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Summary

The challenge of precision medicine is to model complex interactions among DNA variants, 

phenotypes, development, environments, and treatments. We address this challenge by expanding 

the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for 

precision medicine. This family segregates for 6 million common DNA variants—a level that 

exceeds many human populations. Because each member can be replicated, heritable traits can be 
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mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and 

include much omics data and thousands of quantitative traits. The BXDs can be extended by a 

single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family 

is an effective platform for testing causal modeling and for predictive validation. The BXDs are a 

unique core resource for the field of experimental precision medicine.
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Ashbrook et al., have expanded the BXD family to 140 strains, providing a new tool for 

translational precision and predictive biology, and extended the usefulness of the deep phenome of 

>100 omics datasets and >7500 classical phenotypes already available. They show increased 

precision and power by using new genotypes, updated models and more strains.
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Introduction

The development of predictive, preventive, personalized, and participatory healthcare 

requires as prerequisites deep and coherent phenome data. These data must be matched to 

sophisticated causal models of complex interactions among sequence variants, phenotypes at 

many levels, and environmental exposures (Auffray et al., 2010; Hood and Friend, 2011; 

Williams, 2009). For most diseases it is not yet practical to predict risk and best treatment 

options for the simple reason that each human is unique (Schüssler-Fiorenza Rose et al., 

2019). This N-of-1 problem inhibits development and refinement of predictions. However, it 

is now possible to create optimized experimental platforms that fill this gap in the form of 

large and fully characterized families of isogenic rodents, such as the BXD.

The BXD family was started fifty years ago by crossing fully inbred female C57BL/6J (B6 

or B) to male DBA/2J (D2 or D) mice. The first set of BXD recombinant inbred (RI) strains 

was used to map Mendelian traits (Taylor et al., 1973, 1999), but the BXDs are now used 

mainly to map complex traits including cancers, metabolic and cardiovascular disease 

(Grizzle et al., 2002; Koutnikova et al., 2009; Lee et al., 1995; McGinnis et al., 1993), brain 

structure (Belknap et al., 1992a; Rosen et al., 2009; Seecharan et al., 2003; Zhou and 

Williams, 1999), behavior, and pharmacology (Ashbrook et al., 2018a; Belknap et al., 

1992b, 1993; Grisel et al., 1997; Jones et al., 2006; Knoll et al., 2018; Palmer et al., 2006; 

Phillips et al., 1998; Rodriguez et al., 1994; Weimar et al., 1982). We started a second wave 

of BXDs in the late 1990s (Peirce et al., 2004) using advanced intercross (AI) progeny 

(Darvasi, 1998) (Figure 1; Figure S1; Table S1). These AI-derived family members 

incorporate twice as many recombination junctions as do conventional BXDs (Broman, 

2005; Crow, 2007; Haldane and Waddington, 1931; Williams et al., 2001) (Figure 1C)—an 

attribute that improves mapping precision about two-fold.
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The BXDs are well suited for systems biology (Williams and Williams, 2017) thanks to a 

well-integrated phenome consisting of over 7500 classical phenotypes and over 100 omics 

data sets (Williams and Auwerx, 2015; Williams et al., 2001). This phenome extends back to 

Taylor’s 1973 analysis of cadmium toxicity, through to recent studies of metabolism (Roy et 

al., 2020; Wang et al., 2013, 2016b; Williams et al., 2016, 2020; Wu et al., 2014), addiction 

(Dickson et al., 2016, 2019; Mulligan et al., 2013), behavior (Carhuatanta et al., 2014; 

Graybeal et al., 2014; Mulligan and Williams, 2015; Philip et al., 2010), infectious disease 

(Hayes et al., 2014; McKnite et al., 2012; Wang et al., 2020), epigenetics (Baker et al., 2019; 

Sandoval-Sierra et al., 2020), and even indirect genetic effects (Ashbrook et al., 2015a, 

2017; Baud et al., 2017). The BXD have been used to test developmental and evolutionary 

hypotheses (Hager et al., 2012; Oren et al., 2015; Seecharan et al., 2003), to study GXE and 

consequences of treatments as a function of age, diet, and sex (Fleet et al., 2016; Philip et 

al., 2010; Roy et al., 2020; Sandoval-Sierra et al., 2020; Williams et al., 2016, 2020), gene 

pleiotropy (Wang et al., 2016a), and to test behavioral predictions based on differences in 

brain architecture (Yang et al., 2008).

Here we summarize the current status of this resource with a focus on genetic structure, and 

on the power and precision of mapping trait variance to loci and genes. We have almost 

doubled the size of the BXD family, from ~80 (Peirce et al., 2004) to 140 extant strains. 

Each of the 140 fully inbred and isogenic strains of mice is an immortal genometype that 

can be resampled at any stage, in both sexes, and under varied but controlled conditions to 

quantify gene-by-environmental interactions (GXE) and to test the accuracy and errors of 

genome-to-phenome prediction. Compared to progeny of conventional intercrosses, AIs, or 

heterogenous stock, the BXDs are advantageous when heritabilities of traits are low or when 

measurement errors are high because the genetic signal can be boosted by resampling many 

isogenic cases (Belknap, 1998; Crow, 2007). A further benefit is that each data set adds 

quadratically to the number of trait-to-trait associations, and even the oldest data becomes 

more powerful as genetic, genomic, and phenomic contexts are improved and enlarged. The 

BXD, like other replicable reference populations, are therefore well adapted to extensible 

multisystems analyses, to modeling, and to quantitative prediction (Andreux et al., 2012; 

Chesler et al., 2003; Jha et al., 2018b, 2018a; Li et al., 2018; Williams et al., 2016). We have 

therefore assembled deep companion resources, including full sequence for both parents 

(Baker et al., 2019; Keane et al., 2011; McKnite et al., 2012; Wang et al., 2016b; Wu et al., 

2014). Access to data and statistical tools are available from open-source web services 

(GeneNetwork.org and Systems-Genetics.org) (Li et al., 2018; Sloan et al., 2016; Williams 

and Williams, 2017). High-density genetic maps are now combined with linear mixed model 

mapping to boost power and accuracy.

Results

The BXD family has been expanded to 140 inbred strains

We have approximately doubled the number of extant BXD strains, from ~35 (Taylor et al., 

1999), to ~80 (Peirce et al., 2004), to 140 here. We started producing 108 new BXD strains 

between 2009 and 2013 (BXD104–BXD220). A total of 123 BXD lines are currently 

distributed by The Jackson Laboratory (JAX, Table S1). Seventeen additional strains are 
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available at UTHSC but will soon be donated to JAX. All strains are available under a 

standard material transfer agreement.

We have identified three sets of strains that have almost identical genomes. These are 

marked by the addition of “a” and “b” suffixes. For example, BXD65, BXD65a, and 

BXD65b are identical by descent across >90% of their genomes. Without correction, the 

inclusion of three BXD65 substrains will bias results. There is also more subtle kinship 

among BXD family members that results from drift, backcrossing, and unintended selection. 

Correcting for both types of kinship when mapping traits can be accomplished using linear 

mixed models during analyses, for example Genome-wide Efficient Mixed Model 
Association (GEMMA) (Zhou and Stephens, 2012) or R/qtl2 (Broman et al., 2003, 2019) 

discussed below.

