circulating gonadal hormones and motivation is 

greatest during periods of the estrous cycle when estradiol is elevated12,64,65. This idea is 

further supported by studies showing ovariectomized adult females without estradiol 

replacement have lower motivation than those with estradiol60,66. Together, these findings 

suggest that after initial acquisition of drug taking, females are more susceptible to escalate 

their motivation to attain drug and that this behavioral response of drug-seeking is enhanced 

by the presence of estradiol.

In rodent models, females in estrus also exhibited greater drug-primed reinstatement 

compared to females not in estrus and males67. Female rodents express signs of enhanced 

drug craving during estrus compared to non-estrus68. In ovariectomized females, estradiol 

treatment potentiates reinstatement of drug-seeking65,69,70. Previous work also suggests that 

during drug-primed reinstatement, females who are in estrus display greater cocaine-seeking 

behavior than non-estrous females and males50. Further, females take longer to extinguish 

cocaine-seeking behaviors compared to males50. These studies suggest that estradiol plays a 

role in enhanced drug cravings in females, which may be contributing to the persistence of 

cocaine-seeking long into abstinence in females and related to the effects of estradiol on 

sensitization, as discussed above.

Over time, intake of psychostimulants by males also increases, but to a lesser degree than 

females. Furthermore, males intake does not appear to be regulated by testicular 

hormones58. Males take longer to acquire a condition place preference for cocaine than 

females and require a higher dose of cocaine to acquire a preference71. However, G Protein-

coupled estradiol receptor-1 (GPER-1) has been implicated in being protective against 

development of a preference for cocaine or opioids72,73. These findings indicate that 

estradiol is having opposite effects in males and females on drug-seeking behaviors in 

rodents. The extent to which this is also true in humans needs to be investigated.

Thus, estradiol is playing an important role in neural processes related to addiction in 

females, to increase vulnerability. It is also possible that estradiol is acting in males to 

decrease vulnerability to addiction.
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Estradiol Receptors

Estradiol mediates its effects through three receptors: estradiol receptor alpha (ERα), beta 

(ERβ), and GPER-1. ERα was the first ER to be characterized74, and until the late 1990s 

many thought this single receptor mediated all of the functions of estradiol in an 

uncomplicated fashion. In 1996, researchers recognized ERβ as the second ER75. GPER-1, 

previously known as GPR30, was recognized as an ER in the early 2000’s76. Collectively 

these receptors mediate estradiol signaling using both rapid signaling and long-term 

transcription mediatedresponses. While rapid effects can occur anywhere between a few 

milliseconds to a few minutes, long-term effects take between a few hours and a few days77.

Signaling mechanisms of estradiol receptors

The importance of understanding estradiol receptor-mediated signaling cannot be overstated. 

The outcome of treatment with estradiol will vary depending on the receptor’s identity, 

location, function, and mechanism of action. ER signaling relies on four basic mechanisms: 

genomic, tethered, nongenomic (including caveolin-associated ERα and ERβ), and ligand-

independent [Figure 1]. Genomic and tethered mechanisms occur within the nucleus, while 

non-genomic and ligand-independent mechanisms are extranuclear.

To mediate direct genomic effects, both ERα and ERβ can act as ligand-activated 

transcription factors, capable of directly affecting gene expression by interacting with 

regions of DNA called estrogen-response elements (ERE), as illustrated in Figure 1A.78. As 

illustrated in Figure 1B., ERα and ERβ can also indirectly affect gene expression. In 

approximately 35% of the brain regions with ERs the EREs are not available for activation 

and the effect of estradiol is mediated by other intracellular signaling mechanisms78–80. 

Additionally, through protein-protein interactions, ERα /ERβ signaling can enhance or 

suppress gene transcription independent of these EREs81. Ligand-independent mechanisms 

that activate the ERE also work in the absence of ER agonists, as illustrated in Figure 1D.

