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Functional profiling of COVID‑19 
respiratory tract microbiomes
Niina Haiminen  1, Filippo Utro  1, Ed Seabolt  2 & Laxmi Parida  1* 

In response to the ongoing global pandemic, characterizing the molecular-level host interactions of 
the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented 
scientific focus. However, when the virus enters the body it also interacts with the micro-organisms 
already inhabiting the host. Understanding the virus-host-microbiome interactions can yield 
additional insights into the biological processes perturbed by viral invasion. Alterations in the gut 
microbiome species and metabolites have been noted during respiratory viral infections, possibly 
impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions 
in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of 
previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from 
eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy 
controls. The functional profiles resulting from comparing the sequences against annotated microbial 
protein domains clearly separate the cohorts. By examining the associated metabolic pathways, 
distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, 
including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, 
and increased potential for carbohydrate metabolism pathways. The results include overlap between 
previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation 
pathway and increase in carbohydrate metabolism. The results also suggest novel connections to 
consider, possibly specific to the lower respiratory tract microbiome, calling for further research on 
microbial functions and host-microbiome interactions during SARS-CoV-2 infection.

An impressive number of scientific studies have rapidly been published on the genomics and molecular-level host 
interactions of the respiratory coronavirus SARS-CoV-21 of reported bat origin2, responsible for the COVID-19 
disease pandemic. In addition to characterizing the process of viral infection and host response3, understand-
ing changes in the microenvironment within the host can yield further insights into the perturbed biological 
processes4 and their connections with disease risk factors5. The gut and lungs are closely linked organs that affect 
each other via an immunological co-ordination between them, and microbes have a central role in shaping the 
normal and pathologic immune responses in both6. Microbiome-mediated cross-talk along the gut-lung axis has 
been noted during lung infection specifically due to alterations in the gut microbial species and metabolites7,8. 
The gut microbiota has a critical role in pulmonary immunity and the host’s defense against viral respiratory 
infections; current evidence points to SARS-CoV-2 infection altering the gut barrier, leading to the systemic 
spread of bacteria, endotoxins, and microbial metabolites9. It has been suggested that a cycle between SARS-CoV2 
infection, systemic inflammation, disrupted intestinal barrier integrity, and microbial translocation contributes 
to COVID-19 severity10.

The respiratory microbiome during SARS-CoV-2 infection has also been under investigation1,11–13. Previous 
studies on the respiratory tract microbiome during other pathogen infections have examined its predictivity of 
clinical outcomes, and associated potential probiotic interventions14–18. In a study of the oropharyngeal micro-
biome, reduced microbiome diversity and high dysbiosis were observed in hospitalized patients with severe 
COVID-19, associated with a loss of microbial genes and metabolic pathways19. It has also been demonstrated 
that SARS-CoV-2 causes a significant change in the microbiome present in nasopharyngeal specimens20. The 
upper respiratory tract has been investigated for co-infection of other pathogens and SARS-CoV-221, while 
alterations in its microbiota has been observed in COVID-19 patients and associated with the fatality rate22.

To better understand the role of the lower respiratory microbiome in COVID-19, we introduce a functional 
analysis, as opposed to taxonomic naming, from a collection of metatranscriptomes from bronchoalveolar lavage 
fluid (BALF) of COVID-19 patients, healthy subjects, and community-acquired pneumonia (CAP) cases11. While 
Shen et al.11 focused on the SARS-CoV-2 genomes and taxonomic profiling of the microbiomes, here we perform 
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global functional profiling to characterize altered biological processes in the respiratory tract microbiomes. Our 
protein domain focused amino acid matching approach supports the profiling of microbial functions performed 
by known and potentially unknown organisms yet to be characterized23. The robust comparative analysis pre-
sented here was designed to highlight consistent differences in COVID-19 patient microbiomes compared to 
both community-acquired pneumonia and healthy control samples.

Results
Functional profiling framework.  The overall analysis workflow is depicted in Fig. 1A. The total RNA 
sequencing reads were first trimmed and filtered, followed by translation and functional classification with 
PRROMenade24 against a vast amino acid sequence collection of 21 million bacterial and viral protein domains 
from the IBM Functional Genomics Platform25, annotated with KEGG enzyme codes (EC) from a correspond-
ing functional hierarchy26 (see Supplementary Fig. S1 for filtering results). PRROMenade has previously been 
applied in functional annotation of gut24 and soil microbiomes27. Post-processing and robust rank-based 
RoDEO28 projection onto a unified scale was performed to make the resulting functional profiles comparable.

