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Abstract

Background: Major depressive disorder (MDD) is the leading cause of years lived with 

disability worldwide, and up to 40% of individuals with MDD do not respond to current 

treatments. Studies suggest that peripheral inflammation plays an important role in the striatal 

mesolimbic dopamine pathway and corticostriatal reward circuitry in MDD. Although MDD 

patients show blunted striatal responses to reward, the link between degree of inflammation and 

attenuation of reward processing is unclear. We investigated whether MDD patients with elevated 

peripheral inflammation exhibit attenuated reward responses to enhance our understanding of 

MDD pathophysiology and develop more effective treatments for current non-responders.

Methods: MDD subjects varying on serum C-reactive protein (CRP) concentrations (MDD-High 

CRP, > 3mg/L, n=44; MDD-Low CRP, < 3mg/L, n=44) and healthy comparisons (HC, n=44) 

completed a monetary incentive delay (MID) task and provided blood samples to measure 

inflammation-related markers. MDD-High and MDD-Low were propensity score-matched on age, 

sex, body mass index (BMI), smoking status, exercise and MID task head motion. Percent change 

in blood oxygen level-dependent (BOLD) signal during anticipation of wins and losses was 
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extracted from bilateral nucleus accumbens, dorsal caudate and dorsolateral putamen regions of 

interest (ROIs). A linear mixed-effects model was used to test group (MDD-High, MDD-Low and 

HC), condition (large-win, small-win and no win), and their interaction for these ROIs as well as 

whole-brain voxelwise data. Analyses also tested group differences in inflammatory mediators. 

Correlations were used to explore the relationship between inflammatory mediators and brain 

regions showing differences between MDD-High and MDD-Low.

Results: MDD-High exhibited: (a) lower BOLD signal change in dorsal caudate, thalamus, left 

insula and left precuneus during anticipation of small wins than MDD-Low; and (b) higher serum 

soluble intercellular adhesion molecule 1 (sICAM-1) and interleukin 6 (IL-6) concentrations than 

MDD-Low and HC. MDD as a whole, regardless of CRP-based inflammation, exhibited: (a) lower 

precuneus BOLD signal change to large wins than HC; and (b) higher Interleukin 1 receptor 

antagonist (IL-1ra), macrophage-derived chemokine (MDC) and macrophage inflammatory 

protein-1 alpha (MIP-1α) concentrations than HC. Higher serum sICAM-1 concentrations were 

associated with lower caudate BOLD signal change to small wins only within the MDD-High 

group.

Conclusion: Within MDD patients, high inflammation (CRP, sICAM-1) was linked to reduced 

striatal activation recruited to discriminate intermediate reward magnitudes. These findings 

support an association between levels of peripheral inflammation and the degree of reward-related 

activation in individuals with MDD.

Registration of clinical trials: The ClinicalTrials.gov identifier for the clinical protocol 

associated with data published in this current paper is NCT02450240, “Latent Structure of Multi-

level Assessments and Predictors of Outcomes in Psychiatric Disorders.”
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1. Introduction

Major depressive disorder (MDD) is the leading cause of years lived with disability 

worldwide, costing society over $200 billion each year in the United States and affecting 

over 300 million people (Greenberg et al., 2015). Moreover, MDD is the major predictor of 

suicide, reducing life expectancy and contributing to early mortality rates (Mann et al., 

2005). Additionally, up to 40% of individuals with MDD do not respond to current 

treatments (treatment-resistant depression) (Joffe et al., 1996), and little is known about 

MDD etiology to inform treatment. Studies suggest that inflammation plays an important 

role in MDD pathophysiology (Kohler et al., 2017), such that low-grade inflammation is 

associated with core symptoms of depression (Beurel et al., 2020), including appetite change 

(Burrows et al., 2019; Simmons et al., 2018), suicidal ideation (Black and Miller, 2015), and 

anhedonia (Pan et al., 2017). Research also suggests that blunted striatal responses in MDD 

patients during reward processing (Pizzagalli, 2014) may be due, in part, to heightened 

inflammation (Felger et al., 2016; Treadway et al., 2017), yet the precise origin of the 

inflammation is unclear (Kiecolt-Glaser et al., 2015). Therefore, it is crucial to explore novel 
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targets to understand MDD pathophysiology and develop more effective treatments for 

current non-responders (Dwivedi, 2017).

Depressed patients with increased concentrations of inflammatory markers may represent a 

relatively treatment-resistant population (Beurel et al., 2020); for instance, the presence of 

inflammation in individuals with MDD is associated with poorer response to first-line 

antidepressant therapies (Arteaga-Henriquez et al., 2019) as well as heightened suicidality 

(Black and Miller, 2015), appetite (Simmons et al., 2018), and atypical symptoms (Lamers 

et al., 2018). When inflammation and MDD co-occur, treating them in tandem may enhance 

recovery and reduce the risk of recurrence, given that anti-inflammatory interventions have a 

substantially greater impact on mood among individuals with heightened inflammation 

(Kiecolt-Glaser et al., 2015). More specifically, meta-analyses show that depression is linked 

to increased proinflammatory cytokines such as interleukin 6 (IL-6), tumor necrosis factor 

alpha (TNF-α) and C-reactive protein (CRP) (Dowlati et al., 2010; Kohler et al., 2017; Liu 

et al., 2012). Importantly, depression and inflammation appear to fuel each other, wherein 