Improved mapping using updated markers

Affymetrix and Illumina arrays have been used to genotype at more than 100,000 

informative markers in 198 BXD strains (Morgan et al., 2015; Peirce et al., 2004; Shifman et 

al., 2006; Taylor et al., 1999; Zhang et al., 2012). Previously, a subset of 3,830 markers have 

been used for mapping, but here we have boosted marker numbers nearly two-fold to 7,324. 

This high-density marker set defines proximal and distal limits of chromosomal intervals 

that are non-recombinant. Markers are spaced at 0.63 Mb ± 1.0 SE, closely matching the 

expected asymptotic map resolution of ±1 Mb.

The increase in numbers of markers has significantly improved power and precision of 

linkage analysis (Figure 2, Figure S2) across all chromosomes (Figure S2). To quantify these 

improvements in mapping, we computed linkage for the entire BXD phenome—currently 

7562 phenotypes—using three different genotype files: the original file from 2001 (Williams 

et al., 2001), the “classic” genotypes used from 2005 to about 2016, and the updated 

genotypes. Each of these stage roughly doubled the numbers of markers (from 1,578 to 

3,811 to 7,324). We counted the number of traits associated with logarithm of the odds 

(LOD) linkage scores at three cut-offs: 2.2 (suggestive; a likelihood of one false positive per 

genome scan), 3.6 (significant; one false positives per 20 scans), and 5.4 (highly significant; 

one false positives per 100 scans) (Lander and Kruglyak, 1995) (Figure 2C). The largest 

boost in LOD is achieved for traits with linkage between 3.6 and 5.4 LOD—up 30% 

compared to older marker sets (Figure 2C and 2D).

We can further improve power and precision using linear mixed models

Compared to traditionally used Haley-Knott mapping (Haley and Knott, 1992), more 

recently developed algorithms can correct for variable kinship among genometypes and 

further improve mapping (Broman et al., 2003, 2019; Sul et al., 2016; Zhou and Stephens, 

2012). We calculated linkage for 3300 phenotypes using both the Haley-Knott (H-K) 

method that does not correct for kinship or using linear mixed model (LMM) mapping that 

does correct for kinship (Broman et al., 2019). Genome-wide significance was estimated 

based on 5000 permutations and the improvement is substantial (Figure 3, Table S2). Using 

H-K, 638 phenotypes reach pgw < 0.05 significance, whereas 763 reach the same criterion 

using the LMM, a 20% increase. To check that this was not due to phenotypes close to the 
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threshold, we counted the number of phenotypes with a peak LOD ≥ 1 above threshold: 196 

for H-K and 262 for LMM, a 33% increase. Note that there is not a substantial average 

increase in LOD scores when using an LMM compared to H-K (a mean increase of 0.06 and 

a median of 0.07), nor is there a substantial change in the mean pgw threshold (LMM 3.51 vs 

H-K 3.55; Table S2), demonstrating that LMM is not simply inflating all values.

Empirical mapping precision ranges from 0.25 to 5 Mb

We estimated the empirical precision of linkage maps using ~270,000 cis-acting expression 

QTLs (eQTLs) that have LOD scores greater than 3.0 and within 10 Mb of the mRNA 

transcription start site (Figure 4A). These criteria are conservative because an acceptance 

window of ±10 Mb will include a small number of regional trans-acting variants. However, 

this approach guards against overly optimistic estimates of precision. Mean precision for 

17,805 eQTLs with LODs above 5.0 is about 1.0 Mb using only 60–80 BXD strains. The 

median precision is about 0.50 Mb. In other words, the offset between the location of a gene 

and the location of the marker with the highest LOD is generally less than 1 Mb using half 

the available strains. However, regional variation in precision is high (Figure 4A,B), and 

intervals with low precision have either few markers or low recombination rates— a problem 

that is currently being addressed by generating sequence-based infinite marker maps 

(Ashbrook et al., 2018b). There may also be regions that contain large structural variants—

duplication, inversions, insertions—compared to the reference genome of C57BL/6J.

It is possible to achieve subcentimorgan mapping precision using only half of the full set of 

BXD strains (Figure 4)—a mean resolution of 500 Kb and a median resolution of 250 Kb 

for these Mendelian traits. Three factors contribute to this precision: 1. well-balanced 

distribution of only two haplotype across the genome (minor allele and haplotype 

frequencies close to 0.5). 2. the ability to boost the effective heritability of traits by 

resampling (Belknap, 1998); and 3. the high density of recombination junctions captured 

collectively within the BXD family (Figure 1C). Surprisingly, this level of map precision 

does not differ appreciably from that typical of the Collaborative Cross, the Diversity 

Outbred, or heterogeneous stock (HS), mainly because the minor haplotype frequencies 

(MHF) at loci are about four-fold higher in the BXDs than those typical of crosses made 

using many parental strains (MHFs of 0.05 to 0.10). In any case, precision much finer than 

this, while welcome, will often not be critical. The fuzzy functional boundaries of genes and 

the high density of sequence variants in linkage disequilibrium shifts the burden of proof 

from pure mapping to functional genomics, comparative analysis of human cohorts, 

complementary animal models, and direct pharmacological and genetic engineering (Smemo 

et al., 2014).

Mapping with the BXDs has high power

How many replicates and strains are needed to detect and resolve QTLs? To start with the 

conclusion—it is almost always better to study small numbers of as many strains as possible 

(Andreux et al., 2012; Belknap, 1998). Studying as few as 2–4 replicates of each of 100 or 

more strains may seem counterintuitive to those used to typing knockouts and their wildtype 

controls, but shallow comprehensive coverage is correct even for traits with low heritability. 

We have developed an R/shiny application (power.genenetwork.org) that provides guidance 

Ashbrook et al. Page 5

Cell Syst. Author manuscript; available in PMC 2022 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://power.genenetwork.org


on power and resampling for designs using the BXD. When heritability is low, the gain in 

power by increasing replicates is significant up to an n of 4–6 cases per genometype, but 

falls off rapidly at heritabilities above 0.5. At heritabilities above 0.5, power is high even 

using only two replicates (Figure 5). It may still make sense to add replicates for those 

strains that are in the tails of distributions because these extremes are both potential 

sampling errors but, if verified, are true research opportunities.

The effect sizes for loci in BXDs are usually high compared to those of outbred populations 

and humans. Two factors contribute to higher levels of genetic variance. First, nearly all loci 

in the BXDs are homozygous. The lack of heterozygotes increases the genetic variance two-

fold compared to a matched intercross, and four times as much variance as in a backcross 

(Belknap, 1998). The drawback is obvious: we cannot detect dominance effects without 

adding at least a subset of heterozygous loci of the type we can generate easily with sets of 

F1 progeny and a diallel cross. The second contributor is replicability (Figure 5). When 

effect size is treated as the proportion of total variance explained by genometypes, this will 

increase as environmental “noise” is suppressed by replication (Belknap, 1998). To 

demonstrate this effect we collected all cis-eQTLs (n = 6867) for a brain gene expression 

data set—55,683 measurements across 129 individuals and 37 BXD strains 

(GeneNetwork.org ID GN381). We calculated the proportion of variance in expression 

explained by cis-eQTL markers using either each individual as a unit or each strain mean as 

a unit. The mean proportion of variance explained is greatly increased by the latter approach 

(Figure S3), and for variants with a smaller effect sizes (z ≤ 0.2; n = 800) the improvement is 

2.5-fold. The average proportion of explained variance is about 1.5-fold higher when using 

strain means than when using individual values. Across all cis-eQTLs, the effect size using 

individual as unit is 0.49, whereas using strain means is 0.66—a 56% increase.

