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Development of brain atlases 
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Human brains develop across the life span and largely vary in morphology. Adolescent collision-sport 
athletes undergo repetitive head impacts over years of practices and competitions, and therefore 
may exhibit a neuroanatomical trajectory different from healthy adolescents in general. However, an 
unbiased brain atlas targeting these individuals does not exist. Although standardized brain atlases 
facilitate spatial normalization and voxel-wise analysis at the group level, when the underlying 
neuroanatomy does not represent the study population, greater biases and errors can be introduced 
during spatial normalization, confounding subsequent voxel-wise analysis and statistical findings. 
In this work, targeting early-to-middle adolescent (EMA, ages 13–19) collision-sport athletes, we 
developed population-specific brain atlases that include templates (T1-weighted and diffusion 
tensor magnetic resonance imaging) and semantic labels (cortical and white matter parcellations). 
Compared to standardized adult or age-appropriate templates, our templates better characterized 
the neuroanatomy of the EMA collision-sport athletes, reduced biases introduced during spatial 
normalization, and exhibited higher sensitivity in diffusion tensor imaging analysis. In summary, these 
results suggest the population-specific brain atlases are more appropriate towards reproducible and 
meaningful statistical results, which better clarify mechanisms of traumatic brain injury and monitor 
brain health for EMA collision-sport athletes.

Adolescent collision-sport (e.g., American football and soccer) athletes bear high risk of mild traumatic brain 
injury (mTBI), a complex pathophysiological process that can arise from either single or repetitive head accelera-
tion events1–4. The lack of sensitive biomarkers hinders the development of preventive strategies, allowing this 
vulnerable population to continue participating at greater risk. Multi-modal magnetic resonance imaging (MRI) 
can non-invasively characterize the structure and function of the human brain in healthy and disease states, 
thus showing promise for prospective screening and early detection of mTBI in adolescent athletes. Neverthe-
less, one of the critical steps in MRI processing is to spatially normalize brain images to a stereotaxic atlas, i.e., 
a coordinate reference system for neuroimaging studies. When the spatial normalization onto an atlas has poor 
accuracy, voxel-based analysis exhibits low sensitivity in detecting differences at the group level5, 6. Therefore, 
it is vital to ensure most of the anatomical identities pertinent to adolescent athletes are retained during spatial 
normalization.

In general, human brain atlases are either standardized or population-specific; each comes with a set of 
templates (representative spatial maps) and labels (parcellated regions). The two standardized brain atlases 
long established and well known by the neuroimaging community come from Talairach and the Montreal Neu-
rological Institute7. The Talairach atlas is derived from the dissection of one hemisphere of the brain from a 
60-year-old French woman8, whereas the ICBM152 template is derived from T1 scans of 152 subjects aged 
18.5–43.5, averaged together after high-dimensional linear and nonlinear registration into the Talairach space9. 
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In the same space as ICBM152, FMRIB58 is a standardized diffusion tensor imaging (DTI) template derived 
from 58 high-resolution volumes of fractional anisotropy (FA) from healthy male and female adults aged 20–50 
(FMRIB, Oxford, UK). Other popular standardized human brain atlases include Brainnetome10, IIT11, SRI2412, 
etc. Recently, two systematic evaluations of DTI templates showed that the IIT standard template outperformed 
population-specific DTI templates11, 13, but the findings were based on healthy adults and may not generalize 
in younger populations. Many scientific publications pointed out the age-related changes in volumes of gray 
and white matter14–19. Although there are several age-specific atlases for adolescents20–25, the number is limited 
compared to adult atlases14.

The existing brain atlases are handy tools for various types of neuroimaging analyses, but considering the 
various pathological conditions and the developing nature of human brain, they often are not best suited for 
studying specific populations. In a multiple sclerosis population, Van Hecke et al.26 showed that choosing a 
non-specific template can negatively impact the final results of tract-based spatial statistics (TBSS)27, one of the 
standard approaches for DTI analysis5, 28. Using both simulated and real DTI data, Van Hecke et al. observed 
that a population-specific DTI template resulted in more reliable voxel-based analysis, as well as higher sensitiv-
ity and specificity of detecting DTI changes, compared to the standardized template26. However, developing a 
study-specific template from a large population is time consuming, computationally inefficient28, and may result 
in suboptimal quality11, 26, making the use of existing brain atlases a more pragmatic option for the time being.

To date, an unbiased brain atlas targeting adolescent collision-sport athletes does not exist, to the best of our 
knowledge. DTI literature of sports-related mTBI and repetitive head impacts in adolescents either manually 
defined their own regions of interest (ROIs)29–31, or more often did not employ a population-specific template 
to spatially normalize each individual brain image32–44. This may confound statistical analyses and contribute 
to varied DTI findings that make it difficult to interpret axonal pathology45. It is critical for studies of mTBI 
and repetitive head impacts, especially for adolescent collision-sport athletes, to minimize bias and errors in 
each pre-processing stage, because the magnitudes of changes are often subtle, and brains of this age bracket 
are rapidly growing46–49. Such studies may benefit from using an unbiased brain atlas created from their study 
cohort, as opposed to normalizing brains of adolescent collision-sport athletes to an atlas generated from adults 
or healthy adolescents.