Figure 1.   Overall analysis workflow and two-dimensional projection of functional profiles. (A). Each 
microbiome sequencing sample is annotated with PRROMenade, utilizing labeled reference data from the IBM 
Functional Genomic Platform. The resulting functional profiles are visualized and compared in downstream 
analyses. (B). Multidimensional scaling of the functional profiles using the Spearman distance. Each sample is 
represented by a marker colored by cohort and labeled by the sample number within that cohort.
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Microbiome functional profiles cluster by cohort.  While the individual functional profiles vary, a 
robust comparative analysis reveals specific functions that are consistently altered between cohorts (Supple-
mentary File S1 shows a Krona29 visualization of each sample). The read counts assigned at various functional 
hierarchy levels (Supplementary Fig. S2) were pushed down to the leaf level, and very low abundant features 
were removed for subsequent analyses (see Methods).

Multi-dimensional scaling of pairwise Spearman distances between the samples separates the COVID-19 
cohort, while CAP samples are located between healthy and COVID-19 samples (Fig. 1B). A significant differ-
ence between the functional profiles was observed between the COVID-19, CAP, and healthy control cohorts 
according to the PERMANOVA test ( p ≤ 0.0001 ). Functional profiling separated the cohorts with a similar 
score as taxonomic profiling (functional profiling R2 = 0.06 vs. taxonomic profiling by Shen et al.11 R2 = 0.07).

Differentially abundant features distinguish COVID‑19 samples.  The RNA sequencing data had 
varying total number of reads and human content per sample (Supplementary Fig.  S1). Therefore we used 
RoDEO28 to project the functional profiles onto a robust uniform scale. To examine the most differentiating 
features for COVID-19 versus the other cohorts, we extracted 30 top-ranked features from the COVID vs. CAP 
comparison and from the COVID vs. healthy controls comparison. We then considered the union of the feature 
sets, resulting in 44 EC features.

When clustering the samples using the top differentiating features, the COVID-19 samples are grouped 
together and separate from the other cohorts, except for sample 4 (Fig. 2). While the examined 44 features 
were selected as those differentiating COVID-19 from CAP and healthy controls, they also separate the healthy 
control samples from all others; the healthy controls cluster tightly together. The results also demonstrate that 
the samples do not merely cluster by the total number of input reads or the fraction of functionally annotated 
microbial reads, since those measures vary within cohorts (Supplementary Fig. S1). The CAP patient samples 
were collected from different hospital sources, prior to the current pandemic, and represent pneumonia cases 
with various viruses detected in the sequencing data11 (e.g. enterovirus, influenza virus, rhinovirus), possibly 
contributing to the greater variability between their microbiome functional profiles.

The COVID-19 samples have more abundant EC features including (see bottom left feature cluster in Fig. 2) 
1.2.4.1 “Pyruvate dehydrogenase”, 4.1.1.20 “Diaminopimelate decarboxylase”, 1.17.4.1 “Ribonucleoside-diphos-
phate reductase”, 1.8.1.4 “Dihydrolipoyl dehydrogenase”, 3.6.3.25 “Sulfate-transporting ATPase”, and 4.2.3.5 
“Chorismate synthase”, linked to various amino acid, carbohydrate, energy, and nucleotide metabolism pathways. 
EC 4.1.1.20 was also detected as increased in a metaproteome study of COVID-19 respiratory microbiomes30. 
Supplementary Fig. S3 includes a scatter plot of the average change per EC in COVID-19 compared to CAP and 
healthy cohorts, highlighting outliers.

Altered lung microbiome pathways indicated in COVID‑19.  In order to systematically examine the 
detected features against functional pathways, all the EC features were considered against their corresponding 
pathways from the KEGG metabolic pathway mapping26. Pathway scores (mean abundance change in COVID-
19) were computed using all the detected EC features per pathway, see Fig. 3. To identify outlying pathway scores 
(high or low compared to the observed distribution), median absolute deviation (MAD)31, a robust measure of 
dispersion was utilized, see Fig. 4. The most differential pathways are shown in Table 1.