(a) higher IL-6 and CRP predict subsequent development of depressive symptoms 

(Valkanova et al., 2013) and (b) current depressive symptoms predict future IL-6 and CRP 

elevations (Copeland et al., 2012; Deverts et al., 2010; Matthews et al., 2010). Moreover, a 

recent 12-year longitudinal study shows that depressive symptoms in conjunction with 

elevated CRP predicts incident diseases including heart disease, stroke, diabetes and 

pulmonary disease (Poole and Steptoe, 2020). Research suggests that cytokines, mood 

symptoms, and brain circuitry implicated in reward processing are interconnected, such that: 

(a) the blockade of peripheral cytokines, and in turn, the re-establishment of the blood brain 

barrier, result in antidepressant reactions (Cheng et al., 2018); and (b) low-grade 

inflammation induces striatal mesolimbic dopamine reductions associated with a reduced 

drive to pursue rewards (Treadway et al., 2019). With respect to individual cytokines, higher 

IL-6 concentrations are linked to: (a) greater depression severity (Lamers et al., 2019); (b) 

higher anhedonia, suicidal ideation, and appetite-related symptoms (Beurel et al., 2020); and 

(c) lower striatal (caudate and putamen) brain volumes (Ironside et al., 2019). As CRP 

appears to be elevated in treatment-resistant MDD patients (Strawbridge et al., 2015), 

individuals with MDD presenting with increased proinflammatory mediators, such as CRP, 

may have a distinctive clinical profile that could be responsive to second-line treatments 

involving anti-inflammatory drugs (Chamberlain et al., 2019).

Anhedonia, the loss of interest or pleasure in previously rewarding activities, is a core 

feature and one of the most treatment-resistant symptoms of MDD (Calabrese et al., 2014). 

With respect to anhedonia and brain function, the striatum is implicated in reward learning 

and hedonic responsivity (Liljeholm and O’Doherty, 2012), and appears to play a vital role 

in a number of cognitive and motivational processes that are impaired in MDD (Barch et al., 

2016). The most common neuroimaging paradigm used to probe reward processing, the 

monetary incentive delay (MID) task (Knutson et al., 2001; Knutson et al., 2000), shows 

robust striatal activation during anticipation of rewards (Wilson et al., 2018). Inflammation 

also appears to alter striatal responses to rewards, such that MDD patients exposed to an 

inflammatory challenge show lower ventral striatum activation to anticipated monetary 

reward cues than healthy individuals (Eisenberger et al., 2010). In addition, inflammation is 

associated with decreased functional connectivity within the corticostriatal reward circuitry 
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in depressed individuals (Felger et al., 2016). Although there are blunted striatal responses in 

MDD patients during MID reward processing (Arrondo et al., 2015; Pizzagalli et al., 2009), 

it is unclear whether MDD patients with the greatest peripheral inflammation have the most 

attenuated reward responses. As proinflammatory cytokines may effect neuroendocrine 

function and neuronal plasticity (Adzic et al., 2018), it is possible that they could contribute 

to reward-relevant brain circuitry implicated in MDD symptoms. As of yet, however, no 

published studies have evaluated whether MDD differs in striatal reward processing as a 

function of peripheral inflammation.

To address this gap in the literature, we conducted functional magnetic resonance imaging 

(fMRI) analysis using blood oxygen level-dependent (BOLD) signal change during the MID 

task to determine whether MDD patients with higher concentrations of peripheral 

inflammation (measured by blood circulating CRP) have attenuated reward anticipation 

responses paired with elevated concentrations of a set of additional candidate inflammatory 

cytokines. We hypothesized that, compared to healthy controls (HC) and MDD patients with 

normative CRP concentrations (MDD-Low), MDD patients with higher CRP (MDD-High) 

will exhibit: (a) higher concentrations of serum IL-6; (b) and lower dorsal and ventral 

striatum BOLD signal during anticipation of small and large wins. Exploratory correlations 

were calculated to determine the extent to which inflammatory mediator and brain 

relationships are related.

2. Methods

2.1. Participants

Participants were drawn from the first 500 subjects who completed the baseline assessments 

as part of the Tulsa 1000 (T1000) project, a naturalistic longitudinal study of 1000 

individuals including HC and treatment-seeking individuals with mood, anxiety, substance 

use and eating disorders (Victor et al., 2018). Participants were recruited from the Laureate 

Psychiatric Clinic and Hospital, other local mental health providers, and the general 

community through newspaper, flyer, radio and other media advertisements in Tulsa and the 

surrounding regions of Oklahoma. The T1000 study was approved by the Western 

Institutional Review Board; all participants provided written informed consent and received 

compensation for their participation. See Victor et al. for the complete study protocol (Victor 

et al., 2018).