Substrains and epochs allow rapid determination of causal variants

Although kinship and epoch structure of the BXDs have been framed as a problem that 

needs to be solved using linear mixed models, kinship can also provide unique opportunities. 

In some cases, substrain sets show substantial phenotypic differences and can be used to 

generate so-called reduced complexity crosses (Bryant et al., 2020). Due to the low genetic 

variation between substrain sets, causal variants can often be identified rapidly, and these 

sets can be used as models of disease (Chang et al., 2006; Cook et al., 2006; Rosen et al., 

2013).

Each epoch of BXDs has been generated using unique B6 and D2 parents. Although 

nominally considered identical, these parents will have inherited small numbers of 

spontaneous mutations (Figure 1A). These de novo sequence variants that accumulated 

between epochs will lead to expression variation and differences in phenotypes, and due to 

their very small number, these variants are especially tractable. It becomes straightforward to 

define the quantitative trait nucleotides causing this higher order variation among epochs 

using reduced complexity crosses and coisogenic crosses (Heiker et al., 2014; Kirkpatrick 

and Bryant, 2014; Kumar et al., 2013; Mulligan et al., 2008). Well-defined epoch effect 

variants include Gpnmb in vision (Lu et al., 2011, 2019); Gabra2 in CNS function (Figure 6; 
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(Hawkins et al., 2020; Mulligan et al., 2019); and Taarl in methamphetamine abuse (Reed et 

al., 2017; Shi et al., 2016; Stafford et al., 2019).

Discussion

Kinship and genetic drift

The expanded family of BXDs is a well powered resource for both forward and reverse 

genetic analyses of genome-to-phenome linkage. As this family has grown, relations among 

individual strains have become complex, requiring the use of linear mixed models (Arends et 

al., 2010; Sul et al., 2016; Zhou and Stephens, 2014) or nonparametric equivalents such as 

mixed random forests (Stephan et al., 2015) that account for kinship, epoch, and other 

cofactors. The family has kinship at several levels. First, there is random fixation and 

selection of alleles and haplotypes that occurs during inbreeding (Williams et al., 2001). 

Second, there is strong kinship among AI-derived strains, including BXD43 to BXD102 and 

BXD160 to BXD186 (Peirce et al., 2004), that has its origins mainly in the 8–14 generations 

of intercrossing that preceded inbreeding (Darvasi, 1998). Third, there are coisogenic pairs 

such as BXD29/TyJ and BXD29-Tlr4<lps-2J>/J (Rosen et al., 2013). One member of each 

pair has at least one highly penetrant spontaneous mutation. Other recombinant congenic 

strains result from breeding admixture, for example the two BXD48s and the three BXD73s. 

These small sibships are interesting and useful and have been used to quickly identify causal 

mutations for immune disfunction in Tlr4 (Cook et al., 2006) and for retinal degeneration in 

Cep290 (Chang et al., 2006). Finally, there is kinship that results from the epochs of BXD 

production.

Improved power and precision of mapping BXD phenotypes—a 50 year path of progress

The first set of BXDs were used to map traits to sparse linkage groups, not chromosomes, in 

the early 1970s (Taylor et al., 1973). While postmillennial mapping resources are obviously 

far better, there is still much room for improvement. We compared three sequential sets of 

markers used to map the BXDs—the original genotypes from 2001 (Williams et al., 2001), 

the set used from 2005 to 2016 (the “classic” set) (Shifman et al., 2006), and the new 

genotype file released here. This most recent set increases the yield of loci detected at 

genome-wide significance by about ~25%.

We highlight two key points. First, using the genetic resources we present in this manuscript, 

it is possible to map quantitative traits with modest LOD scores with good precision, even 

when using comparatively small numbers of strains (n = 25 to 50; e.g. (Chintalapudi et al., 

2017; Houtkooper et al., 2013; Williams et al., 1998). Second, an effective way to transition 

from QTLs to causal genes and biological processes is to take advantage of complementary 

resources including other murine mapping resources, efficient in vitro and in vivo screens 

(Houtkooper et al., 2013; Williams and Auwerx, 2015), and human GWAS data (Ashbrook 

et al., 2014a, 2015b; Jha et al., 2018b, 2018a; Koutnikova et al., 2009). The brute-force way 

to improve precision and power is to just phenotype larger numbers of BXD strains. With 

140 strains and nearly 20,000 easily made F1 hybrds, traits can be mapped with 

subcentimorgan precision.
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Identification of causal variants is becoming easier thanks to improved genotypes (Rau et al., 

2015; Shifman et al., 2006; Simecek et al., 2017; Williams et al., 2001), full genome 

sequence (Keane et al., 2011; Wang et al., 2016b), powerful omics resources (King et al., 

2015; Williams et al., 2016, 2018; Wu et al., 2014), better Bayesian fine-mapping methods 

(Gonzales and Palmer, 2014; Mulligan et al., 2017; Wakefield, 2008; Wellcome Trust Case 

Control Consortium et al., 2012; Zhou and Stephens, 2014), and efficient molecular 

validation methods (Li et al., 2018). The BXD have been used to define specific genes and 

variants corresponding to well over 20 QTLs, including two tightly linked genes, Iigp2 and 

Irgb10, for Chlamydia infectivity (Miyairi et al., 2007, 2012), Fmn2 as a master controller of 

tRNA synthetases in neurons (Mozhui et al., 2008), Ubp1 for blood pressure (Koutnikova et 

al., 2009), Hc for H5N1 influenza resistance (Boon et al., 2014), Comt as a master controller 

of neuropharmacological traits (Li et al., 2010), Alpl for hypophosphatasia (Andreux et al., 

2012), Mrps5 for longevity (Houtkooper et al., 2013), Bckdhb for maple syrup urine disease, 

Dhtkd1 for diabetes (Wu et al., 2014), Hp1bp3 for cognitive aging (Neuner et al., 2016), Ahr 
for locomotor activity (Williams et al., 2014), and Gabra2 and Taar1 for behavioral traits 

(Mulligan et al., 2019; Reed et al., 2017) .

The BXD family is the largest and the most deeply phenotyped mammalian genetic 
reference panel

Data sets for the BXD encompass multiple levels—from single molecules to complex 

behavioral repertoires, and to traits measured with environmental perturbations, including 

exposure to alcohol and drugs of abuse (Dickson et al., 2019; Mulligan et al., 2018; 

Théberge et al., 2019; Zhou et al., 2018) , infectious agents (Boon et al., 2014; Chella 

Krishnan et al., 2016; Russo et al., 2015), dietary modifications (Fleet et al., 2016; Jha et al., 

2018b, 2018a; Jones and Jellen, 2017; Reyes Fernandez et al., 2016; Rodrigues et al., 2017), 

stress (Diessler et al., 2018; Jung et al., 2017) and even as a function of age (Sandoval-Sierra 

et al., 2020; Williams et al., 2020). This phenome is linked to over 500 publications, 

including state-of-the-art proteome, metabolome (Williams et al., 2018, 2020), epigenome 

(Baker et al., 2019; Sandoval-Sierra et al., 2019), and metagenome (Perez-Munoz et al., 

2019) data sets available on GeneNetwork.org.