Therefore, the purpose of this work is to develop population-specific brain atlases for early-to-middle ado-
lescent (EMA) collision-sport athletes. Based on the Purdue Neurotrauma Group (PNG) longitudinal MRI 
database50, we aim to develop:

1.	 One T1 template, based on the images from 215 EMA collision-sport athletes,
2.	 T1-based semantic labels of cortical and white matter parcellations, and
3.	 One DTI template, based on 64 EMA football athletes in a single competition season51, 52.

Regarding evaluation of the templates, our hypothesis is that compared to using a non-specific template, 
the PNG templates can reduce potential bias when normalizing brain images of local adolescent athletes and 
improve the statistical power in detecting small differences in population studies using local datasets. The evalu-
ation includes voxel-based morphometry that characterizes the extent of shape changes of the T1 images during 
spatial normalization, and sensitivity of detecting longitudinal DTI changes in high school football athletes over 
a single season, which has been reported in previous work51, 52 that utilized the standardized FMRIB58 template. 
The brain atlases have been made available for download53.

Results
Atlas construction.  The total computation time for constructing the PNG T1 template was about 28.5 h, 
where ~ 6.5 h accounted for creating each individual template at the Open Science Grid, and 22 h for creating 
the final T1 template when fully using one node (24 cores) of the high-performance computing clusters. The 
comparison of shape and size between the standardized and PNG T1 templates is shown in Fig. 1a.

The total computation time of constructing the PNG (ANTs) DTI template was about 12.5 h; warping each 
of the Pre FA images (N = 33, with qualified T1) to the space of the PNG T1 template took ~ 2 min at the Open 
Science Grid, and the majority of time was spent on constructing the final DTI template when fully using one 
node (24 cores). The comparison of shape and size between the standardized and PNG DTI templates is shown 
in Fig. 1b.

Evaluation of the population‑specific T1 template.  The results of deformation-based morphometry 
analyses are shown in Fig. 2. Compared to the ICBM152 (Fig. 2a) or NIHPD13.0–18.5 template (Fig. 2b), no sig-
nificantly larger |logJ| was produced from using the PNG template for the spatial normalization. Compared to 
IITv3.0 (Fig. 2c), fewer voxels showed significantly larger |logJ| when using the PNG template (IITv3.0: 334,811 
voxels; PNG: 109,189 voxels).

Evaluation of the study‑specific DTI template.  Similar to the deformation-based morphometry find-
ings for T1 templates, at all the sessions (Pre, In1, In2), fewer voxels showed significantly larger |logJ| when using 
the PNG (ANTs) template compared to the high-quality standardized DTI templates (FMRIB58 and IITv3.0) 
(Table 1). Using the PNG (ANTs) template also exhibited fewer voxels of significantly larger |logJ| than the PNG 
(DTI-TK) template (Table 1). Illustrations of the voxel-wise t-statistical maps are provided in Supplementary 
Fig. S1 online.
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Table 2 summarizes the number of statistically significant voxels of DTI metrics (FA, MD, AD, RD) and the 
total number of voxels on the TBSS skeleton. The non-parametric Friedman test did not suggest the covariate 
template as a significant factor ( χ2=2.370, df = 3, p = 0.499) for Vt.

The Hosmer Lemeshow Goodness-of-Fit test showed a good fit for the logistic regression models of FA, MD, 
and AD (all p > 0.05), except RD (p < 0.05) (Table 3). However, in all four models, the covariate template was a 
significant factor (p < 0.05, Wald Chi-square test) for the Vs/Vt ratios (Table 3). Therefore indicating a strong 
correlation between the Vs/Vt ratios and template selection.

Within most of the white matter tracts, the number of significant voxels exhibiting decreased FA at In2 versus 
Pre was similar across the four templates (Fig. 3). For the PNG (ANTs) template, the significant voxels in the 
fornix were 99 mm3, much larger compared to the FMRIB58 (14 mm3), IITv3.0 (5 mm3), and the PNG (DTI-TK) 
templates (13 mm3) (Fig. 3a). For the PNG (DTI-TK) template, the significant voxels in the bilateral cingula were 
much smaller compared to the other three templates (Fig. 3b). In the bilateral cingula (hippocampi), neither the 
IITv3.0 nor PNG (DTI-TK) template exhibited any significant voxels of FA difference (Fig. 3b,c). Similarly, no 
significant voxels of FA difference were observed in the left tapetum for the FMRIB58 template.

Supplementary Figs. S2-S4 online provide illustrations of the t-statistical maps of significant differences of 
MD, AD, and RD, at In2 versus Pre. A detailed summary of the significant voxels exhibiting differences of FA, 
MD, AD, and RD can be found in Supplementary Tables S1-S4 online.

According to the linear mixed-effect regression analyses for the longitudinal changes of FA (Supplementary 
Table S5 online), model fits were similar among the regions commonly identified across the four templates. 
FMRIB58 exhibited the highest model fit (i.e., lowest AIC) in most of the white matter tracts, including the 
left cerebral peduncle, left posterior corona radiata, right superior corona radiata, right external capsule, left 
anterior internal capsule, right posterior internal capsule, left inferior longitudinal/fronto-occipital fasciculus, 
and left stria terminalis. For IITv3.0, the highest fits were observed in the right cingulum, right anterior corona 
radiata, and right anterior internal capsule. For the PNG (ANTs) population-specific template, higher fits were 
observed in the bilateral superior fronto-occipital fasciculus and the right superior longitudinal fasciculus. 
whereas the PNG (DTI-TK) template exhibited the highest fit in the right anterior corona radiata and the left 
superior corona radiata.