In addition to their actions as separate entities, ERα & ERβ can combine to form a 

heterodimer with its own distinct effects on transcription82,83. ERα and ERβ can function 

cooperatively in some cells and antagonistically in others84. For example, ERβ can directly 

modulate the activity of ERα by antagonizing ERα dependent transcription85–88. 

Extranuclear ERs can regulate the recruitment of nuclear ERs, plasma membrane bound 

ERα signaling can affect the activity of nuclear ERα by stimulating phosphorylation as well 

as facilitating its degradation89,90. This mechanism is believed to explain the cyclic changes 

in the levels of ER-target gene expression89. Activation of membrane bound ERs initiates 

signaling cascades that integrate at the level of the nucleus.

Rapid estradiol receptor signaling

Estradiol signaling can lead to rapid signaling cascades, long-term transcription effects, or 

both. Either mode of ER signaling can impact the connectivity and function of the brain. 

ERs associated with the membrane were initially discounted, but it is now recognized that 

membrane associated ERα and ERβ, along with GPER1, mediate important rapid effects of 

estradiol and some of these effects are implicated in addiction as discussed below.
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Rapid ER signaling can be mediated by classical ERα and ERβ that are palmitoylated and 

bound to caveolin-1, a structural coat protein, and then trafficked to caveolae, which are 

invaginations of the plasma membrane that sequester many types of receptors and signaling 

molecules91,92. Caveolin-1 facilitates anchoring these receptors to the caveolae, where 

estradiol can bind extracellularly and activate associated metabotropic glutamate receptors 

(mGluR) receptors93,94. Multiple mGluRs are associated with ERα and ERβ in the 

hippocampus and dorsal striatum95–97. Rapid ER signaling via mGluRs is implicated in the 

effects of estradiol on striatal dopamine release and cocaine self-administration98,99.

Estradiol has been shown to rapidly enhance stimulated dopamine release and down-regulate 

D2 dopamine receptors in the dorsal striatum in vitro and in vivo100–106. Estradiol also 

rapidly regulates activity in the nucleus accumbens to affect post synaptic current in medium 

spiny neurons and stimulated dopamine release10,107. These rapid effects of estradiol are 

implicated in acquisition of cocaine self-administration and motivation for cocaine in 

females, but not males as discussed above58,60,61,65.

In the hippocampus and associated circuitry, rapid ER signaling enhances social recognition, 

episodic memory, as well as object recognition and placement. The mechanism underlying 

this effect is believed to be the result of estradiol dependent rapid increases in dendritic 

spines108–110. Whether similar ER-dependent changes in spine density is related to 

vulnerability to addiction remains speculative, but sex differences in cocaine effects on spine 

density and evoked neural activity in the nucleus accumbens core have been reported111.

Unlike, ERα and ERβ, GPER-1 is typically an extranuclear receptor embedded in several 

cell membranes, including the plasma membrane, endoplasmic reticulum, and Golgi 

apparatus76,93,112–116. It can also translocate into the cytoplasm when activated112. GPER1 

has been reported to enhance memory consolidation acting alone or in collaboration with 

ERα and ERβ109,117. GPER1 may also attenuate vulnerability to addiction in male 

rodents73,118.

Localization of Estradiol Receptors

Estradiol has been treated as though it acts uniformly throughout the brain on dopamine 

activity and addiction-related behaviors, but this is not the case10,102,119,120. The types of 

estradiol receptors and where they are located in the brains of males and females provides 

potential pharmacological targets and neural locations for hormone-based treatments.

Table I. provides a comprehensive review of whole-brain ER distribution studies normalized 

such that ER densities can be compared among brain regions121. Figure 2. A-C provides a 

visual comparison of ER densities, according to ER subtype in the rodent brain. Together, 

these tools provide a way to assess the contribution of ER subtypes within each brain region 

to addiction vulnerability.