Genetic research is moving rapidly toward causal modeling of health and disease risk and 

toward the predicted efficacy of prevention and interventions (Hood and Flores, 2012). The 

size and depth of the BXD phenome makes it a strong foundation for this experimental 

precision medicine. The genetic architecture of traits can be dissected and causal relations 

among networks can be explored (Roy et al., 2020). The ability to resample genomes across 

a stable reference family enables the expansion of data in almost any direction. Improved 

phenotype ontologies and better access to FAIR data (Wilkinson et al., 2016) enables cross-

species translation. This also enables more diverse researcher communities to engage in 

replicable trans-disciplinary studies of genome-phenome prediction.

Future Directions: Epistasis, pleiotropy, epigenetics, gene-by-environment interactions

Most work using the BXD family has had the simple goal of defining single gene variants 

and processes that contribute to heritable differences in disease risk. But we need to tackle a 

more important problem—the complex interplay among sets of variants, constellations of 
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phenotypes, and different treatments and environments (Ashbrook et al., 2014b; Mulligan 

and Williams, 2015; Williams and Auwerx, 2015; Williams et al., 2016). The BXDs are now 

sufficiently large to evaluate predictive models of biological processes of these more 

complex types (Li et al., 2008; Miyairi et al., 2012; Wang et al., 2016b) and to map epistatic 

interactions. But power to fit complex models can be greatly amplified by crossing BXD 

strains to generate a diallel cross of up to 19,460 F1 progeny. All isogenic BXD F1 lines are 

replicable and have entirely defined genomes. They have the advantage of being non-inbred 

and heterozygous. A subset of this massive diallel cross (DAX) can be generated efficiently 

from a central repository for cost-effective cell-based assays, and for matched in vivo 
predictive validation. Any part of this DAX can be used to study parent-of-origin and sex 

chromosome effects (Ashbrook and Hager, 2013). It is also practical to cross BXDs to other 

lines—for example to the humanized 5XFAD line used in Alzheimer’s disease research by 

Kaczorowski and colleagues (Neuner et al., 2019a, 2019b). By crossing humanized or 

genetically engineered lines on a single genetic background to a diverse but defined subset 

of BXDs, variants that modify traits—such as memory loss in the 5XFAD model—can be 

mapped and can provide valuable information on disease process and outcomes. 

Kaczorowski and colleagues have also evaluated the efficacy of reverse translation from 

human to mouse (Neuner et al., 2019a). They generated a polygenic genetic risk score using 

21 human genes that increase Alzheimer’s risk and showed that allele dosage was 

significantly associated with cognitive outcomes in mice. This demonstrates that naturally 

occurring variation in these networks may have overlapping effects in mouse and humans.

In humans tens-of-thousands of variants have now been mapped to haplotype blocks of 

under 100 Kb (Huan et al., 2015; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014; Wood et al., 2014). We need to revamp murine genetic 

resources to contribute more effectively, and in complementary ways, in an era flooded with 

GWAS hits. How are rodent resources best repositioned to help deliver on the still unmet and 

much more integrative promises of predictive genetics and personalized precision health 

care? The short answer is that we need large genetically complex resources with matched 

multiscalar and multisystems phenome data. We need resources that define and test 

progressively more sophisticated computational models as a function of genometype, stage, 

and exposure. We need replicable populations with the same intrinsic genetic complexity 

and admixture as humans but without the challenges of clinical research—high cost, 

marginal compliance and control, confidentiality, and of most importance, ethical constraints 

on designs and interventions. Rodent populations are ideally positioned to be replicable and 

extensible testbeds with which to define the power, accuracy, and limits of precision health 

care.

Conclusions

Systems genetics using rodent models has been revitalized over the last decade thanks to 

several resources, including the BXD family (Peirce et al., 2004), the Hybrid Mouse 

Diversity Panel (Bennett et al., 2015; Ghazalpour et al., 2012), and the Collaborative Cross 

(Churchill et al., 2004; Morgan and Welsh, 2015; Schughart and Williams, 2017; Valdar et 

al., 2006). The main limitation has been relatively modest mapping power and precision—a 

simple problem caused by small numbers of strains. With 140 strains now readily available, 
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and expandable to 19,460 isogenic F1s, the extended BXD family has overcome this 

problem. All phenome data is multiplicatively useful, and like a fine vintage, old data gets 

better with age.

STAR Methods

Lead Contact

Further information and requests for reagents may be directed to, and will be fulfilled by, the 

corresponding author David Ashbrook (dashbrook@UTHSC.edu).

Materials Availability

The BXD strains reported in this study are available from the JAX. JAX Stock No (RRIDs) 

can be found in the Key resources table and in Table S1.

Data and Software Availability

This paper analyzes existing, publicly available data. These data sets’ accession numbers are 

provided in the Key Resource Table, and throughout the manuscript. Genotype files can be 

found at http://www.genenetwork.org/webqtl/main.py?

FormID=sharinginfo&GN_AccessionId=600. GeneNetwork.org original code is publicly 

available at https://qithub.com/genenetwork/genenetwork2 and https://github.com/

genenetwork/genenetwork1.

The scripts used to generate the figures reported in this paper are available in the BXDtools 

package (https://github.com/DannyArends/BXDtools) or using ggplot2 (version 3.3.2; 

https://cran.r-project.org/web/packages/ggplot2/index.html) and their use is described in the 

STAR Methods. Code for computing marker positions and visualization of recombinations is 

available in the BXDtools package (https://github.com/DannyArends/BXDtools).

Power estimates can be made using http://power.genenetwork.org/, and code is at https://

github.com/Dashbrook/BXD_power_calculator_app.

The R/qtl2 software can be found here https://kbroman.org/qtl2/, and its use is described in 

the STAR Methods.

Experimental Model and Subject Details

Mice

Between 2009 and 2010 we initiated 74 BXD strains (BXD104 to BXD186). We initiated 

another 34 strains in 2013 (BXD187 to BXD220). We used both conventional F2 

intercrosses (n = 88) and AI progeny (n = 20) to make the 108 new lines. BXD160 through 

BXD186 were derived from unique matings of AI progeny gifted us by Dr. Abraham Palmer 

at G8 and G9 late in 2010 (Figure 1, Figure S1, Table S1).

In cases of low reproductive fitness, we often attempted to rescue lines by outcrossing young 

male BXDs to C57BL/6J females followed by three or more sequential backcrosses (N3) to 

the RI male to produce progeny enriched for the BXD genome. In more recent cases, pairs 
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of at-risk strains were crossed to produce RIX progeny (Tsaih et al., 2005; Williams et al., 

2001), which were then inbred by sibling mating. BXD221 to BXD228 are RIX-derived 

strains of this type (Figure S1, Table S1).

Unless otherwise specified, all animals used in this study were raised in a closed-barrier 

pathogen-free vivarium at the University of Tennessee Health Science Center. All BXD 

strains are available under a standard material transfer agreement; the most important 

limitation being that they cannot be sold or distributed without approval of the Jackson 

Laboratory or UTHSC. Availability information on all BXD lines can be found in Table S1.

Method details

Genetic map construction and genotype error correction

Individuals from each of the 198 BXD lines were genotyped in late 2011 and in late 2015 

using the Neogen/GeneSeek MUGA or GigaMUGA arrays. These were combined with 

previous genotypes generated using Affymetrix and MUGA platforms. Unknown genotypes 

were imputed as B (C57BL/6J-like) or D (DBA/2J-like) or were called as H (heterozygous) 

if the genotype was uncertain.