Supplementary Tables S6 and S7 online summarize the linear mixed-effect regression analyses for the lon-
gitudinal changes, for MD and RD respectively. Similar to FA, model fits were similar among the commonly 

Figure 1.   Visual illustration of the differences in shape and size between the standardized and population-
specific templates, including (a) the standardized ICBM152 (ages 18.5–43.5)9, NIHPD13.0–18.5

21, IITv3.011, and 
PNG T1 templates; (b) the standardized FMRIB58 (FMRIB, Oxford, UK), IITv3.011, and PNG DTI templates 
constructed by ANTs57 and DTI-TK95.
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identified regions. No table is shown for AD, since no voxels exhibited a significant difference when the IITv3.0 
DTI template was used (see Table 2 and Supplementary Fig. S3 online).

Discussion
Due to repetitive head impacts experienced during practices and games, EMA collision-sport athletes may exhibit 
a distinct neurological trajectory that is different from those typical at the same age. Bias may be introduced 
when modeling the neurological consequences using the existing standardized human brain atlases based on 
healthy adult or adolescent populations, leading to confounding (sometimes even contradictory) findings. In this 

Figure 2.   Voxel-wise t-statistical maps (p < 0.05, FWE corrected) of the deformation (|logJ|) of the newly 
scanned subjects, compared between the PNG T1 template and (a) ICBM152 (ages 18.5–43.5)9, (b) 
NIHPD13.0–18.5

21, and (c) IITv3.011, represented in axial view in ICBM152 space. Red/blue indicates significantly 
larger/smaller changes of morphology during spatial normalization, compared to using the PNG template.

Table 1.   Number of statistically significant (p < 0.05, FWE corrected) voxels of potential bias when 
normalizing the FA maps of 64 high school varsity football athletes to the PNG (ANTs) DTI template and to 
the other templates. Comparisons at multiple sessions (Pre, In1, In2) are presented. For illustrations of the 
voxel-wise t-statistical maps, see Supplementary Fig. S1 online.

Contrast Pre In1 In2

FMRIB58 > PNG (ANTs) 588,188 594,116 591,845

FMRIB58 < PNG (ANTs) 126,667 85,782 153,490

IITv3.0 > PNG (ANTs) 597,688 598,457 608,754

IITv3.0 < PNG (ANTs) 69,359 49,774 81,651

PNG (DTI-TK) > PNG (ANTs) 481,365 464,482 445,434

PNG (DTI-TK) < PNG (ANTs) 172,137 181,668 189,488
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work, population-specific brain atlases were developed for EMA collision-sport athletes in the PNG longitudinal 
database. Compared to the standardized adult or other age-appropriate T1 templates (Fig. 1), significantly fewer 
biases were introduced in spatial normalization using the PNG T1 template (Fig. 2). The PNG (ANTs) DTI 
template resulted in minimal biases compared to the standardized or PNG (DTI-TK) DTI templates (Table 1, 
Supplementary Fig. S1 online), and the selection contributed to different sensitivity of detecting DTI changes in 
TBSS (Table 3, Fig. 3, and Supplementary Tables S1-S4 & Figs. S2-S4 online), whereas the sensitivity of detecting 
longitudinal change of DTI metrics from ROI-based regression analyses was relatively comparable (Supplemen-
tary Tables S5-S7 online). In summary, the main findings suggested the PNG brain atlases better characterized 
the neuroanatomy of EMA collision-sport athletes, reduced biases introduced during spatial normalization, and 
exhibited higher sensitivity in detecting regional DTI differences. As template selection is a critical strategic step 
towards robust and rigorous statistical findings, we expect neuroimaging and clinical researchers will benefit from 
the new atlases to better clarify mechanisms of mTBI and monitor brain health of EMA collision-sport athletes.

The strengths and limitations between standardized and population-specific brain atlases have been 
discussed5, 6. Being a pragmatic option for computational efficiency, a standardized brain atlas often comes with 
a comprehensive set of templates and semantic labels, facilitating the processing and analysis of brain images 
acquired from multiple sites or studies6. However, when the underlying neuroanatomy of the study population 
is different, mis-registration can lead to greater bias and errors in voxel-wise and ROI-based statistical analyses. 
On the other hand, the registration errors of using a population-specific template are unbiased towards the study 
population; however, the population-specific template usually lacks semantic labels5; therefore, subsequent trans-
formation to a standard space (e.g., ICBM152) is required for interpreting the statistical maps54. In addition, sub-
optimal data quality can lead to a poorly constructed template and lowers spatial normalization accuracy6, 11, 55,  
so a nontrivial amount of diligence is demanded in constructing population-specific templates. The selection 
strategy largely depends on the specific study, including research questions to address, participants of the study, as 
well as the number, type, and quality of data5. Neuroimaging researchers working on clinical populations should 
carefully leverage these aspects to ensure rigorous and robust neuroimaging findings are reported in clinical 
literature and be cautious when reporting voxel-wise statistical findings based off of a non-specific brain atlas.