Whole brain ER distribution studies have not found significant sex differences in ER 

expression, as can be seen in Table 1. Overall, there are limited studies that include both 

males and females while looking at whole-brain ER expressions, and fewer with the 

resolution to discern quantitative sex differences. However, studies that examine individual 
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brain areas do find some sex differences in ERs when assay conditions are enhanced to 

optimize expression and /or function for a particular brain region. In anatomical studies, it is 

not possible to discern mechanism of action of the receptors identified, so further research is 

needed to further determine the functional mechanisms mediating sex differences in many of 

the brain regions discussed below. Interestingly, while sex differences have not been 

investigated in all brain regions, there are sex differences in brain regions implicated in drug-

taking and addiction.

In the ventral tegmental area, the number of dopamine cells that contained ERβ receptors 

was small, but males exhibited greater ERβ immunoreactivity in these neurons than 

females122. Intriguingly there were virtually no ERβ immunoreactive cells in the substantia 

nigra122. In the region of the lateral ventral tegmental area known as the parabrachial 

pigmented nucleus, ERβ-immunoreactivity is found in both dopamine and non-dopamine 

neurons. Again, the proportion of dopamine neurons with ERβ was greater in males than in 

females, regardless of stage in estrous cycle, although females in diestrus had fewer ERβ 
positive neurons than those in proestrus122. The dopamine neurons in this brain region have 

been found to respond to low concentrations of ethanol and so the sex difference in ERβ 
dopamine neurons may be important for sex differences in addiction123.

When examining ER expression in midbrain neurons that project to prefrontal cortex in male 

and female rats, different patterns were found. For males, none of the dopamine neurons 

labelled as projecting to the prefrontal cortical region contained ERα or ERβ, while in 

females, some of the dopamine neurons labeled contained ERα, but not ERβ. This 

proportion of dopamine cells labeled in females was significantly different from males124. 

Thus, ERα and ERβ are strategically located to regulate motivational circuits differentially 

in males and females.

ERα receptor signaling plays a key role in the sexual differentiation of the mesolimbic 

reward pathway. ERα knockout animals show sex-specific differentiation patterns in the 

midbrain. ERα knockout female mice show increased levels of D1 dopamine receptor 

expression and dopamine receptor-interacting protein 78 (Drip78) mRNA levels125. In 

contrast, ERα knockout males only showed decreased Drip78 mRNA levels125. With ERα 
knockout, both sexes showed reductions in midbrain expression of tyrosine hydroxylase (the 

enzyme catalyzing the rate limiting step for dopamine synthesis) and brain-derived 

neurotrophic factor125. Overexpression of ERα in dorsal striatum of female rats results in 

enhanced estradiol-induced motor activity and enhancement of the effect of estradiol to 

attenuate depolarization induced GABA release126. Electron microscope analysis of dorsal 

striatum finds ERα localized outside the nucleus of GABAergic neurons in female rats127. 

Thus, ERα is playing a role in striatal dopamine function indirectly mediated by rapid 

signaling through GABA neurons.

ERβis also expressed in striatal regions, consistent with reports that ERβactivation regulates 

both the neurochemical and behavioral effects of drugs of abuse. In the dorsal striatum, 

ERβactivation upregulates D2 dopamine receptors128. An ERβ agonist induces immediate-

early gene c-fos expression in the nucleus accumbens, while an ERα agonist does not129. 

ERβ’s regions of action closely align with its alteration of the behavioral effects of a wide 
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variety of drugs of abuse. Selective activation of ERβ enhances both amphetamine- and 

cocaine-induced CPP69,129,130. ERβ activation, but not ERα, results in enhanced stimulated 

dopamine release after cocaine in nucleus accumbens shell of females, but not males10. 

Finally, ERβ receptor signaling, but not ERα, mediates estradiol’s effect on cocaine-induced 

reinstatement of extinguished cocaine-seeking behavior in OVX rats69.