All participants completed the Diagnostic and Statistical Manual of Mental Disorders 

(DSM)–IV or DSM-5 diagnoses were determined by the Mini International 

Neuropsychiatric Inventory (MINI) (Sheehan et al., 1998). Participants were assigned to six 

groups including major depressive disorder (MDD) only, Anxiety Disorders only (i.e., social 

anxiety, generalized anxiety, panic, and posttraumatic stress disorders), Comorbid MDD and 

Anxiety Disorders, Substance Use Disorders, Eating Disorders, and HC with no psychiatric 

diagnoses. All participants in the MDD groups entered the T1000 study with significant 

depressive symptoms (the Patient Health Questionnaire (PHQ-9) ≥ 10 (Kroenke et al., 

2001)) and met DSM criteria for a major depressive disorder. See Victor et al and colleagues 

for complete sample size, demographic and screening measures(Victor et al., 2018).
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To most effectively address the study aims, only MDD and HC subjects were included in the 

present analysis. MDD or HC participants were excluded if they met the following criteria: 

(a) autoimmune disease, inflammatory bowel disease or diabetes; (b) use of anti-

inflammatory or anti-diabetic drugs; (c) poor quality or missing MID fMRI data; and (d) 

CRP not measured or considered an outlier. In addition, based on Life Chart interview data, 

two MDD subjects were excluded due to recent hospitalizations for eating disorders, and one 

HC subject with elevated anxiety scores was excluded (Figure 1). Serum CRP 

concentrations were measured with V-PLEX Neuroinflammation Panel 1 Human Kit (Meso 

Scale Diagnostics, Maryland, USA) in duplicates; the intra- and inter-assay coefficients of 

variation were 2.2% and 10.0%, respectively. Three groups were determined based on their 

CRP concentrations: (a) MDD subjects with CRP > 3mg/L (MDD-High, n = 53) – the 

American Heart Association recommended CRP > 3mg/L as high risk of future 

cardiovascular disease; (b) MDD subjects with CRP concentrations between 0-3 mg/L 

(MDD-Low, n = 93); and (c) HC subjects regardless of their CRP concentrations (HC, n = 

44). Outliers (2 MDD-High, 1 HC) on CRP were excluded using a z-score > 3 within each 

group.

First, propensity score-matching was used to identify a group of MDD-High participants 

who were matched to the full sample of HCs on age and sex. Second, MDD-Low subjects 

were propensity score-matched to MDD-High subjects on a set of variables that may be 

confounded with group membership and/or functional brain activations including age, sex, 

body mass index (BMI), smoking status, exercise, and MID task head motion. After 

propensity score-matching, 44 MDD-High, 44 MDD-Low and 44 HC subjects remained for 

data analysis.

2.2. Measures

2.2.1. fMRI MID task and data preprocessing—Participants completed two runs of 

the MID task (Knutson et al., 2001). Each run lasted 562 seconds and included 45 trials. A 

cue was presented at the beginning of each trial that indicated a potential win or loss (circle 

or square) along with a magnitude of 0, 1, or 5 US dollars. After a short delay, a target 

(white triangle) was presented and participants were asked to press a button within a short 

time in order to win or avoid losing the amount indicated by the cue. Difficulty was 

calibrated by each participant’s reaction time during a practice session and updated during 

the scan such that participants would succeed on roughly two thirds of the trials. The MID 

task was programmed in PsychoPy (Peirce, 2007) and all responses were recorded using a 

four-button response box (Current Designs, Philadelphia, PA). Images were acquired on two 

identical GE MR750 3T scanners and scanning parameters were: TR/TE = 2000/27 ms, 

FOV/slice = 240/2.9 mm, 128 χ 128 matrix, 39 axial slices. High resolution structural T1-

weighted images were also acquired (TR/TE = 5/2.012 ms, FOV/slice = 240 χ 192/0.9mm, 

186 axial slices).

2.2.2. fMRI data preprocessing—Neuroimaging data were preprocessed using the 

AFNI software package (Cox, 1996). The first three TRs were discarded, followed by 

despiking, slice timing correction, co-registration to anatomical volumes, motion correction, 

normalization to Montreal Neurological Institute space (with a final voxel size of 
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2x2x2mm), and application of a 4mm Gaussian full-width at half-max smoothing kernel. 

Four-second block regressors were convolved with a canonical hemodynamic response 

function and used to model the blood oxygen level dependent (BOLD) response to each of 

the six anticipatory task conditions: −5, −1, −0, +0, +1, +5. Additionally, nuisance regressors 

were included for the first four polynomial terms and six motion parameters. Censoring was 

done at the regression step by removing volumes with either a Euclidean norm of the 

derivatives of the six motion parameters greater than 0.3 or greater than 10% outlier voxels, 

determined by 3dToutcount. Percent signal change was defined as the estimated beta 

coefficient from single-subject analysis, which was relative to the implicit baseline during 

unmodeled fixation. Regressors in the model were the first 4 polynomial baseline terms, 

along with 6 motion parameters (roll/pitch/yaw/x/y/z translation), large loss (−5), small loss 

(−1), no loss (−0), no win (+0), small win (+1), large win (+5). Motor responses were not 

explicitly modeled.