This work clarifies the advantages and limitations of constructing population-specific DTI templates (Fig. 1b) 
using scalar-based (ANTs) and tensor-based (DTI-TK) registrations. Conventionally, spatial normalization of 
diffusion tensor fields is achieved by aligning the b0 image to the anatomical T1 image56, and our evaluation 
showed that this approach introduced minimal biases in spatial normalization (Table 1, Supplementary Fig. S1 
online). ANTs is a diffeomorphic registration that uses cross-correlation metrics to optimize the shape and 
appearance during template construction, with the underlying assumption that possibly different shapes of the 
same structures exist in both images57; as a result, the PNG (ANTs) template has a sharp appearance that can 
discern adjacent white matter tracts. Unlike ANTs, DTI-TK utilizes the six tensor components and does not 
include such template update procedures, and the PNG (DTI-TK) template was computed as the average of the 
co-registered dataset. Although the appearance was more blurred than the PNG (ANTs) template, adjacent white 
matter tracts can be discerned. While it is commonly believed that tensor-based registration algorithms improve 
the registration quality of DTI54, 58–60, the estimates of the tensor in certain biological structures (e.g., the fornix) 
can be inaccurate, which may adversely affect the quality of the constructed template. A combination of tensor 

Table 2.   Summary of the ratios of the number of statistically significant voxels of DTI metrics (FA, MD, AD, 
RD) and the total number of voxels on TBSS skeleton. For details with respect to each ROI, see Supplementary 
Tables S1-S4 online.

DTI Contrast

Total significant voxels/total voxels

FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

FA Pre > In2 16,885/30,017 16,040/29,481 16,785/29,740 15,864/29,888

MD Pre < In2 7544/30,017 6791/29,481 6838/29,740 6675/29,888

AD Pre > In2 888/30,017 0/29,481 571/29,740 100/29,888

RD Pre < In2 12,235/30,017 11,598/29,481 12,093/29,740 11,889/29,888

Table 3.   Summary of Hosmer Lemeshow Goodness-of-Fit test and logistic analysis for the effect of the 
selected template on the ratio of the number of significant voxels (from the permutation-based t-statistical 
maps) and total number of voxels on the TBSS skeleton within the ROI (see Supplementary Tables S1-S4 
online).

DTI Contrast

Goodness-of-fit test Wald test

χ
2 df p χ

2
template

Dftemplate Ptemplate

FA Pre > In2 11.478 8 0.176 9.759 3 0.020

MD Pre < In2 7.516 7 0.377 12.249 3 0.007

AD Pre > In2 1.725 1 0.189 299.374 3  < 0.001

RD Pre < In2 52.032 8  < 0.001 20.680 3  < 0.001
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Figure 3.   Illustrations of t-statistical maps (red–yellow, FWE corrected, p < 0.05) showing decreased FA at 
In2 versus Pre in (a) sagittal, (b) coronal, and (c) axial views, overlaid on TBSS skeleton (green) and mean 
FA image derived from FMRIB58 (FMRIB, Oxford, UK), IITv3.011, PNG (ANTs), and PNG (DTI-TK) DTI 
templates respectively. Major white matter tracts showing different sensitivity across the templates for detecting 
FA changes are highlighted in arrows. cg: cingula. cg(h): cingula (hippocampi). L/R: left/right hemisphere. A/P: 
anterior/posterior. S/I: superior/inferior.
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information with a scalar-based registration method can potentially improve the quality of a population-specific 
template61.

According to the voxel-based morphometric analyses (Fig. 2), using the PNG T1 template introduced minimal 
bias during spatial normalization of the T1 images from the EMA collision-sport athletes, even when compared 
to the NIHPD13.0–18.5 template (Fig. 2b). Given the NIHPD template was constructed based on healthy adolescents 
of a similar age range, one explanation is that the trajectory of subcortical volumes in adolescent collision-sport 
athletes may be different from healthy adolescents of similar ages. Previously, Narvacan et al.16 reported in a 
lifespan study of healthy adolescents that at age 13–17, a non-linear decrease of subcortical volumes was observed 
within certain regions for the male participants. Thus, it is worth exploring whether the trajectory of subcortical 
volumes can be driven by sports-related concussion and repetitive head impacts. Notably, future work is needed 
to validate the T1-based semantic labels (Fig. 4a), which may be applied to investigate the regional volumetric 
trajectory.