Among the pathways lower in COVID-19 (Table 1) several are related to glycan biosynthesis and metabolism 
(e.g. other glycan degradation) and lipid metabolism (e.g. sphingolipid metabolism). Sphingolipids are important 
components of biomembranes, mediating signal transduction and immune activation processes, and they have 
been shown to decrease in COVID-19 patient sera32. The feature 3.2.1.22 alpha-galactosidase (alpha-gal), lower 
in COVID-19, is linked to several of the decreased pathways in Table 1: glycosphingolipid biosynth. - globo and 
isoglobo series, sphingolipid metabolism, and glycerolipid metabolism. It has recently been hypothesized that 
dysbacteriosis observed in COVID-19 patients is linked to the reduction in the microbiota of alpha-gal con-
taining commensal bacteria, or alternatively individuals with higher alpha-gal content in the microbiota may 
be less susceptible to COVID-19, supported by detected negative correlation between anti-alpha-gal antibody 
titers and COVID-19 disease severity33. Elsewhere, raising anti-alpha-gal titers in the population by immunizing 
against inactivated harmless bacteria that harbor alpha-gal epitopes has been suggested34. Here we additionally 
identify glycosaminoglycan degradation as decreased in COVID-19 samples (Fig. 3), while a connection between 
decreased presence of host glycosaminoglycan heparan sulfate modifying bacteria and increased COVID-19 
susceptibility has been suggested35.

Among the pathways higher in COVID-19 are several related to carbohydrate metabolism, e.g. glycolysis/glu-
coneogenesis (Table 1). Enhanced microbial capacity for carbohydrate metabolism (glycolysis II from fructose-
6-phosphate) has previously been indicated in fecal samples with a signature of high SARS-CoV-2 infectivity, 
along with decreased abundance of short-chain fatty acid producing bacteria36.

Discussion
It has been reported that the host microbiota composition reflects disease severity and dysfunctional immune 
responses in COVID-19 patients, and that gut microorganisms are likely involved in the modulation of host 
inflammatory responses37. Increase in certain opportunistic pathogens coinciding with high SARS-CoV-2 
infectivity has been reported36, along with depletion of bacteria with known immunomodulatory potential in 
COVID-1937. Overall, loss of diversity has been associated with COVID-19 microbiomes, including in the gut 
and in the upper respiratory tract19,38. To further understand microbial functionality in the lower respiratory 
tract, we investigate differences between COVID-19 and healthy & community-acquired pneumonia (CAP) 
bronchoalveolar lavage fluid metatranscriptomes.
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This comparative study of microbial functions aims to mitigate possible experimental variation and resulting 
biases within individual samples, by focusing on detecting robust and consistent differences. Our framework 
includes read filtering, functional annotation with a protein domain database and enzyme hierachy, feature 
abundance projection to a comparable scale, and finally metabolic pathway scoring to indicate differentiating 
functional potential in COVID-19 microbiomes compared to healthy and CAP samples. As a result, we identified 
both enzyme code features and metabolic pathways that differentiate COVID-19 respiratory tract microbiomes. 
The resulting functional profiles distinguish the COVID-19 samples, similarly to the original taxonomy-based 
analysis of the community members11.

The differentially abundant respiratory microbiome features and associated pathways identified here match 
findings from previous reports, relating to changes in the microbiome’s functional capcacity, such as decreased 
lipid metabolism and glycan biosynthesis and metabolism32, and increased carbohydrate metabolism36. Our 
findings also relate to other characteristics of the microbiome linked to COVID-1933–35. The decreased pathways 
include sphingolipid metabolism; sphingolipids can mediate immune activation processes and have been previ-
ously shown to decrease in COVID-19 patient sera32. Additionally, related to the glycosaminoglycan degradation 
pathway, a link between decreased presence of host glycosaminoglycan heparan sulfate modifying bacteria and 
increased COVID-19 susceptibility has recently been suggested35. Reduction in alpha-galactosidase (alpha-gal), 
here associated with several pathways decreased in COVID-19, has been connected to microbiome dysbiosis in 