In the cortex, there is a greater expression of GPER1 than in ERα and ERβ, pointing to a 

role for GPER1 in higher order cognitive functions (Table 1). Importantly, while expression 

patterns differ, as can be seen in Figure 2, they are also strongly overlapping giving the 

potential for these receptor mechanisms to interact. Recently, GPER1 has been identified as 

the first estradiol receptor to modulate the preference for rewarding stimuli in males. A 

decrease of GPER1 in the CNS, via gene knockout, increases the acquisition of conditioned 

place preference for morphine in males73. Decreasing GPER1 activation in the dorsolateral 

striatum specifically caused a conditioned place preference for cocaine at a dose that is 

otherwise not preferred in males. While males and females have similar levels of GPER1 in 

the dorsolateral striatum, activation may be protective in males while increasing 

vulnerability in females72. GPER1 has also been implicated in enhancing memory 

consolidation, via enhanced dendritic spine density in the CA1 region of the hippocampus, 

in female mice131. Together, these findings suggest that GPER1 activation could be 

enhancing memory for environmental stimuli/cues related to a drug-induced state and 

causing a more rapid formation of conditioned place preference in females, while decreasing 

these associations in males.

In the next section, the ways in which these sex differences in the neural systems mediating 

the responses to drugs of abuse interact with the environment will be discussed. The stress 

system is used as an example of how the environment can trigger neural responses in a sex-

dependent way.

Sex differences in the stress system and addiction vulnerability

One of the leading causes of vulnerability for addiction is prior stress, particularly stress 

during development, and there are sex differences in how prior stress impacts 

addiction132,133. Furthermore, at multiple levels, the stress system has been shown to 

interact with addiction in adults in a sex-dependent way, some that are also hormone-

dependent3,132,134,135. Research is needed on the role of specific estradiol receptor subtypes 

in sex differences in the effects of stress as it impacts addiction. This brief discussion of the 

stress system and in sex differences in stress and addiction is included to help highlight the 

importance of the topic and how it relates to sex differences in vulnerability to addiction.

Gonadal hormones and the hypothalamic-pituitary-adrenal (HPA) axis

The HPA axis is activated in response to a real or perceived threat. This is advantageous in 

situations where redirection of resources is necessary to increase energy available for 

survival of an individual136,137. On the other hand, chronic stress that results in prolonged 

activation of the HPA axis, causes a shift in the physiological baseline state and 

dysregulation of the central nervous system (CNS). Changes to the CNS in response to 

chronic stress lead to the development of various diseases138,139.
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Neural activation of corticotropin-releasing factor (CRF) release initiates the stress response 

with HPA axis activation. Secretion of CRF stimulates the anterior pituitary to secrete 

adrenocorticotropic hormone (ACTH), which stimulates the production and release of 

glucocorticoids in the adrenal cortex140,141. There are sex differences at multiple levels of 

this signaling cascade such that females have an enhanced response to stress via 

glucocorticoid production and an enhanced response to negative feedback142,143.

In addition to its role in the HPA axis, CRF acts centrally by binding to CRF1 and CRF2 

receptors in the brain144,145 to regulate fear, stress and anxiety146. There are sex differences 

in the number and distribution of CRF receptors in the brain, as well as sex differences in 

CRF trafficking and intracellular signaling mechanisms147,148. These mechanistic sex 

differences are likely driving the sex differences in mood disorders and influences of stress 

on vulnerability to addiction.

CRF receptors also have direct actions on dopamine transmission in the nucleus accumbens 

via their location on cholinergic interneurons, which regulate striatal dopamine neurons149. 

Studies in rodents found that psychostimulants, such as cocaine and methamphetamine, 

produced an even greater increase in brain glucocorticoid levels in females than in 

males150,151. However, the effects of glucocorticoids on dopamine release remains 

understudied.

In adulthood, gonadal hormones modulate activity of the HPA axis for both sexes. In 

females, this occurs via estradiol binding at ERα, ERβ and GPER1; in males, testosterone 

and dihydrotestosterone bind to androgen receptors152. Gonadal hormones can also directly 

affect CRF expression, being that the promotor region of the CRF gene contains gonadal 

hormone response elements153,154.