The selection of DTI templates did not lead to significantly different TBSS skeleton but was a significant 
covariate for the voxel-wise statistical analyses (Table 2, Table 3, Supplementary Tables S1-S4 online). Previ-
ously, utilizing the standardized FMRIB58 template in TBSS processing, abnormal DTI changes in 64 adolescent 
football athletes from Pre to In2 were observed, including decreased FA, decreased AD, increased MD, and 
increased RD51, 52. In this work, compared to FMRIB58, the PNG (ANTs) template resulted in consistent but 
more sensitive detection of FA decrease within the bilateral cingula adjacent to the hippocampi [cg(h)] [PNG 
(ANTs): 73%, FMRIB58: 65%, IITv3.0: 3%] and the fornix [PNG (ANTs): 61%, FMRIB58: 9%, IITv3.0: 62%] 
(Supplementary Table S1 online), whereas on the skeletons of IITv3.0 and PNG (DTI-TK), such a difference 
was either detected with fewer voxels or not statistically significant (Fig. 3). The fornix and cg(h) are major parts 
of the limbic system. Surrounded by cerebrospinal fluids, the main body of the fornix is located in the midline 
of the brain, with neuronal projections to the cg(h) in medial temporal lobes. The fornix is critical for normal 
cognitive functioning; literature reported atrophy in the fornix for neurological disorders62. The cg(h) consist 
of gray matter, with a thin layer of white matter on its ventricular surface63. Atrophy of the hippocampus is a 
common neuropathology in chronic traumatic encephalopathy64, 65. The volume of the cg(h) correlated with 
FA in the fornix66, and reduced fornix and hippocampal volumes have been reported in morphometric study 
of TBI67 (for review, see Shenton et al.68). Both structures are relatively small and prone to mis-registration in 
DWI, due to low spatial resolution, geometric distortions from eddy current, and partial volume effects69–72. 
There are multiple literature that observed changes in FA for adolescent collision-sport athletes in the fornix 
and cingulum (hippocampus); however, the direction of change is not consistent across literature as described 
in our previous work39. Myer et al.35 and Kuzminski et al.40 reported decreased FA in cingulum (hippocampus), 
whereas Bazarian et al.73 and Manning et al.74 reported increased FA. Similarly, both increased75 and decreased 
FA40 were observed in the fornix. The conflicting direction of changes in other DTI metrics (e.g. MD, AD, RD) 
were also observed in the fornix38 and cingulum (hippocampus)44, 74, 76. The PNG (ANTs) template potentially 
provided DTI insights at improved sensitivity and complemented the volumetric findings, which is likely due 
to repetitive head impacts experienced by this vulnerable population. Consistent with Cabeen et al.13 that the 
study template resulted in significantly larger number of voxels in the fornix, the higher sensitivity within these 
areas was perhaps attributable to the better anatomical alignment in the PNG T1 template, which is unbiased 
towards the study population and better captured anatomical structure than the standardized templates (Fig. 1).

In addition to fornix and cingulum (hippocampus), we observed noticeably more voxels exhibiting decreased 
FA for the PNG (ANTs) DTI template than the standardized FMRIB58 and IITv3.0 templates, within the right 
cingulum (cingulate gyrus) [PNG (ANTs): 43%, FMRIB58: 8%, IITv3.0: 42%], bilateral retrolenticular internal 
capsules [PNG (ANTs): 76%, FMRIB58: 70%, IITv3.0: 66%], right superior longitudinal fasciculus [PNG (ANTs): 
61%, FMRIB58: 55%, IITv3.0: 51%], and bilateral tapetum [PNG (ANTs): 42%, FMRIB58: 23%, IITv3.0: 35%] 
(Supplementary Table S1 online). Moreover, the proportions of significant voxels with decreased FA between the 
bilateral cingula (cingulate gyrus) are more laterality (L: 36%, R: 43%) for the PNG (ANTs) DTI template than 
the FMRIB58 template (L: 45%, R: 8%) (Supplementary Table S1 online). These observations may suggest that 
improper selection of template in neuroimage data processing can contribute to potential bias in specific ROIs.

This work has several limitations. Considering that our recruited participants were exclusively male football 
or female soccer players (Table 4), we constructed brain atlases only for the combined collision-sport popula-
tion and not for each sport, but sex differences may exist and warrant future investigation to determine the 
necessity of having sex-specific brain atlases for collision sports. The visual quality assessment used in the study 
can be subjective and biased; future work will involve an automated and quantitative quality assessment with 
more specific criteria in ground truth and landmark (e.g., in Jang et al.39). Template selection is only one out 
of many aspects in the image processing pipeline that contributes to the inconsistent DTI findings reported 
in the mTBI literature; to achieve reproducible and meaningful results, variability in study design, scanning 
parameters, and analytic techniques should also be considered45, 77, 78. The PNG T1 template was constructed 
using buildtemplateparallel.sh, which was found to have an issue of rigid-only registration and later superseded 
by antsMultivariateTemplateConstruction.sh. This could have an impact on the quality of individual templates 
based on repeated scans (Fig. 4a). There are several limitations when using ANTs for template construction5: 
first, due to the differences in acquisition protocols, DWI data often have artifacts such as distortions due to eddy 
currents, so that mis-registration can occur between b0 and T1-weighted images. Second, since white matter 
has rather homogeneous intensity on a T1 image, using the warping of T1 images to guide DTI alignment may 
lead to a mismatch of white matter alignment. This work evaluated the proposed DTI templates using real data 
and compared to previous findings utilizing a standardized template51, 52, but a more robust scheme of evalua-
tion is to employ simulated data, with a priori knowledge of the pathology as a ground truth79; such a scheme 
is robust for modeling pathology like multiple sclerosis, where white matter degeneration is well characterized 
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Figure 4.   High-throughput high-performance computing workflow, for constructing (a) the population-
specific T1 template and labels, and (b) the population-specific DTI template using Advanced Normalization 
Tools (ANTs)57.
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by the corresponding FA reduction80, 81, but is difficult for sports-related mTBI and repetitive head impacts in 
adolescents, given the conflicting DTI characterization for axonal pathology in the literature45.