The full data set contains 37,000 markers and was optimized for mapping efficiency by 

excluding markers showing identical strain distribution patterns. Markers that flank sites of 

recombination were retained. As a result, strain distribution patterns are often defined by 

proximal-distal marker pairs. Whenever possible, we verified and updated genotypes of the 

original BXD strains (BXD1 - BXD102) to reflect those of stock available from the Jackson 

Laboratory (Rau et al., 2015) and from Petr Simecek and Gary Churchill; http://cgd.jax.org/

datasets/diversityarray.shtml).

Genotypes for all strains were smoothed and curated to remove highly implausible (double) 

recombination events, e.g. unsupported genotypes (singletons) that introduced two 

recombination events over less than 100 kb (Williams et al., 2001). In general, we imputed 

unknown or heterozygous genotypes on the basis of flanking markers. Undefined genotypes 

between recombinations were coded as heterozygous, and telomere genotypes were imputed 

using the closest flanking marker.

In the newer BXD strains many regions are still heterozygous. Generated genotypes using 

standard platforms still show regions of low marker density and a high frequency of 

recombinations. These regions of low marker density were filled with imputed genotypes 

using cis-eQTLs of genes in the problematic intervals. Microsatellites and cis-eQTL 

genotypes were generated by the Williams/Lu laboratory.

The assembled and error-checked genotype file includes 7,324 markers for 191 independent 

strains, and 7 substrains, has been available since January 2017 at http://

www.genenetwork.org/genotypes/BXD.geno and is the default genetic map used when QTL 

mapping on GeneNetwork (http://www.genenetwork.org).
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Genome-wide visualization of recombinations

For each chromosome we compute the number of observed recombinations per strain from 

the start of the chromosome (nRecS), ignoring the heterozygous and unknown genotypes. 

We then visualize this by plotting the number of recombinations for each BXD strain per 

chromosome using a color gradient. Strain numbers are used for the ordering on the X-axis, 

and horizontal lines are added to visually separate the different epochs and annotate the 

epochs on the X-axis.

Quantification and Statistical Analysis

Computing centimorgan positions

For each chromosome we compute the number of observed recombinations from one 

position to the next, ignoring the heterozygous and unknown genotypes (nRecP). We then 

compute the recombination fraction (R) by dividing the number of recombinations observed 

(nRecP) by the population size used to generate the genetic map. The recombination 

fractions (R) are then deflated using the formula:

r = R/ 4 − 6R

, which is the inverse of the formula R = 4r/(1+6r) for a recombinant inbred line by sibling 

mating. We then use the function imf.cf available in the R package R/qtl (Arends et al., 

2010; Broman et al., 2003) to convert from centiMorgan using the Carter-Falconer map 

function (Rédei, 2008a). Positions obtained start at 0 on each chromosome, requiring all 

positions to be shifted so that the first marker on the map matches the known centiMorgan 

position of the first marker on the genetic map. The old genetic map and the mouse map 

converter (http://cgd.jax.org/mousemapconverter/) were used to obtain centiMorgan 

positions for the first marker on a chromosome, all position on a chromosome are shifted to 

align the genetic map to the known starting positions of the markers. Code for computing 

marker positions is available in the BXDtools package (https://github.com/DannyArends/

BXDtools), and positions can be recomputed using different map functions when required 

(e.g. Haldane (Rédei, 2008b), Kosambi (Rédei, 2008c), Morgan (Rédei, 2008d)).

Comparing genotype files

Over the past four decades many genotype files have been used for QTL mapping of the 

BXDs. The first carefully vetted genome-wide map (which we call the ‘original’) was 

generated in 2001, and mainly made up of 1,578 microsatellite markers (Wang et al., 2003; 

Williams et al., 2001). The second ‘classic’ map was used between 2005–2016 and 

contained 3,811 SNPs from various array platforms (Shifman et al., 2006). The current 

third-generation file is based on 7,321 informative SNPs described above.

For the 2001 markers, Mouse Genome Informatics was used to update 1419 microsatellites 

to the current assembly. This left 159 orphaned markers without mm10 positions. We used 

the NCBI Probe database (www.ncbi.nlm.nih.gov/probe/) to search for these 159 markers, 

and extracted primer sequence for 107. We ran Primer-BLAST (www.ncbi.nlm.nih.gov/

tools/primer-blast/index.cgi) to determine where in the mm10 genome they would amplify. 
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For the remaining 52 markers, we used BLAST to align the target sequence to identify the 

mm10 position. This left 11 markers which Primer-BLAST either predicted a different 

chromosome would be amplified, or which did not have any mm10 genomic targets.

These ‘original’ genotypes only exist for the first 36 BXD strains (BXD1–42), and so the 

remaining strains were imputed (BXD24a and BXD 43+), using the genotype at the 

microsatellite’s position in the ‘current’ post-2017 genotyping file. To determine our power 

to detect QTLs, we ran mapping using QTL Reaper for the 7562 phenotypes collected for 

the BXD, and the number of phenotypes which had a LOD greater than three threshold 

values: 2.2, 3.6 and 5.4. These correspond to suggestive, significant, and highly significant 

LOD values. The larger the number of phenotypes above these thresholds, the greater our 

power to detect QTLs.

Precision and Resolution

To estimate the empirical precision of mapping across the genome we have extracted data 

from 40 large-scale genetic studies of gene expression of the BXD family. These studies 

used between 21 and 79 strains with variable numbers of within-strain replicates over 27 

tissues. We defined eQTLs that map within ±20 Mb of the gene associated with the 

transcripťs measurement as cis-acting expression QTLs (cis-eQTLs). Unlike a standard F2 

intercross, this ±20 Mb window is roughly equivalent to a recombination distance of ±40 cM 

in the highly recombinant BXD family, and the statistical association between markers this 

far apart is generally quite low (r2 less than 0.3).

Precision was estimated using the offset between the location of the gene (using the 5’ end 

of the probe or probe set as a reference point), and the location of the SNP with the highest 

LOD score. Again, this is conservative, as the causal variant is unlikely to be exactly at the 

5’ end of the gene. There are often two or more neighboring SNPs with equally high LOD 

scores and we simply take the most proximal marker to compute offset. The light blue local 

regression (LOESS) smoother curve (Cleveland, 1979) was computed using a window with a 

size of 0.333% of the genome. Smoothing was carried out and data was plotted using the 

ggplot2 R package.

QTL mapping

QTL mapping using GeneNetwork has been described in detail elsewhere (Mulligan et al., 

2017). However, in brief, quantitative trait loci (QTLs) are segments of the genome affecting 

a particular phenotype (Falconer and Mackay, 1996). QTL mapping, identifying QTLs to 

explain the genetic basis of complex traits, relies on being able to make correlations between 

genetic markers and phenotypic traits in a population. Individuals are scored for their 

phenotype for a particular trait, and their genotype at a marker. If there is a difference in 

mean phenotype between those individuals with one genotype compared with the other than 

we can infer that there is a QTL linked to that marker. If there is no difference between the 

means we can conclude that the locus does not influence the phenotype in that population 

(Falconer and Mackay, 1996; Miles and Wayne, 2008).

Due to the very high density of markers, the mapping algorithm used to map BXD data sets 

has been modified and is a mixture of simple marker regression, linear interpolation, and 
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standard Haley-Knott interval mapping (Haley and Knott, 1992). When two adjacent 

markers have identical strain distribution patterns, they will have identical linkage statistics, 

as will the entire interval between these two markers (assuming complete and error-free 

haplotype data for all strains). On a physical map the LOD and the additive effect values 

will, therefore, be constant over this physical interval. Between neighboring markers that 

have different strain distribution patterns and that are separated by 1 cM or more, we use a 

conventional interval mapping method (Haley-Knott) combined with a Haldane estimate of 

genetic distance. When the interval is less than 1 cM, we simply interpolate linearly between 

markers based on a physical scale between those markers. The result of this mixture 

mapping algorithm is a linkage map of a trait that has an unusual profile that is particularly 

striking on a physical (Mb) scale, with many plateaus, abrupt linear transitions between 

plateaus, and a few regions with the standard graceful curves typical of interval maps.