Figure 2.   Clustering with top differentiating functional features. RoDEO processed EC abundance values (10 
denotes highest possible value), for 44 features differentiating COVID-19 from community-acquired pneumonia 
and healthy controls. Columns and rows are ordered independently by hierarchical clustering of features and 
samples. The colors attached to the dendrogram on top reflect the cohort labels: red = COVID-19, blue = CAP, 
green = healthy control.
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COVID-19 or alternatively to higher susceptibility to the disease for individuals with lower alpha-gal content 
in the microbiota33. We also detected an increased potential for carbohydrate metabolism, which has previously 
been associated with increased SARS-CoV-2 presence in fecal microbiomes36. The findings from this analysis 
call for further in-depth research on microbial functions and host-microbiome interactions during SARS-CoV-2 
infection, including investigating the potential for probiotics that could be utilized to improve clinical outcomes39.

Limitations of the current study include small sample size and sparse clinical data. Hence the results could 
be influenced by overall variation in the sampled microbiomes, possibly due to subject lifestyles, location, and 

Figure 3.   Pathway changes in COVID-19 samples. For each pathway (row), there are as many entries as there 
are detected EC features. The color of the entries indicate the average of COVID-19 versus CAP and COVID-19 
versus HC changes. The entries on each row are ordered from low to high values. The background value (dark 
blue) indicates no data; some pathways have more detected features than others (only pathways with at least 
two EC features detected are considered). The rightmost column indicates the pathway score, the pathways are 
ordered accordingly from top (higher in COVID-19) to bottom (lower in COVID-19).

Table 1.   Altered pathways in COVID-19 The most differential pathways in COVID-19 (with dist. ≥ 2 ) are 
shown in the table. Here dist. denotes the pathway score’s distance from the median, divided by the scaled 
median absolute deviation. Pathways that are determined outliers (dist. ≥ 3 ) are marked with *. The direction 
of the change in COVID-19 (+/−), the number of associated EC features per pathway detected from functional 
profiling (#EC), and the pathway type are also shown.

Pathway name dist. +/− #EC Type

Tropane, piperidine and pyridine alkaloid biosynthesis 5.04* − 2 Biosynthesis of other secondary metabol.

Carbapenem biosynthesis 3.84* − 2 Biosynthesis of other secondary metabol.

Glycosphingolipid biosynth. - globo and isoglobo series 3.75* − 2 Glycan biosynthesis and metabolism

Novobiocin biosynthesis 3.28* − 3 Biosynthesis of other secondary metabol.

Sphingolipid metabolism 2.90 − 5 Lipid metabolism

Ether lipid metabolism 2.82 − 3 Lipid metabolism

Other glycan degradation 2.64 − 4 Glycan biosynthesis and metabolism

Glycerolipid metabolism 2.11 − 5 Lipid metabolism

Acarbose and validamycin biosynthesis 3.47* + 2 Biosynthesis of other secondary metabol.

Polyketide sugar unit biosynthesis 3.47* + 2 Metabolism of terpenoids and polyketides

Ascorbate and aldarate metabolism 2.45 + 2 Carbohydrate metabolism

N-Glycan biosynthesis 2.38 + 2 Glycan biosynthesis and metabolism

Butanoate metabolism 2.33 + 11 Carbohydrate metabolism

Glycolysis / Gluconeogenesis 2.09 + 24 Carbohydrate metabolism

D-Alanine metabolism 2.04 + 2 Metabolism of other amino acids
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clinical characteristics including different stages and severity of disease. However, abundant and balanced case-
control data is not always available in practice, in particular relating to the current rapidly evolving pandemic. 
Nevertheless, computational studies can make use of the available precious data to begin unraveling the disease-
associated virus-host-microbiome connections. In this study robust differences in the functional potential of 
lower respiratory tract microbiomes were discovered between COVID-19 and healthy controls, community-
acquired pneumonia. Furthermore, examining metatranscriptome sequencing reads with this comparative func-
tional annotation framework could yield additional insights into microbiome alterations also in other diseases.