2.2.3. Clinical ratings and blood collection—The Patient-Reported Outcomes 

Measurement Information System (PROMIS) (Cella et al., 2010) was used to collect data on 

alcohol use, anger, anxiety, depression, fatigue, nicotine dependence, physical function, 

sleep disturbance and social isolation. Smoking and exercise status were obtained based on 

two questions during a medical history interview: (a) “Do you smoke cigarettes or use other 

tobacco products regularly?” and (b) “Do you exercise regularly?”. Medication status was 

defined as having taken any psychotropic medication within the past 6 weeks. Venous blood 

was collected in BD Vacutainer serum collection tubes, and then centrifuged at 1300g for 10 

min at room temperature, serum was removed and aliquoted. Serum aliquots were stored at 

−80°C until analysis.

2.2.4. Immunoassays—The Neuroinflammation Panel 1 Human Kit (Meso Scale 

Diagnostics, Maryland, USA) was used to measure 37 inflammation-related markers (full 

list detailed in supplemental Table S1). Interleukin 1 receptor antagonist (IL-1 ra) was 

measured with Human Quantikine ELISA kits (R & D Systems, Minneapolis, USA). All 

serum samples were tested in duplicate. IL-1α, IL-1β, IL-2 and IL-5 were not used due to a 

low detection rate (<80%). Inflammatory mediators IL-4, IL-10, IL-13, IL-15, IL-17A, 

IP-10, placental growth factor (PIGF), serum amyloid A (SAA), tyrosine protein kinase 

receptor Tie 2 (Tie-2), vascular endothelial growth factor C (VEGF-C) and TNF-β were 

excluded from the analysis due to their high inter-assay coefficients of variation (CV > 

15%). We also excluded eotaxin-3 due to its high intra-assay CV (> 10%). Finally, a total of 

22 analytes with an intra-assay CV <10 and an inter-assay CV < 15% were used for 

inflammatory mediator data analysis. Supplemental Table S2 lists CVs for each analyte used 

for analysis.

2.3. Statistical analysis

2.3.1. MID group analyses

2.3.1.1 ROI analyses: Percent fMRI change in BOLD signal during high-win, low-win 

and no-win conditions were extracted from bilateral nucleus accumbens, dorsal caudate and 

dorsolateral putamen using the Brainnetome Atlas (Fan et al., 2016). A linear mixed-effects 

(LME) model was used to test group (MDD-High, MDD-Low and HC), condition (large-
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win, small-win and no win), and their interaction using the “lme4” package in R. Group, 

condition, hemisphere, age, sex, BMI and head motion were modeled as fixed effects. 

Subject was modeled as a random effect. A similar LME model was also estimated for loss 

anticipation (large-loss, small-loss and no-loss).

2.3.1.2. Whole brain analyses: AFNI’s group analysis program (Chen et al., 2014) with a 

multi-variate modeling approach (3dMVM) was used for voxel-wise whole brain analysis. 

Group (MDD-High, MDD-Low and HC) was the between-subject variable, and condition 

(high-win, low-win and no win) for win anticipation was used as the within-subject variable. 

The resulting group x condition statistical map was corrected for multiple comparisons at p 
< 0.05 using AFNI’s 3dClustsim -acf function. In addition to striatum regions, small volume 

correction was applied to thalamus, amygdala and insula.

2.3.1.3. MID task performance: Analysis of variance (ANOVA) was used to test group 

differences on reaction time and hit rate on each condition, followed by Tukey’s Honest 

Significant Difference method if the overall test was significant.

2.3.2. Immunoassay group analyses—Shapiro-Wilks tests were used to test 

normality of distributions; those that were found to be non-Gaussian were log-transformed. 

ANOVA was used to assess group differences, followed by Tukey’s Honest Significant 

Difference method if the overall test was significant. Even after log-transformation, the 

distributions for IL-6 and leptin were found to be non-Gaussian; therefore, group differences 

were assessed with Kruskal-Wallis non-parametric tests and followed by Mann-Whitney-

Wilcoxon non-parametric post-hoc tests if the overall test was significant. Outliers for each 

analyte were defined as values with an absolute z greater than 3 within each group and set as 

missing. Cohen’s d was computed to evaluate effect size differences between groups. See 

Supplemental Table S3 for details regarding the number of subjects analyzed for each 

analyte after excluding outliers.

2.3.3. Post-Hoc tests and correlations—Bilateral data were averaged across 

hemispheres for post-hoc tests. For visualization purposes, we averaged across no win (+0) 

and no loss (−0) conditions to create an overall neutral condition. For ROI and whole brain 

corrected clusters showing significant group x condition interactions, post-hoc tests using 

the “multcomp” package in R (Hothorn et al., 2008) were used to examine group differences 

emerging from linear mixed-effects models. In addition, based on findings for the soluble 

intercellular adhesion molecule 1 (sICAM-1), Pearson’s correlations were used to evaluate 

potential relationships between sICAM-1 and significant group x condition BOLD signal 

regions (striatum) differing between MDD-High and MDD-Low groups. Due to the non-

normal distribution of IL-6, brain-behavior relationships involving IL-6 were tested using 

Spearman’s correlations.

3. Results

3.1. Demographics and clinical ratings

MDD-High, MDD-Low and HC did not differ on age, sex, income, education, employment 

status or smoking status. The two MDD groups did not differ on age, sex, income, 
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education, employment status, smoking status, exercise, BMI, medication status, MID head 

motion, or PROMIS alcohol use, anger, anxiety, depression, fatigue, nicotine dependence, 

physical function, sleep disturbance and social isolation ratings (Table 1).