In males, castration decreases overall levels of androgens and results in increased CRF levels 

and CRF immunoreactivity in the paraventricular nucleus; androgen replacement attenuates 

this increase155. Castration also enhances stress induced corticosterone and ACTH, that can 

be restored by either testosterone or dihydrotestosterone treatment156,157.

In females, ovariectomy decreases CRF synthesis in the hypothalamus, although estradiol 

treatment is not sufficient to restore CRF levels158. ACTH and corticosterone levels are also 

attenuated in ovariectomized females and estradiol does not enhance these levels, 

presumably because CRF is not restored152,159.

The functions of estradiol are dependent on actions at specific ER subtypes. For example, 

treatment with the ERα agonist, propylpyrazoletriol, enhances corticosterone and ACTH 

levels in the paraventricular nucleus in stressed females160,161. Treatment with the ERβ 
agonist, diarylpropionitrile, has an opposite effect and decreases corticosterone and ACTH 

in stressed females161. From these findings, it appears that ERα and ERβ have antagonistic 

effects on modulation of HPA axis activation and response to acute stressors in females.

Stress and Sex Differences in Addiction Vulnerability

Stress in humans and animal models affects emotional regulation and has an impact on 

behaviors such as drug taking162. While chronic stress leads to enhanced HPA axis 
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activation in both men and women, there is a greater incidence of mood-disorders in 

women163–165. The prevalence of drug use in women is reported to relate to coping with 

psychological disorders, for example, enhanced anxiety sensitivity is associated with greater 

sedative misuse in women, but not in men166. Women, but not men, who meet criterion for 

psychostimulant dependence report greater psychiatric symptoms than nondependent 

individuals167. This pattern of misuse among mood disorder-prone women is especially 

troubling as it is not limited by age or drug-type. Together, these reports suggest an 

interaction between stress and mood-related disorders that is sex-specific.

There are sex differences in vulnerability and resilience to stress throughout the life span168. 

Male offspring (rodents and humans) tend to be at greater risk of experiencing adverse 

consequences to stress that occurs early in life, during gestation or as infants. Females tend 

to have compensatory mechanisms that protect them early in life, but are revealed later in 

life or post-menopause168. Nevertheless, both men and women who have experienced 

childhood sexual and physical abuse have an increased risk for drug use and drug abuse as 

adults169,170. In women, but not men, the intensity of childhood abuse is related to drug 

abuse relapse171. Other studies suggest that each abuse has an independent and additive 

effect on vulnerability to drug abuse172. In adolescence, more stress is linked to an increase 

in drug abuse liability173.

In rodents, stress enhances behavioral sensitization, preference for drugs of abuse over other 

rewards, motivation to attain drugs of abuse and reinstatement of drug-seeking, but the 

majority of this work has been done in males174. After stress, induced by social defeat, both 

males and females take more cocaine, but females engage in longer cocaine bingeing 

sessions than males175.

Social isolation in adult rats enhances motivation for cocaine in females, but not in males176. 

Likewise, females that undergo social isolation during neonatal development show enhanced 

cocaine self-administration177. Stressed females also show greater cue-induced 

reinstatement for cocaine compared to non-stressed females and stressed or non-stressed 

males178. Finally, the greatest responding to cocaine-paired cues was in stressed females 

during their proestrous phase, while estradiol levels are high, suggesting an interaction 

between stress, gonadal hormones, and motivation to attain cocaine178.