Prior to the 2017 release of the genotypes described in this manuscript interval mapping in 

GeneNetwork relied on 3,795 informative SNP markers across all autosomes and the X 

chromosome (Wang et al., 2003). These markers were generated using the MUGA array in 

2011, along with earlier generated genotypes on the Affymetrix and Illumina platforms 

(Shifman et al., 2006). As described above, loci are identified in GeneNetwork by the 

computation of a likelihood ratio statistic score (LRS), and significance was determined 

using at least 5,000 permutations of the phenotype data.

Updated QTL mapping methods, such as R/qtl (Broman et al., 2003, 2019), Multiple QTL 

mapping (Arends et al., 2010), GEMMA (Zhou and Stephens, 2012) and pyLMM (Sul et al., 

2016), have been implemented on the GeneNetwork site (Sloan et al., 2016). The LMM 

based methods for kinship between BXD strains by computing a genetic kinship matrix 

given specific strains used in an analysis, allowing for precise kinship correction and 

improved QTL mapping performance when mapping any of the BXD phenotypes in the 

GeneNetwork database.

R/qtl2 (Broman et al., 2003, 2019) was also used to carry out QTL mapping, independently, 

in the R environment. The functions scan1 and scan1perm were used to calculate linkage for 

all phenotypes, and permutation thresholds. For Haley-Knott mapping no kinship correction 

was used, and for LMM the calc_kinship function was used, with leave one chromosome out 

(LOCO).

Power calculation

Power calculations were carried out based on the method of Sen and colleagues (Sen et al., 

2007) and implemented in the R program qtlDesign based on the H2
RIX defined by Belknap 

(Belknap, 1998), which we renamed H2
ix− as it is applicable to any isogenic strain, not just 

recombinant inbreds. The Detectable function was used, to determine the power available 

with an RI design to detect a locus of a given effect size.

For calculation of the H2
ix−, four variables need to be known: heritability (h2), the number of 

within-strain replicates (biological replicates), the number of strains used, and the locus 

effect size (the proportion of total genetic variance explained by the locus). To calculate h2, 
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the genomic variance (gen.var) was kept constant at 1, and the environmental variance 

(env.var) was varied to produce h2 values ranging between 0 and 1. The number of 

biological replicates and the number of strains are self-explanatory, and were capped at 10 

and 150 respectively, since >10 replicates produced a marginal increase in power, and 

because there are a maximum of 150 BXD lines.

The locus effect size is the amount of the variance which is due to genetics (gen.var) 

explained by a single QTL. That is, a value of 0.2 would mean that a QTL explains 20% of 

the genetic variance, and a value of 1.0 indicates a Mendelian locus (one QTL which 

explains all of the genetic variance).

The power given is the ability of the experiment to correctly detect a true positive QTL, 

given the other values above. The BXD power app can be found at http://

power.genenetwork.org/ and uses the Shiny R package (https://CRAN.R-proiect.orq/

packaqe=shiny).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• There are now 140 fully inbred BXD strains available, with high-quality 

genotypes

• More strains, new genotypes, and new models have improved power and 

precision

• We have high power even for traits with low heritability or small effect sizes

• A phenome of >100 omics datasets and >7500 classic phenotypes is freely 

available
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Figure 1: Production of the BXD family by standard F2 (A) or advanced intercross (B), and 
recombination differences (C).
Four epochs of the BXD were derived from F2 (A) (~75 strains; epochs 1,2,4,6 in C). Two 

epochs were derived from advanced intercross (B) (~65 strains; epochs 3, 5 in C). Red 

represents regions of the genome coming from C57BL/6J (B6), white represents regions 

from the DBA/2J (D2). Solid lines represent a single generation. Adapted from Peirce et al., 

2004. (C) Genome wide visualization of recombinations in the BXD. Number of 

recombinations per strain (nRecS), ignoring heterozygous and unknown genotypes plotted 

using a color gradient. Strain numbers on the X-axis, horizontal lines separate the epochs, 

epochs are annotated on the X-axis. Mean number of inbreeding generations is shown for 

each epoch. Epoch 6 appears to have fewer recombinations due to a large number of 

heterozygous loci at genotyping. Details in Figure S1 and Table S1.
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Figure 2: Improved, denser, genotypes increase linkage across chromosomes, decades of work, 
and number of strains.
Comparison of current (A) and classic (B) genotypes for BXD_10666, Cytotoxic T-cell 

(CTL) response (5 x 10^9 PFU AdLacZ iv), measured as interleukin 6 (IL-6) cytokine 

expression [pg/ml], published by Zhang et al., 2004, measured in 23 strains. A QTL on 

chromosome 7 is now significant (above the red p = 0.05 significance line) using the current 

genotypes (A), compared to the classic genotypes (B). Additional examples in Figure S2. 

(C) Bar chart showing the number of phenotypes with a peak LOD score over the suggestive 

(LOD ≥ 2.2; p ≤ 0.63), significant (LOD ≥ 3.6; p ≤ 0.05) and highly significant (LOD ≥ 5.4; 

p ≤ 0.001) thresholds, using original, classic or current marker maps. (D) Percentage 

increase in the number of traits passing the thresholds in the classic or current genotype 

map, compared to the original map.
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Figure 3: Improvement in mapping by using linear mixed models (LMMs) vs Haley-Knott 
regression (H-K).
Linkage measured in 3300 phenotypes from GeneNetwork, and mapped using Haley-Knott 

regression or an LMM in R/qtl2 (Broman et al., 2003, 2019). Y-axis is difference in LOD 

from the significance threshold (calculated by 5000 permutations) and the peak LOD. X-axis 

is the peak LOD, calculated by LMM, so that points can be directly compared. Each point 

represents a phenotype, LMM results plotted turquoise, Haley-Knott plotted red. A smoother 

was fitted in the same colors for comparison. Underlying data in Table S2.
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Figure 4: Empirical QTL mapping precision estimated using cis-eQTLs.
Each point shows the distance between a probe and an eQTL. (A) Precision achieved when 

mapping modest QTLs with LOD scores of 3-5 and using only 20-40 strains and 2-4 

samples per strain. Number of replicates within each strain will affect the precision to a 

greater extent for QTLs with low heritability and modest LOD scores by increasing the 

effective heritability (see Belknap 1998). eQTL studies generally use only 1–4 replicates, so 

precision values are conservative. Mean offset across the genome is 4.67 Mb, median 2.72 

Mb. (B) Precision achieved when mapping highly significant QTLs with LOD > 5, using 

60–80 strains, with > 2 replicates. Mean offset is 1.38 Mb, median 0.76 Mb.
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Figure 5: Relations between power, numbers of strains and replicates in BXD, generated using 
qtlDesign (Sen et al., 2007).
(A) Power to detect a given effect for n replicates and n strains. Locus effect size and 

heritability constant at 0.3 and 0.4 respectively. More replicates increase power but beyond 

four replicates gain in power is marginal. (B) Effect size detectable, given n replicates and 

strains. Heritability and power kept at 0.5 and 0.8. (C) Power to detect a given effect size, 

dependent upon heritability and n biological replicates. Locus effect size and n strains kept 

at 0.4 and 40. With very low h2 there is no power, and with lower h2 the gain in power is 

stronger with increasing number of replicates compared with high h2. Beyond four 

replicates, the gain in power is marginal. (D) Power to detect a given effect size, dependent 

upon heritability, with a total of 200 animals. These range from 100 lines with 2 replicates to 

10 lines with 20 replicates. In contrast to what one might assume, even for low levels of h2, 

power always increases with more lines rather than more replicates. Effect size kept at 0.4. 