Methods
Participants and data collection.  This study used data collected by PNG in their ongoing longitudinal 
study of adolescent athletes50, which has been approved by the Biomedical IRB of Purdue’s Human Research 
Protection Program and was carried out in accordance with the Declaration of Helsinki. Before enrolling in the 
study, written informed consent was obtained from each participant, and subject assent and parental consent 
were obtained for participants under the age of 18. The data include athletes participating in the collision sports 
of American football (all males) and soccer (all females). Data were acquired across multiple sessions, includ-
ing one approximately one month before contact practices began (Pre), one or more within competition season 
(In), and one or more after the season ended (Post). These data were grouped into different datasets to construct 
or evaluate the population-specific T1 or DTI templates. See Table 4 for the total number of participants and 
relevant details for each dataset.

Note that during the period of study, no participant was diagnosed by their athletic trainer or team physician 
as being concussed.

MR imaging.  All data were acquired using a 3  T General Electric Signa HDx (Waukesha, WI) with a 
16-channel brain array (Nova Medical; Wilmington, MA).

T1‑weighted imaging data.  Anatomical T1 scans were acquired using a 3D fast spoiled gradient-echo sequence 
(TR/TE = 5.7/2.0 ms, tip angle = 73°, 1 mm isotropic resolution). Longitudinal volumetric data from 227 athletes 
(167 males; 60 females) were used for construction and evaluation of the template (Table 4).

Diffusion‑weighted imaging data.  Diffusion-weighted imaging (DWI) data were acquired using a spin-echo 
echo-planar imaging sequence (TR/TE = 12,500/100 ms, 40 slices with 2.5 mm thickness), FOV of 24 × 24 cm2, 
a 96 × 96 acquisition matrix, in-plane resolution of 2.5 × 2.5 mm2, with 30 diffusion-encoding directions at 
b = 1000 s/mm2 and one at b = 0 s/mm2, and an upsampled isotropic resolution of 1 mm. Longitudinal data were 
from sixty-four male football athletes that participated in one competition season (Table 4). All participants 
completed three MRI sessions: one scan at Pre and two In-Season scans (In), with one in the first (In1) and one 
in the second (In2) 5-week halves of the season.

Atlas construction.  To accelerate the computation time, we established a workflow integrating a high-
throughput (The Open Science Grid)82, 83 and a high-performance (Purdue Community Clusters) computing 
platform. Specifically, the Open Science Grid integrates the computing and storage elements from over 100 
individual sites spanning the United States and provides a distributed fabric of high-throughput computational 
services, allowing numerous individual, small, and independent tasks to run concurrently on different CPU 

Table 4.   Summary of the datasets for constructing and evaluating the population-specific T1 and DTI 
templates, based on the Purdue Neurotrauma Group (PNG) longitudinal MRI database50. a Data were acquired 
across multiple sessions, including one approximately one month before contact practices began (Pre), one 
or more within competition season (In), and one or more after the season ended (Post). b All football athletes 
(FB) are male participants, and all soccer athletes (SOC) are female participants. c Same sport, age range, and 
ethnicity as the dataset for constructing the DTI template.

Task Season Sessiona Sportb (n) Age range (mean ± std) n Ethnicity (FB, SOC)

PNG T1 template

Construction 2011–2017 Pre In Post FB (155)
SOC (60)

All: 13–19 (16.16 ± 1.05)
FB: 13–19 (16.20 ± 1.08)
SOC: 14–18 (16.04 ± 0.97)

White: 157 (104, 53)
Black or African American: 21 (21, 0)
Hispanic or Latino: 11 (8, 3)
Asian: 2 (2, 0)
Native American: 5 (5, 0)
More than one: 17 (13, 4)
Unspecified: 2 (2, 0)

Evaluation 2018–2019 Pre FB (12) 14–19
(16.67 ± 1.37)

White: 6
Black or African American: 2
Hispanic or Latino: 1
Native American: 1
More than one: 2

PNG DTI template

Construction 2016–2017 Pre FB (64) 14–18
(16.00 ± 1.04)

White: 36
Black or African American: 9
Hispanic or Latino: 5
Native American: 3
More than one: 7
Unspecified: 4

Evaluationc 2016–2017 Pre
In
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cores. Purdue Community Clusters consists of Dell compute nodes with 16–24 cores of Intel Xeon Gold Sky 
Lake processors per node, at least 192 GB of RAM, and 100 Gbps InfiniBand interconnects, which processes 
single, large, and interdependent tasks at its fastest speed. The workflow was implemented to construct the 
population-specific T1 template and one of the two population-specific DTI templates, and the schematic dia-
grams were shown in Fig. 4.

Population‑specific T1 template and labels.  The population consisted of 215 EMA collision-sport athletes (ages: 
13 − 19, 16.16 ± 1.05) scanned at Pre of the 2011–2017 competition seasons, including 155 high school varsity 
football athletes (ages: 13 − 19, 16.20 ± 1.08) and 60 soccer athletes (ages: 14 − 18, 16.04 ± 0.97) (Table 4).