3.2. Neuroimaging Results

3.2.1. ROI analyses—Figure 2 demonstrates that there was a significant group x 

condition interaction effect during win anticipation for nucleus accumbens (F4,653 = 2.44, p 
= .046, partial η2 = .015), dorsal caudate (F4,653 = 6.28, p <.001, partial η2 = .037) and 

dorsolateral putamen (F4,653 = 2.89, p = .022, partial η2 = .017). Similar group x condition 

interactions during loss anticipation were also identified for nucleus accumbens (F4,653 = 

4.27, p = .002, partial η2 = .025), dorsal caudate (F4,653 = 2.77, p = .026, partial η2 = .017) 

and dorsolateral putamen (F4,653 = 5.41, p = <.001, partial η2 = .032). Post-hoc tests using 

the “multcomp” package in R demonstrated that MDD-High exhibited lower dorsal caudate 

BOLD signal during anticipation of small wins than MDD-Low (p = .019, d = −.593) 

Supplemental Table S4. In addition, examining win-neutral and loss-neutral contrasts during 

the anticipatory phase as the outcomes of interest between three groups within these ROIs 

(see Supplemental Methods for details), MDD-High, MDD-Low and HC differed on the 

win-neutral contrast within dorsal caudate (F2,129 = 3.59, p = 0.017). Specifically, MDD-

High exhibited lower dorsal caudate BOLD signal for the win-neutral contrast than HC (p 
= .027, d = −.544) (Supplemental Table S8 and Supplemental Figure S1).

3.2.2. Whole brain analyses—Figure 3 illustrates that significant group x condition 

interaction effects emerged for six regions: left and right caudate, left and right thalamus, 

left insula and left precuneus. See Supplemental Table S5 for details regarding coordinates 

and volumes for these regions. The LME model indicated a significant group by condition 

interaction effect during win anticipation for dorsal caudate (F4,653 = 3.79, p = .005, partial 
η2 = .053), thalamus (F4,653 = 4.94, p < .001, partial η2 = .067), left insula (F4,653 = 6.11, p 
< .001, partial η2 = .082) and left precuneus (F4,653 = 7.52, p < .001, partial η2 = .097); no 

group by condition interaction effects were observed during anticipation of losses within 

these regions.

Post-hoc tests using “multcomp” in R (depicted in Supplemental Table S6 demonstrated two 

main findings. First, MDD-High showed lower BOLD signal than MDD-Low when 

anticipating small wins within bilateral dorsal caudate (p = .041, d = −.558), bilateral 

thalamus (p = .029, d = −.635), left insula (p = .033, d = −.559) and left precuneus (p = .006, 

d = −.726), although both MDD groups did not differ from HC. Second, MDD-High and 

MDD-Low displayed lower or trending lower BOLD signal than HC when anticipating large 

wins within left precuneus (p = .030 and .024) and left insula (p = .076 and .065); however, 

MDD groups did not differ from each other.

Evaluating win-neutral and loss-neutral contrasts during the anticipatory phase as the 

outcomes of interest between three groups within these regions (see Supplemental Methods 

for details), MDD-High, MDD-Low and HC differed on the win-neutral contrast within all 

four regions - dorsal caudate, thalamus, left insula and left precuneus (Supplemental Figure 

S2). Overall, MDD-High showed the least striatal reward anticipation for the win-neutral 
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contrast comparing to MDD-Low and HC (see Supplemental Results for detailed statistical 

test values).

3.2.3. MID task performance—Although groups did not differ on correct hits, a main 

effect of group indicated that MDD-Low exhibited longer reaction times than HC during 

anticipation of small losses (p = 0.020, d = .581) (Supplemental Table S7).

3.3. Immunoassay Results

Table 2 and Figure 4 illustrate that groups differed on sICAM-1, TNF-α, IL-1ra, IL-6, 

monocyte chemotactic protein 4 (MCP-4), macrophage-derived chemokine (MDC) and 

macrophage inflammatory protein-1 alpha (MIP-1α). More specifically, MDD-High 

exhibited higher sICAM-1 and IL-6 concentrations than MDD-Low and HC. In contrast, 

when compared to HC, both MDD-High and MDD-Low showed higher IL-1ra, MDC and 

MIP-1α concentrations. Moreover, MDD-High displayed higher concentrations of TNF-α 
than HC, and MDD-Low showed higher concentrations of MCP-4 than HC. On the whole, 

Cohen’s d effect sizes for significant group differences ranged from medium to large (Table 

2). In addition, we used principal component analysis (PCA) as a data reduction technique 

applied to the 22 analytes in Table 2 and compared the component scores across groups. 

Results were largely similar when considering the first PC, which indexed overall 

inflammation (supplemental Figure S3, see alternative supplemental analysis for details).