Methods
Sequence data and functional database.  The recently published bronchoalveolar lavage fluid (BALF) 
metatranscriptomic sequencing data11 of 8 COVID-19 patients, 20 healthy controls (HC), and 25 cases of 
community-acquired pneumonia (CAP) were obtained from the National Genomics Data Center (accession 
PRJCA002202)40. Pre-processing included TrimGalore41 adapter and quality trimming (-length  50 -trim-n-
max_n 10), and poly-A trimming performed with BBduk42 (trimpolya=10, minlength=50). The reads were fil-
tered against human (GCF_000001405.39), the PhiX sequencing control (GCF_000819615.1), and the SARS-
CoV-2 virus (NC_045512.2) with BBsplit42 (ambiguous=random, ambiguous2=split). The paired reads were 
processed separately, individual reads that did not match the human, PhiX, or SARS-CoV-2 genomes (278k to 
50.7M reads per sample) were retained for the microbial community functional annotation (see Supplementary 
Fig. S1 for the filtering results).

The KEGG Enzyme Nomenclature (EC) reference hierarchy26 was used as the functional annotation tree. The 
EC numbers define a four-level hierarchy. For example, 1.5.1.3. = “Dihydrofolate reductase” is a fourth (leaf) 
level code linked to top level code 1 = “Oxidoreductases”, via 1.5. = “Acting on the CH-NH group of donors” and 
1.5.1 = “With NAD+ or NADP+ as acceptor”. A PRROMenade24 database search index was constructed using the 
KEGG hierarchy and a total of 21.2M bacterial and 53k viral annotated protein domain sequences (of minimum 
length 5 AA), obtained on June 6, 2020 from the IBM Functional Genomics Platform25 (previously known as 
OMXWare). An earlier release of the bacterial domain data has been discussed previously in conjunction with 
PRROMenade indexing24.

Functional annotation and analysis.  Metatranscriptomic sequencing reads were annotated with 
PRROMenade by locating the maximal length exact match for each read, and processed as described previously24. 
Minimum match length cutoff of 11 AA (corresponding to 33 nt) was employed. Classified (non-root) read 
counts (6.8k to 11.5M per sample, see Supplementary Fig. S1–S2) were post-processed to summarize the counts 
at the leaf level of the functional hierarchy. Leaf nodes contributing ≥ 0.05% of total annotated reads in at least 
one sample were retained, resulting in 633 leaf nodes to include as the features of the functional profiles. Mul-
tidimensional scaling (Matlab function cmdscale, p = 2 ) and permutational multivariate analysis of variance 
(f_permanova, iter = 100, 000 , from the Fathom toolbox43 for Matlab) were applied on pairwise Spearman’s 
distances (Fig. 1B).

Subsequently, the profiles were processed with RoDEO28 ( P = 10 , I = 100 , R = 107 ) for robust compara-
bility. The per-sample parameter P′ was determined according to the number of annotated reads as previously 
described (in Supplementary File 2 by Klaas et al.44). A two-sample Kolmogorov-Smirnov test (kstest2 in Matlab) 
was applied to identify differentially abundant features between COVID-19 samples and CAP, healthy control 
samples. Features were ordered by p-value and top features selected for average linkage hierarchical clustering 
using the Euclidean distance (Fig. 2).

Pathway analysis.  The KEGG26 metabolic pathway maps were utilized to link functions with pathways, and 
the pathways were analyzed for changes between COVID-19 and CAP, HC. The pathways were evaluated for aver-
age abundance change as follows. Let ai be the mean RoDEO abundance of EC feature i for COVID-19 samples, 

Figure 4.   Pathway score distribution. The histogram of observed pathway scores is shown. The score thresholds 
for determining outliers according to median absolute deviation (MAD) is also marked (red dashed lines, three 
scaled median deviations away from the median).
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bi for CAP samples, and ci for HC samples. The feature score is defined as fsi = ((ai − bi)+ (ai − ci))/2 , posi-
tive values indicating higher abundance in COVID-19. Pathway score psj = mean{fsECj(1), fsECj(2), . . . , fsECj(k)} 
was computed using the set of features, ECj , that map to the pathway j (considering only pathways with k ≥ 2 ). 
The pathway score distribution was normalized to have mean zero for visualization.

Median absolute deviation (MAD)31, a robust measure of dispersion, was used to identify outliers from the 
observed pathway score distribution (isoutlier in Matlab with the parameter median). With the default param-
eters, an outlier is defined as a value that is more than three scaled median absolute deviations away from the 
median.
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