The workflow of constructing the PNG (ANTs) template is summarized in Fig. 4a. T1 preprocessing included 
(1) denoising using an adaptive non-local (NL)-means filter to improve signal-to-noise ratio across all the spatial-
frequency domains of the image84; (2) bias correction using FSL FAST to correct for spatial intensity variations 
and minimize the influence of intensity gradient on segmentation85, 86; (3) skull-stripping using a brain extrac-
tion program to remove non-brain part of the image (FSL BET)87, 88; and (4) intensity normalization using FSL 
MATH commands (fslmaths -inm) to make T1 images between subject comparable89, followed by the first visual 
quality assessment where preprocessed T1 images with low signals, cutoff of brain regions, motion, or observable 
artifacts were excluded; this resulted in 782 T1 images from 235 participants, where 547 were repeated scans 
from 168 participants.

Advanced Normalization Tools (ANTs)57, a top-performing registration tool, was applied to construct the T1 
template. ANTs employs symmetric groupwise normalization that has been shown to retain accurate anatomical 
details90. Specifically, ANTs utilizes Symmetric Normalization (SyN)91 as the registration algorithm, and formu-
late the problem of atlas construction as “estimating a common space and set of transformations that gives the 
smallest parameterization of the dataset.” The size and shape of the template image is optimized to converge to the 
group mean via Symmetric Groupwise Normalization (SyGN)92, which is achieved mathematically by optimizing

where 
−

I  is the template image, J i is the ith individual image, φi is the diffeomorphism, where the initial conditions 
of each φi is denoted as ψ . For complete explanations of the algorithm, see Avants et al.57, 92.

Using buildtemplateparallel.sh in ANTs, one individual template was created per participant on the Open 
Science Grid, with 30 × 50 × 20 iterations per registration, and cross correlation as the evaluation metric (build‑
templateparallel.sh -d 3 -m 30 × 50 × 20 -t GR -s CC -c 1), followed by a second visual quality assessment, which 
mainly focused on resemblance of neuroanatomy pertinent to each individual, including the matching of major 
sulci and gyri, and gray matter-CSF border; this resulted in individual templates from 215 participants with 
good quality. Using Purdue Community Clusters, the final population-specific template (PNG T1) was created 
from the individual templates, with one full node (24 cores) and one indivitual template as the target volume 
(buildtemplateparallel.sh -d 3 -m 30 × 50 × 20 -t GR -s CC -c 2 -j 24 -z).

Based on the final template, the semantic labels were created using the recon-all pipeline of FreeSurfer 
(v6.0.0)93, employing the Desikan-Killiany labeling protocol94 to assign the neuroanatomical label to each corti-
cal region. The template and labels have been made available at the Purdue University Research Repository53.

Population‑specific DTI templates.  The population consisted of 64 football athletes (age: 14–18, 
16.00 ± 1.04) scanned at Pre of the 2016–2017 competition season (Table 4).

Two top-performing registration tools, namely ANTs57 and DTI-TK95, was applied to construct DTI tem-
plates. DTI-TK incorporates explicit optimization of tensor orientation with piecewise affine registration95, and 
the problem of atlas construction is formulated as “estimating an image that requires the minimum amount 
of deformation to map into every image in the population.”96 Given a population of N diffusion tensor images {
J i
}N
i=1

 , the template estimation is defined mathmatically as97.

where Hi is the deformation applied to the image J i . The tensor metric � · � represents the image term, which 
is the summation of the region-wise tensor image difference. D(Hi) is a metric that quantifies the amount of 
deformation associated with Hi . For complete explanations of the algorithm, see Zhang et al.95, 97.

Before constructing the templates, raw DWI data were first preprocessed using FSL (FMRIB 5.0, Oxford, 
U.K.), including corrections for motion and eddy currents (eddy_correct), followed by the extraction of aliasing-
corrected brains (BET). DTI metrics, including FA, mean diffusivity (MD), axial diffusivity (AD), and radial 
diffusivity (RD), were estimated for each individual (DTIFit), and all passed the first visual quality assessment 
for presence of motion artifact or geometrical distortion.

The workflow of constructing the PNG (ANTs) template is summarized in Fig. 4b. Based on the quality 
assessments when constructing the population-specific T1 template, 33 of the 64 football players had a quali-
fied T1 image at Pre. Only the corresponding DWI images at Pre were used, considering that DTI changes were 
observed at In1 and In251, 52. For each subject, the b0 image served as the reference image to warp the FA image 
to the corresponding T1 image, and subsequently to the PNG T1 template space. All warping processes were car-
ried out by running antsIntermodalityIntrasubject.sh. All the warped FA images passed the second visual quality 
assessment for inspecting whether they were normalized to the same space of the template. Then, an average map 
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of the warped FA images was computed to serve as the initial reference image to register to, and the population-
specific DTI template was constructed based on the 64 football players at Pre, with one full node (24 cores) and 
one indivitual template as the target volume (antsMultivariateTemplateConstruction.sh -d 3 -m 30x50x20 -t GR 
-s CC -c 2 -j 24 -i 4 -z), and has been made available at the Purdue University Research Repository53. The second 
DTI template was constructed using DTI-TK95 as a comparison to the PNG (ANTs) template, where the diffusion 
tensors in the native space of 64 subjects were used.