3.4. Post-Hoc correlations

Both ROI and whole brain analyses showed that MDD-High exhibited lower bilateral dorsal 

caudate BOLD signal than MDD-Low during the anticipation of small wins. In addition, 

MDD-High displayed higher sICAM-1 and IL-6 concentrations than MDD-Low. Therefore, 

correlations were used to examine the relationships between inflammatory mediators 

(sICAM-1 and IL-6) and dorsal caudate BOLD signal to small wins within each group; 

False Discovery Rate (FDR) correction for multiple comparisons was used to interpret 

significance. Figure 5 illustrates that within the MDD-High group, those individuals with the 

highest concentration of sICAM-1 showed the lowest BOLD related activation to small wins 

(r = −0.41, pcorrected = .036). Fisher’s r-to-z transformations were applied to this correlation 

for each group and then compared; results indicated that the relationship between sICAM-1 

and dorsal caudate BOLD signal was significantly more negative in MDD-High than MDD-

Low (z = −2.12, p = .017) and HC (z = −2.56, p = .005). There were no significant 

correlations between IL-6 and caudate BOLD signal.

4. Discussion

4.1. Overview

This study examined the hypothesis that MDD subjects with increased inflammation 

(measured by blood circulating CRP) show reduced striatal BOLD responses during reward 

anticipation and was partially supported by three main findings. First, both whole brain and 

ROI analyses demonstrated that MDD-High exhibited lower dorsal caudate BOLD signal 

when anticipating small wins than MDD-Low; however, both groups did not differ from HC 

during anticipation of small wins, and all three groups did not differ in caudate BOLD signal 
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during the anticipation of large wins. Second, MDD-High showed higher serum sICAM-1 

and IL-6 concentrations than MDD-Low and HC, indicative of increased concentrations of 

multiple inflammatory cytokines that were not just limited to CRP. This finding is consistent 

with the underlying mechanism of CRP production, which is stimulated by IL-6 (Pepys and 

Hirschfield, 2003). This finding is consistent with prior studies showing (1) an association 

between IL-6 and striatal prediction-error signals following acute stress in healthy female 

participants (Treadway et al., 2017) and (2) a positive correlation between CRP and 

sICAM-1 (el-Mesallamy et al., 2007). Third, within MDD-High but not the MDD-low or 

HC group, dorsal caudate BOLD signal during small win anticipation was lowest in subjects 

with highest sICAM-1 concentrations. In summary, although there were no differences in the 

striatum across groups, within MDD patients, higher inflammation (CRP, sICAM-1) was 

linked to reduced striatal resources recruited to discriminate intermediate reward 

magnitudes. These findings support an association between levels of peripheral 

inflammation and the degree of reward related activation in individuals with MDD.

The overall U-shaped patterns of striatal activation during win and loss anticipations were 

consistent with previous findings (Bartra et al., 2013; Spechler et al., 2020). The slope from 

no wins to small wins was modest for the MDD-High group (Figure 2), indicating that it 

appears to require a large reward magnitude for MDD-High to recruit similar processing 

resources as their MDD-Low and HC peers. Therefore, depressed individuals with higher 

inflammation may not experience the reinforcing properties of low-level rewards since they 

are processed only moderately higher than neutral stimuli. Therefore, it is possible that 

MDD-High individuals are less likely to make small improvements in their life or engage in 

behaviors that are only modestly reinforcing.

In addition to results targeting specific hypotheses, findings from the present study indicate 

that MDD as a whole, regardless of CRP-based inflammation, exhibited: (a) lower left insula 

and precuneus BOLD signal to large wins than HC; and (b) higher IL1ra, MDC and MIP-1α 
concentrations than HC. Moreover, MDD-High exhibited higher TNF-α concentrations than 

HC, consistent with research showing that CRP increases TNF-α production (Galve-de 

Rochemonteix et al., 1993). However, while cumulative meta-analyses confirms that MDD 

patients show higher CRP and IL-6 concentrations than HC across studies, no consistent 

association between TNF-α and MDD appears to be present (Haapakoski et al., 2015). Our 

findings suggest that TNF-α may only be elevated in a subset of MDD patients presenting 

with heightened CRP.

4.2. sICAM-1 Functions and Implications for MDD

Although many studies have established the important role of inflammatory cytokines in 

depression (Burrows et al., 2019; Copeland et al., 2012; Deverts et al., 2010; Dowlati et al., 

2010; Kohler et al., 2017; Liu et al., 2012; Matthews et al., 2010; Simmons et al., 2018), the 

role of sICAM-1 in MDD has not been evaluated in detail (Muller, 2019). Research tends to 

focus on depression symptoms within older subjects because sICAM-1 concentrations 

increase during aging; for instance, one meta-analysis demonstrates that higher sICAM-1 

blood levels mirror higher depression symptoms in individuals aged greater than 40 years 

(van Agtmaal et al., 2017). As individuals in our study had a mean age of 34 (range 18 to 56 
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years) these results extend the literature on sICAM-1’s potential role in MDD 

pathophysiology.

sICAM-1 is important in depression for two reasons – its important roles in vascular and 

central nervous system (CNS) functions. First, cardiovascular disease and depression often 

co-occur (Lepine and Briley, 2011), and sICAM-1 is a marker of endothelial activation and 

damage (Raffaele De Caterina, 1997), which is considered an index of vascular disease. 