Empirical example of power in the BXD can be found in Figure S3.
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Figure 6: Impact of epoch-specific mutations in the BXD family.
(A) A private mutation (single nucleotide intronic deletion) in the Gamma-aminobutyric acid 

(GABA-A) receptor, subunit alpha 2 (Gabra2) gene occurred in the C57BL/6J lineage 

(turquoise line). The spontaneous mutation was fixed in Jackson Laboratory C57BL/6J 

foundation stock after separation of the C57BL/6EiJ substrain (1976), and (B) after the 

creation of the first BXD epoch (1970s). All BXD epochs (2–6) created after 1990 are 

derived from separate crosses between C57BL/6J and DBA/2J mice and segregate for the 

C57BL/6J Gabra2 mutant allele (shown in turquoise). (C) Inheritance of the C57BL/6J 
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mutant allele (turquoise) results in a reduction of brain Gabra2 expression levels relative to 

the ancestral C57BL/6J (black) or DBA/2J (gray) allele. Allele color coded based on Gabra2 
genotype at rs13478320. Gabra2 mRNA expression values (trait 1443865) are shown for the 

hippocampus but are replicated in other brain regions and at the protein level. QTL mapping 

in epoch 1 or later epochs demonstrates how the absence or presence of segregating 

C57BL/6J mutant Gabra2 alleles controls gene expression.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

GeneNetwork Genenetwork.org RRID:SCR_002388

Experimental Models: Organisms/Strains

Mouse: BXD1/TyJ JAX RRID:000036

Mouse: BXD2/TyJ JAX RRID:000075

Mouse: BXD3 JAX

Mouse: BXD4 JAX

Mouse: BXD5/TyJ JAX RRID:000037

Mouse: BXD6/TyJ JAX RRID:000007

Mouse: BXD7 JAX

Mouse: BXD8/TyJ JAX RRID:000084

Mouse: BXD9/TyJ JAX RRID:000105

Mouse: BXD10 JAX

Mouse: BXD11/TyJ JAX RRID:000012

Mouse: BXD12/TyJ JAX RRID:000045

Mouse: BXD13/TyJ JAX RRID:000040

Mouse: BXD14/TyJ JAX RRID:000329

Mouse: BXD15/TyJ JAX RRID:000095

Mouse: BXD16/TyJ JAX RRID:000013

Mouse: BXD17 JAX

Mouse: BXD18/TyJ JAX RRID:000015

Mouse: BXD19/TyJ JAX RRID:000010

Mouse: BXD20/TyJ JAX RRID:000330

Mouse: BXD21/TyJ JAX RRID:000077

Mouse: BXD22/TyJ JAX RRID:000043

Mouse: BXD23/TyJ JAX RRID:000098

Mouse: BXD24/TyJ-Cep290rd16/J JAX RRID:000031 | rd16

Mouse: BXD24/TyJ JAX RRID:005243

Mouse: BXD25/TyJ JAX RRID:000081

Mouse: BXD26 JAX

Mouse: BXD27/TyJ JAX RRID:000041

Mouse: BXD28/TyJ JAX RRID:000047

Mouse: BXD29/Ty JAX RRID:010981

Mouse: BXD29-Tlr4lps-2J/J JAX RRID:000029 | defective lipopolysaccharide response, 2J

Mouse: BXD30/TyJ JAX

Mouse: BXD31/TyJ JAX RRID:000083

Mouse: BXD32/TyJ JAX RRID:000078

Cell Syst. Author manuscript; available in PMC 2022 March 17.

http://Genenetwork.org


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ashbrook et al. Page 33

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD32/TyJ-Galctwi-5J/J JAX RRID:003613 | twitcher 5 Jackson

Mouse: BXD33/TyJ JAX RRID:003222

Mouse: BXD34/TyJ JAX RRID:003223

Mouse: BXD35/Ty JAX

Mouse: BXD36/TyJ JAX RRID:003225

Mouse: BXD37/Ty JAX

Mouse: BXD38/TyJ JAX RRID:003227

Mouse: BXD39/TyJ JAX RRID:003228

Mouse: BXD40/TyJ JAX RRID:003229

Mouse: BXD41/Ty JAX

Mouse: BXD42/TyJ JAX RRID:003230

Mouse: BXD43/RwwJ JAX RRID:007093

Mouse: BXD44/RwwJ JAX RRID:007094

Mouse: BXD45/RwwJ JAX RRID:007096

Mouse: BXD46 JAX

Mouse: BXD47 JAX

Mouse: BXD48/RwwJ JAX RRID:007097

Mouse: BXD48a/RwwJ JAX RRID:007139

Mouse: BXD49/RwwJ JAX RRID:007098

Mouse: BXD50/RwwJ JAX RRID:007099

Mouse: BXD51/RwwJ JAX RRID:007100

Mouse: BXD52 UTHSC

Mouse: BXD53/2RwwJ JAX RRID:017749

Mouse: BXD54 UTHSC

Mouse: BXD55/RwwJ JAX RRID:007103

Mouse: BXD56/RwwJ JAX RRID:007104

Mouse: BXD57 UTHSC

Mouse: BXD58 UTHSC

Mouse: BXD59 UTHSC

Mouse: BXD60/RwwJ JAX RRID:007105

Mouse: BXD61/RwwJ JAX RRID:007106

Mouse: BXD62/RwwJ JAX RRID:007107

Mouse: BXD63/RwwJ JAX RRID:007108

Mouse: BXD64/RwwJ JAX RRID:007109

Mouse: BXD65/RwwJ JAX RRID:007110

Mouse: BXD65a/RwwJ JAX RRID:007140

Mouse: BXD65b/RwwJ JAX RRID:009677

Mouse: BXD66/RwwJ JAX RRID:007111

Mouse: BXD67/RwwJ JAX RRID:007112
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD68/RwwJ JAX RRID:007113