Maternal separation in rodents early in life can increase escalation of drug taking in 

adulthood, with adult animals who had longer periods of maternal separation consuming 

more ethanol179. After maternal separation, rats showed increased sensitivity to cocaine and 

stressed-induced sensitization of amphetamine180. Males that were isolated postnatally were 

more sensitive to an acute amphetamine challenge than were females181,182. While 

gestational and early postnatal stress seems to make males more vulnerable to drug 

sensitivity, prenatal stress affects addictive-like behaviors in both males and females, but in 

different ways. Prenatal stress that affects drug-taking of the adult offspring, increased the 

rate of acquisition for males183, while in a separate study, females showed more addictive-

like behaviors (motivation for cocaine, responding in the absence of reinforcement, and 

responding in the presence of adverse consequences) than males after prenatal stress184.
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Conclusions

Sex differences in the vulnerability for development of substance use disorder has been 

discussed and the neural mechanisms through which there is enhanced vulnerability in 

females, as well as greater risk of relapse have been highlighted. In part, this could be 

because women report taking drugs of abuse as means of coping with psychological 

disorders, such as depression and anxiety, which may persist during abstinence. Sex 

differences in the ascending dopamine systems and the regulation of dopamine function by 

specific ERs has been highlighted as a mechanism mediating sex differences in vulnerability 

to addiction. The neural adaptations to repeated exposure to psychostimulants are enhanced 

in females compared to males, which is thought to contribute to greater escalation of drug 

intake, as well as spontaneous relapse, despite efforts to remain abstinent.

Motivated drug seeking is regulated by the ascending dopamine system which could also be 

assigning value to drug-related stimuli. Sensitization of the dopamine system, which is 

greater in females than males, drives an increase in the value of drug-associated cues. 

Dopamine also has a role in associative learning of reward value and enhancing motivation 

in males54. Other studies that have only used males, suggest that dopamine mediates reward 

predication error185,186. This would be worth exploring in females as well, given that there 

are sex differences in sensitization, motivation and responsivity to cues.

The role of gonadal hormones in altering drug-seeking behaviors in both sexes is becoming 

more evident. For example, in females, estradiol potentiates drug-induced dopamine levels 

in regions of the brain which regulate habitual drug-seeking. Therefore, when estradiol 

levels are high, females show even greater motivation for drugs of abuse.

Both chronic and acute stress enhance drug seeking in both sexes, but this effect is 

heightened further in females due to the effect of estradiol on the HPA axis. Prenatal stress 

effects drug-taking during adulthood in both sexes but via different mechanisms. During 

adolescence, more sex differences emerge as mood disorders present at a higher rate in 

females, driving drug taking for self-medication. Once females reach criterion for addiction, 

they also are more prone to stress-induced relapse than are males. Males also show a greater 

ability to habituate to stress and may explain why stress is less a risk factor for drug-seeking.

Included throughout this article are areas where research is lacking because only one sex has 

been included in previous studies. For example, the role of gonadal hormones on drug-

seeking in males is understudied. Recent evidence suggests that activation of specific 

estradiol receptor subtype, GPER-1, may decrease preference for drugs of abuse72,73. This 

evidence supports the idea that while the presence of estradiol may be enhancing drug-abuse 

in females, it could be decreasing it in males. Understanding the role of gonadal hormones is 

especially important as we continue to appreciate why women are more vulnerable than 

males to reward disorders, such as addiction.

One potential target for therapeutic development that is implicated in the discussion of ER 

subtypes is selective ER agonists and antagonists. A number of drugs have been developed 

that are selective estrogen receptor modulators (SERMs). The SERMs were developed to 

target ER-sensitive cancer cells. Many of these SERMs act selectively at one ER in brain 
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and at different receptors, or not at all in the body. For example, raloxifene and tamoxifen 

are both SERMS with ERα antagonist activity for breast cancer but with different ER 

profiles in the brain and other target organs187–189. When assessing potential targets in the 

brain for the pharmaceutical development of addiction treatment drugs, it will be crucial to 

identify the receptors identity, location, function, and mechanism of action. Of course, 

caution must be used to determine which action of the SERM is being studied to maximize 

benefits and minimize side effects.

In conclusion, sex differences in vulnerability to addiction results from developmental 

exposure to gonadal hormones resulting in sexual differentiation of the brain, combined with 

experiences during development that interact with the brain and body in different ways. 