Previous studies reported increased sICAM-1 levels in MDD (Herder et al., 2017; Lopez-

Vilchez et al., 2016), as well as positive correlations between depressive symptoms and 

sICAM-1 levels (Do et al., 2010). As our study showed that MDD-High exhibited higher 

serum sICAM-1 concentrations than both MDD-Low and HC, depressed subjects with 

higher inflammation may be at higher risk of vascular disease than depressed subjects with 

normal inflammation (despite the fact that both MDD groups had similarly high BMI). 

Available data is mixed as to whether antidepressants can change sICAM-1 levels; whereas 

one study reports that treatment with a selective serotonin reuptake inhibitor (SSRI) shows 

significant sICAM-1 reductions (Lopez-Vilchez et al., 2016), another study indicates that 

SSRI therapy does not influence endothelial function (Dawood et al., 2016). On the whole, 

our study suggests that a subset of MDD individuals exhibiting endothelial dysfunction 

measured by increased sICAM-1 levels may benefit most from antidepressant treatments.

Second, sICAM-1 plays an important role between CNS and peripheral immunity (Dietrich, 

2002; Yang et al., 2019a). sICAM-1 is involved in the regulation of blood-brain barrier 

(BBB) permeability, regulating the movements of peripheral molecules, specifically 

components of the immune system, in and out of the CNS (Muller, 2019). Moreover, 

research demonstrates a link between the induction of sICAM-1 and the development of 

symptoms of depression during interferon alpha (IFN- α) treatment, possibly by enhancing 

BBB-permeability (Schaefer et al., 2004). In the CNS, sICAM-1 is expressed in glial cells 

(astrocytes and microglia), as well as endothelial cells in the white and gray matter of the 

human forebrain (Lee and Benveniste, 1999). Glial cells are involved with inflammation 

within the CNS (Banati et al., 1993). As prior work suggests that serum sICAM-1 

contributes to BBB impairment (Bowman et al., 2018), treatments that can down-regulate 

sICAM-1 levels in depressed people with increased peripheral inflammation may improve 

cognitive health by preventing BBB breakdown.

To our knowledge, this is the first study showing an inverse relationship between blood 

sICAM-1 levels and brain striatal reward anticipation in MDD. Research indicates that (a) 

depressed individuals show disrupted striatal function during reward processing (Arrondo et 

al., 2015; Pizzagalli et al., 2009), and (b) inflammation alters reward-related neural 

responding (Eisenberger et al., 2010). Preclinical animal studies may provide insight into 

potential interventions for humans presenting with depression, blunted striatal processing, 

and heightened sICAM-1. For instance, in mouse brains, sICAM-1 expression appears 

strongest within the striatum (Antezana et al., 2003). Furthermore, in a rodent model, 

injection of a pro-inflammatory agent increases sICAM-1 expression in the striatum but not 

within other brain regions (Armentero et al., 2011). In contrast, injection of an anti-

neuroinflammation agent in mice reduces striatal sICAM-1 levels, protecting BBB integrity 

(Yang et al., 2019b). Lastly, research using a rat model indicates that exercise reduces 
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sICAM-1 levels in dorsolateral striatum (Ding et al., 2005). Given the link between 

peripheral and striatal inflammation, one possible approach is to reduce striatal 

inflammation by exercise or anti-inflammatory agent, thus, improving striatal reward 

response to treat anhedonia in a subset of individuals with MDD.

4.3. Brain and Peripheral Markers Differentiating MDD from HC

4.3.1. Brain markers—Both MDD groups exhibited lower insula and precuneus BOLD 

signal than HC during win anticipation. Meta-analyses demonstrate that insular cortex is a 

key substrate of the salience network (Wilson et al., 2018) implicated in the anticipation of 

monetary reward, with depressed individuals exhibiting lower insula BOLD signal than HC 

within this context (Jacob et al., 2020; Wilson et al., 2018). Although our results suggest that 

depressed individuals attribute less salience to reward contingencies than HC, it is important 

to note that insular reductions in MDD are not specific to reward processing; for instance, 

MDD patients exhibit lower insula BOLD signal than HC during attention to bodily 

sensations (Avery et al., 2014) and possess lower left insula gray matter volumes than HC 

(Lai and Wu, 2014). While insular cortex is linked to salience processing, precuneus BOLD 

signal is thought to reflect the degree an individual is engaged in a particular task; for 

instance, precuneus shows heightened connectivity to the left frontoparietal network during 

task engagement but greater connectivity to the brain’s default mode network when no task 

is present (Utevsky et al., 2014). Our findings replicate prior work showing left precuneus 

BOLD signal during win anticipation in HC (Knutson and Wimmer, 2007), as well as 

reduced precuneus BOLD signal in MDD present across task and resting-state contexts that 

prior work has linked to heightened rumination and depression severity (Jacob et al., 2020; 

Lai, 2018; Li et al., 2018; Liu et al., 2017; Peng et al., 2015; Zhang et al., 2013). Our 

findings suggest that MDD is characterized by reduced engagement by reward-relevant 

stimuli (Felger and Treadway, 2017).