Mouse: BXD69/RwwJ JAX RRID:007114

Mouse: BXD70/RwwJ JAX RRID:007115

Mouse: BXD71/RwwJ JAX RRID:007116

Mouse: BXD72 UTHSC

Mouse: BXD73/RwwJ JAX RRID:007117

Mouse: BXD73a/RwwJ JAX RRID:007124

Mouse: BXD73b/RwwJ JAX RRID:007146

Mouse: BXD74/RwwJ JAX RRID:007118

Mouse: BXD75/RwwJ JAX RRID:007119

Mouse: BXD76 UTHSC

Mouse: BXD77/RwwJ JAX RRID:007121

Mouse: BXD78/2RwwJ JAX RRID:024029

Mouse: BXD79/RwwJ JAX RRID:007123

Mouse: BXD80 UTHSC

Mouse: BXD81/RwwJ JAX RRID:007125

Mouse: BXD82 UTHSC

Mouse: BXD83/RwwJ JAX RRID:007126

Mouse: BXD84/RwwJ JAX RRID:007127

Mouse: BXD85/RwwJ JAX RRID:007128

Mouse: BXD86/RwwJ JAX RRID:007129

Mouse: BXD87/RwwJ JAX RRID:007130

Mouse: BXD88/2RwwJ JAX RRID:017750

Mouse: BXD89/RwwJ UTHSC

Mouse: BXD90/RwwJ JAX RRID:007133

Mouse: BXD91/2RwwJ JAX RRID:017751

Mouse: BXD92 UTHSC

Mouse: BXD93 UTHSC

Mouse: BXD94 UTHSC

Mouse: BXD95/RwwJ JAX RRID:007138

Mouse: BXD96 UTHSC

Mouse: BXD97 UTHSC

Mouse: BXD98/RwwJ JAX RRID:007141

Mouse: BXD99/RwwJ JAX RRID:007142

Mouse: BXD100/RwwJ JAX RRID:007143

Mouse: BXD101/RwwJ JAX RRID:007144

Mouse: BXD102/RwwJ JAX RRID:007145

Mouse: BXD103 UTHSC

Mouse: BXD104 UTHSC
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD105 UTHSC

Mouse: BXD106 UTHSC

Mouse: BXD107 UTHSC

Mouse: BXD108 UTHSC

Mouse: BXD109 UTHSC

Mouse: BXD110 UTHSC

Mouse: BXD111/RwwJ JAX RRID:030872

Mouse: BXD112 UTHSC

Mouse: BXD113/RwwJ JAX RRID:024030

Mouse: BXD114

Mouse: BXD115 UTHSC

Mouse: BXD116 UTHSC

Mouse: BXD117 UTHSC

Mouse: BXD118 UTHSC

Mouse: BXD119 UTHSC

Mouse: BXD120 UTHSC

Mouse: BXD121 UTHSC

Mouse: BXD122/RwwJ JAX RRID:030873

Mouse: BXD122a UTHSC

Mouse: BXD123/RwwJ JAX RRID:025974

Mouse: BXD124/RwwJ JAX RRID:025975

Mouse: BXD125/RwwJ JAX RRID:024031

Mouse: BXD126 UTHSC

Mouse: BXD127

Mouse: BXD128/RwwJ JAX RRID:030874

Mouse: BXD128a/RwwJ JAX RRID:030875

Mouse: BXD129 UTHSC

Mouse: BXD130 UTHSC

Mouse: BXD131 UTHSC

Mouse: BXD132 UTHSC

Mouse: BXD133 UTHSC

Mouse: BXD134 UTHSC

Mouse: BXD135 UTHSC

Mouse: BXD136 UTHSC

Mouse: BXD137 UTHSC

Mouse: BXD138 UTHSC

Mouse: BXD139 UTHSC

Mouse: BXD140 UTHSC

Mouse: BXD141/RwwJ JAX RRID:029865
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD142 UTHSC

Mouse: BXD143 UTHSC

Mouse: BXD144/RwwJ JAX RRID:025984

Mouse: BXD145 UTHSC

Mouse: BXD146 UTHSC

Mouse: BXD147 UTHSC

Mouse: BXD148 UTHSC

Mouse: BXD149 UTHSC

Mouse: BXD150/RwwJ JAX RRID:029867

Mouse: BXD151/RwwJ JAX RRID:029868

Mouse: BXD152/RwwJ JAX RRID:029869

Mouse: BXD153 UTHSC

Mouse: BXD154/RwwJ JAX RRID:025976

Mouse: BXD155 UTHSC

Mouse: BXD156/RwwJ JAX RRID:029871

Mouse: BXD156a UTHSC

Mouse: BXD157/RwwJ JAX RRID:029872

Mouse: BXD158 UTHSC

Mouse: BXD159 UTHSC

Mouse: BXD160/RwwJ JAX RRID:029873

Mouse: BXD161/RwwJ JAX RRID:025985

Mouse: BXD162 UTHSC

Mouse: BXD163 UTHSC

Mouse: BXD164 UTHSC

Mouse: BXD165 UTHSC

Mouse: BXD166 UTHSC

Mouse: BXD167 UTHSC

Mouse: BXD168/RwwJ JAX RRID:029874

Mouse: BXD169/RwwJ JAX RRID:029876

Mouse: BXD170/RwwJ JAX RRID:029878

Mouse: BXD171/RwwJ JAX RRID:029879

Mouse: BXD172/RwwJ JAX RRID:029880

Mouse: BXD173 UTHSC

Mouse: BXD174 UTHSC

Mouse: BXD175 UTHSC

Mouse: BXD176 UTHSC

Mouse: BXD177/RwwJ JAX RRID:029881

Mouse: BXD178/RwwJ JAX RRID:029882

Mouse: BXD179 UTHSC
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD180/RwwJ JAX RRID:029883

Mouse: BXD181 UTHSC

Mouse: BXD182 UTHSC

Mouse: BXD183 UTHSC

Mouse: BXD184/RwwJ JAX RRID:029884

Mouse: BXD185 UTHSC

Mouse: BXD186/RwwJ JAX RRID:029885

Mouse: BXD187/RwwJ JAX RRID:031974

Mouse: BXD188 UTHSC

Mouse: BXD189 UTHSC

Mouse: BXD190/RwwJ JAX RRID:030876

Mouse: BXD191/RwwJ JAX RRID:030877

Mouse: BXD192 UTHSC

Mouse: BXD193 UTHSC

Mouse: BXD194/RwwJ JAX RRID:030878

Mouse: BXD195/RwwJ JAX RRID:030879

Mouse: BXD196 UTHSC

Mouse: BXD197/RwwJ JAX RRID:030880

Mouse: BXD198 UTHSC

Mouse: BXD199/RwwJ JAX RRID:030881

Mouse: BXD200 UTHSC

Mouse: BXD201 UTHSC

Mouse: BXD202/RwwJ JAX RRID:031975

Mouse: BXD203 UTHSC

Mouse: BXD204 UTHSC

Mouse: BXD205 UTHSC

Mouse: BXD206 UTHSC

Mouse: BXD207 UTHSC

Mouse: BXD208 UTHSC

Mouse: BXD209 UTHSC

Mouse: BXD210/RwwJ JAX RRID:031976

Mouse: BXD211 UTHSC

Mouse: BXD212 UTHSC

Mouse: BXD213 UTHSC

Mouse: BXD214/RwwJ JAX RRID:030882

Mouse: BXD215/RwwJ JAX RRID:031977

Mouse: BXD216/RwwJ JAX RRID:031978

Mouse: BXD217 UTHSC

Mouse: BXD218 UTHSC
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: BXD219 UTHSC

Mouse: BXD220 UTHSC

Mouse: BXD221 UTHSC

Mouse: BXD222 UTHSC

Mouse: BXD223 UTHSC

Mouse: BXD224 UTHSC

Mouse: BXD225 UTHSC

Mouse: BXD226 UTHSC

Mouse: BXD227 UTHSC

Mouse: BXD228 UTHSC

Software and Algorithms

GeneNetwork Genenetwork.org RRID:SCR_002388

BXDtools https://github.com/DannyArends/BXDtools

BXD power calculator app http://
power.genenetw
ork.org/; this 
paper

https://github.com/Dashbrook/
BXD_power_calculator_app

R/qtl2 Broman et al., 
2019

RRID:SCR_018181; https://kbroman.org/qtl2/
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