Stress in particular can impact males and females differently during development and as 

adults to affect vulnerability to addiction. The gonadal hormone estradiol modulates neural 

activity in areas of the brain at specific target sites to influence dopamine release and 

motivation for addiction in a sex-specific way. Future research needs to address the 

mechanisms through which this is happening to identify potential therapeutic sites for 

treatment of addiction in both men and women.
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Highlights

• Roles of estradiol in sex differences in vulnerability to addiction

• Variable localization and function of ERα, ERß, GPER1 throughout the brain

• Estradiol regulation of dopamine in reward pathway

• Sex differences in stress and vulnerability to addiction

• Gaps in the scientific literature are highlighted throughout
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Figure 1. 
The four core pathways of estradiol receptor (ER) action include: genomic, tethered, non-

genomic, and ligand-independent. (a) The direct most direct mechanism of ER action 

mediates gene transcription at ERE (estradiol response element) sites. When estradiol (E2) 

encounters a cell, some will pass through the plasma membrane and into the nucleus. ERs 

exist as monomers in multiprotein inhibitory complexes until activated by estradiol197. This 

activation causes a conformational change that allows ERs to dimerize and migrate to the 

EREs198. Interaction between this E2/ERs complex, steroid receptor coactivators (SRC), and 

RNA polymerase II enhances the transcription of downstream targets199–201

(b) Activated ERs do not always directly interact with EREs but rather “tether” to 

transcription factors such as specificity protein (Sp-1) or activating protein-1 (AP-1), to form 

protein-protein complexes that alter transcription202203. In the absence of an activated ER, 

Sp-1 and AP-1 do not influence transcription204,205. (c) Non-genomic actions are 
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responsible for rapid E2 mediated signaling via extranuclear ERs bound to different 

membranes in the cell206. Caveolae are populated by g-protein subunits and upon activation, 

these proteins cause signaling cascades that ultimately produce cAMP, cGMP, calcium flux, 

and protein-kinase activation78,207,208. There are four major protein-kinase cascades: 

phospholipase C (PLC)/protein kinase C (PKCs), Ras/Raf/MAPK, phosphatidyl inositol 3 

kinase (PI3K)/AKT, and cAMP/ protein kinase A (PKA)78. GPER-1 is a unique ER in the 

sense that it can initiate these signaling cascades on its own. (d) Ligand-independent 

mechanisms work in the absence of E2. Upon activation, growth factor receptors (GFRs) on 

the plasma membrane initiate signaling cascades, as described above209. This results in the 

activation of nuclear ERs by either phosphorylating the receptor itself or stimulating the 

recruitment of steroid receptor coactivators (SRCs).

Adapted from Yoest et al, 2018120
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Figure 2. 
Graphical representation ERα, ERβ, and GPER1 localization in the CNS, as described in 

Table I; higher color saturation indicates higher signal intensity.

Abbreviations: PFC, prefrontal cortex; F, frontal lobe; P, parietal lobe; T, temporal lobe; O, 

occipital lobe; DG, dentate gyrus; BNST, bed nucleus of the stria terminalis; PVN, 

paraventricular nucleus of the hypothalamus; SON, supraoptic nucleus of the hypothalamus; 

VTA, ventral tegmental area.
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Table I.

Distribution of estradiol receptors and corresponding mRNA transcript in the CNS of mice (red) and rats 

(black).

Data have been normalized to fit the following scale121: −, no signal; +, low signal; ++, moderate signal; +++, intense signal; ++++, very intense 
signal. Comma separations correspond to respective subregions; when no commas are used, the whole region is implicated; [x] indicates a 
subregion not specifically noted by the source’s data.

Abbreviations: PFC, prefrontal cortex; F, frontal lobe; P, parietal lobe; T, temporal lobe; O, occipital lobe; DG, dentate gyrus; BNST, bed nucleus of 
the stria terminalis; PVN, paraventricular nucleus of the hypothalamus; SON, supraoptic nucleus of the hypothalamus; VTA, ventral tegmental 
area.
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