4.3.2. Peripheral markers—Although we separated MDD into two groups based on 

their CRP concentrations, both MDD-High and MDD-Low subjects exhibited increased 

concentrations of inflammatory mediators (IL-1ra, MIP-1α and MDC) than HC. Both MDC 

and MIP-1α are chemokines. More specifically, MIP-1α functions as microglial chemotaxis 

in the CNS (Stuart et al., 2015) and appears to be essential for the accumulation of activated 

glial cells in the hippocampus of mice models of Alzheimer’s disease leading to 

inflammation and cognitive failure (Passos et al., 2009). As both MDD groups exhibited 

elevated MIP-1α levels, MIP-1α might be a potential therapeutic target for depression to 

improve cognitive function regardless of an individual’s inflammatory status. In addition, a 

study investigating chemokine changes in MDD patients before and after antidepressant 

treatment indicates that MDC levels lessen as a function of successful drug response; this 

finding suggests that MDC might serve as a marker of pharmacological therapy response in 

MDD (Milenkovic et al., 2017). Lastly, our finding of higher IL1-ra, a proxy used to 

measure IL-1β, in both MDD groups compared to HC is consistent with prior research 

reporting similar group differences (Maes et al., 1995; Ovaskainen et al., 2009) as well as 

studies linking higher IL1-ra with higher depression symptoms (Milaneschi et al., 2009) 

(Herder et al., 2018) (Rich et al., 2017). Additional studies are warranted to determine the 

mechanism responsible for the link between IL1-ra and depression.
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4.4. Limitations

Despite the strengths of this analysis, including the integration of brain, behavior, and 

peripheral inflammation data and the matching of demographic/symptom characteristics 

across our MDD groups, our study possesses several limitations worthy of discussion. First, 

the major limitation is the cross-sectional design, making it impossible to determine causal 

inference. It is unclear if the inflammation-related markers caused depression/striatal 

differences, or if depression precipitated a set of behaviors to cause inflammatory markers 

and/or striatal functioning to become dysregulated. Second, as we used propensity score 

matching to simulate a randomization of participants to their respective groups based on a 

set of potential confounders, it is unlikely that the observed differences were confounded 

with age, sex, etc.; however, there is also a set of possible confounders that influence 

inflammation, including but not limited to genetics, diet, and socioeconomic status that were 

not addressed in this analysis. Third, a number of markers such as Interleukin 1 alpha were 

not analyzed in this study due to assay quality limitations (high CVs > 15%, or not 

detectable). Although we found differences across groups for several biological analytes, 

those differences were not associated with levels of depressive symptoms. Lastly, while 

studies examining peripheral blood inflammatory mediators have informed psychiatric 

symptoms, ultimately, these findings do not translate into what inflammation is occurring in 

the brain. A more direct technique is needed to derive brain-specific information, such as the 

use of brain-derived exosomes to capture this information. Exosomes are extracellular 

microvesicles that are involved in intracellular communication using their specialized cargo 

consisting of micro RNAs and proteins (Kalluri and LeBleu, 2020). The ability to isolate 

exosomes from a variety of biofluids including serum and plasma makes use of this 

technique a highly desired endeavor.

5. Conclusions

Within MDD patients, high inflammation (CRP, sICAM-1) was linked to reduced striatal 

resources recruited to discriminate intermediate reward magnitudes. These findings support 

an association between levels of peripheral inflammation and the degree of reward-related 

activation in individuals with MDD.
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Highlights

• MDD-High exhibited lower striatal reward anticipation than MDD-Low

• MDD-High had higher sICAM-1 and IL-6 concentrations than MDD-Low 

and HC

• Within MDD-High, higher sICAM-1 levels were associated with lower 

striatal reward anticipation

• MDD exhibited lower precuneus response to large wins than HC

• MDD had higher IL-1ra, MDC and MIP-1α concentrations than HC
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Figure 1. 
Identification criteria for MDD High CRP, MDD Low CRP and HC samples. MDD = major 

depressive disorder. CRP = C-reactive protein. HC = healthy control. MID QC = monetary 

incentive delay task quality control.
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Figure 2. 
Striatum regions of interest and functional magnetic resonance imaging (fMRI) % signal 

change during monetary incentive delay win and loss anticipation. MDD = major depressive 

disorder. HC = healthy control. * denotes significant post-hoc test differences between 

groups using the “multcomp” package in R.
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Figure 3. 
Whole brain voxel-wise monetary incentive delay task group x condition results for win and 

loss anticipation. MDD = major depressive disorder. HC = healthy control. * denotes 

significant post-hoc test differences between groups using the “multcomp” package in R.
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Figure 4. 
Biomarkers showing group differences. MDD = major depressive disorder. HC = healthy 

control. sICAM-1 = soluble intercellular adhesion molecule 1. IL-6 = Interleukin 6. TNF-α 
= Tumor necrosis factor alpha. IL-1ra = interleukin 1 receptor antagonist. MCP-4 = 

Monocyte chemotactic protein-4. MDC = C-C motif chemokine 22. MIP-1α = Macrophage 

inflammatory protein 1-alpha. * denotes significant mean differences between groups.
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Figure 5. 
Correlation between soluble intercellular adhesion molecule (sICAM-1) and % functional 

magnetic resonance imaging (fMRI) signal change from baseline in caudate during 

anticipation of small wins.
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