Evaluations
Population‑specific T1 template.  The population consisted of 12 newly scanned high school varsity 
football athletes (ages: 14–19, 16.67 ± 1.37) scanned at Pre of the 2018–2019 competition season (Table 4).

Deformation-based morphometry analyses were performed to compare the potential bias of using different 
T1 templates. The newly acquired T1 scans were normalized (via antsRegistrationSyN) to the ICBM152 template, 
an age-appropriate template (NIHPD13.0–18.5

21, IITv3.011, and the population-specific T1 template (PNG); this 
yielded 4 × 12 = 48 maps of deformation field. The logarithm of Jacobian determinant (logJ, representing local 
volume difference) was estimated (via ANTSJacobian) for each map. The maps of absolute logJ (|logJ|) were com-
puted and transformed to the standard space of ICBM152 (1 mm spatial resolution) via antsApplyTransforms. 
In the standard space, voxel-wise permutation-based t-statistics were computed with 5000 permutations with a 
repeated ANOVA design, using the FSL Randomise program98, with threshold-free cluster enhancement99 and 
family wise error (FWE) of 5% used to control for type-I error.

Population‑specific DTI templates.  The population consisted of 64 high school varsity football athletes 
(ages: 14–18, 16.00 ± 1.04) scanned at Pre, In1, and In2 of the 2016–2017 competition season (Table 4).

All individual FA images were first aligned through a nonlinear transformation algorithm (FNIRT) to four 
DTI templates, including two standardized templates: FMRIB58 (FMRIB, Oxford, UK) and IITv3.011, and the 
two PNG population-specific templates constructed by ANTs and DTI-TK.

Similar to evaluating the T1 templates, deformation-based morphometry analyses were performed to compare 
the potential bias of using different DTI templates. At each session (Pre, In1, In2), 4 × 64 = 256 maps of |logJ| 
were yielded, and all were transformed to the standard space of FMRIB58 (same as ICBM152). Using the same 
design as evaluating the T1 templates, voxel-wise permutation-based t-statistics were computed for each session.

In the standard space of ICBM152, a skeleton representing the common white matter tracts across all the 
subjects was created from thinning the mean FA map that was averaged from all the aligned FA images. The 
skeleton was thresholded at FA > 0.2 to reduce partial volume effects between borders of different tissues. Regional 
maximal FA values were projected onto the skeleton according to a distance map27. Based on the mean FA 
skeleton, skeletons of MD, AD, and RD were obtained by projecting the corresponding DTI values onto the FA 
skeleton (tbss_non_FA). The processing procedure guaranteed that the variations of the TBSS results were only 
related to the template selection.

The resulting DTI skeletons of each subject were fed into voxel-wise permutation-based statistics with 
a repeated ANOVA design and with 5000 permutations among Pre, In1 and In2, using the FSL Randomise 
program98. The type-I error was controlled by threshold-free cluster enhancement99 and FWE of 5%. For the 
purpose of demonstrating the effect of template selection on subsequent statistical findings, only the contrasts 
comparing Pre and In2 were presented. Among all the selected contrasts of each template, the ones showing 
significant voxels at p < 0.05 (FA and AD: Pre > In2; MD and RD: Pre < In2) were further segmented into ROIs 
defined by the JHU-ICBM-DTI-81 WM label atlas100, and the corresponding voxel counts and DTI values were 
extracted via the FSL Cluster program.

Within each ROI overlaid on the TBSS skeletons, we counted

and

 
First, the non-parametric Friedman test was performed to test whether Vt correlated with template selection, 

with Vt as the response variable, template as the predictor, and ROI as the blocking variable.
Then, logistic regression was performed to test whether Vs/Vt correlated with template selection:

where pij referred to the Vs/Vt ratio from the ith template, with regard to the TBSS skeleton within the jth ROI. 
4 models were established with respect to the Vs/Vt ratio of each DTI metric (FA, MD, AD and RD). ROIs with 
no voxel on the TBSS skeletons were excluded from the analyses. The analyses were performed using SAS 9.4 
(SAS Institute, Cary NC).

To investigate the sensitivity of different templates to the short-term changes of white matter microstructure 
in high-school football players51, 52, linear mixed regression analyses were performed, where timepoint and age 
were the fixed variables, and subject was the random variable. Models were fitted within each ROI and for each 
DTI metric. The Akaike information criterion (AIC) was used to evaluate model fit, and t and p values for time-
point were compared across the four templates. FDR was applied to correct for comparisons in multiple ROIs. 

Vt = The number of voxels on the skeleton,

Vs = The number of significant voxels from the permutation-based statistics.

log
pij

1− pij
= β0 + β1 × Templatei + β2 × ROIj
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ROIs with no voxel on the skeleton, and ROIs rejected by the Shapiro-Wilks normality test were excluded from 
the analyses. The analyses were performed using R version 3.5.2101.

Accession codes
https://​doi.​org/​10.​4231/​RTXE-​0Q70.
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