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A computational workflow for the expansion of
heterologous biosynthetic pathways to natural
product derivatives
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Plant natural products (PNPs) and their derivatives are important but underexplored sources

of pharmaceutical molecules. To access this untapped potential, the reconstitution of het-

erologous PNP biosynthesis pathways in engineered microbes provides a valuable starting

point to explore and produce novel PNP derivatives. Here, we introduce a computational

workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for

pharmaceutical compounds that could be produced by derivatizing pathway intermediates.

We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline

alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and

enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and

anxiolytic, and three additional derivatives. We then construct pathways for these com-

pounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and

demonstrating the value of cheminformatic tools to predict reactions, pathways, and

enzymes in synthetic biology and metabolic engineering.
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P lants synthesize a remarkable range of complex and valu-
able molecules, known as plant natural products (PNPs),
commonly used as flavors, fragrances, and medicines1.

However, production of these molecules via extraction from plant
biomass is often limited by slow growth, low yield, laborious
extraction and purification procedures, and variability due to
weather and climate change. Furthermore, while many modern
medicines are natural products, a higher fraction are derivatives
of natural products2. The range of PNP derivatives accessible to
researchers is typically limited to those that can be readily pro-
duced via chemical synthesis from PNPs extracted from plants,
while many more derivatives could potentially be made via
regioselective enzymatic modification of PNPs and their inter-
mediates. Microbial production of PNPs can potentially address
these concerns, and additionally facilitates production of novel
PNP derivatives by leveraging the genetic tractability of well-
established microbial hosts to alter the heterologous biosynthetic
pathway.

Since the landmark production of the antimalarial drug pre-
cursor artemisinic acid in Saccharomyces cerevisiae in 20063, there
has been an increase in the size and complexity of pathways
reconstructed in heterologous hosts4. This progress is highlighted
by the recent de novo biosynthesis in S. cerevisiae of noscapine5,
an antitussive benzylisoquinoline alkaloid (BIA) and potential
chemotherapeutic6–8 from Papaver somniferum separated by 16
enzymatic steps from tyrosine. In that study, halogenated deri-
vatives of tyrosine were fed to the engineered yeast strains to
produce halogenated derivatives of noscapine intermediates.
However, the non-native halogenated substrates were not toler-
ated as well as the native substrates of the pathway enzymes, and
derivatives of only early intermediates in the pathway were
detected. In such cases, an alternative strategy would be required
to produce derivatives of more chemically complex downstream
pathway intermediates or of noscapine itself.

An alternative approach to produce derivatives of PNPs and
their intermediates is to integrate additional enzymes into
microorganisms expressing heterologous PNP biosynthetic
pathways. Enzymes that are able to accept and functionalize
intermediates or products along a PNP pathway would thus
produce novel products in vivo from the natural precursors.
However, producing new-to-nature compounds necessarily
entails the use of enzymes outside their natural functions, and in
many cases an enzyme will not be known a priori with the desired
non-native function. Given the wealth of enzymatic knowledge
that has been accumulated, a computational method to predict
enzymes that may catalyze a desired transformation will greatly
expedite the development of biosynthetic pathways engineered to
produce new-to-nature products.

Computational methods have been employed to guide the
discovery of enzymatic functions and the design of biosynthetic
pathways for the production of molecules with interesting phar-
maceutical or industrial properties9. These methods generate
hypothetical pathways to compounds of interest by assuming that
enzymes that perform similar, but not identical, reactions to those
desired might be promiscuous or sufficiently evolvable to perform
the desired reaction after engineering and/or optimization. The
concept of substrate promiscuity is translated into generalized
enzymatic reaction rules that mathematically describe the reactive
site recognized by an enzyme as well as the molecular rearran-
gement performed during the biotransformation. Popular che-
minformatic tools9–11 for predictive biochemistry include BNICE.
ch (Biochemical Network Integrated Computational Explorer)12,
enviPath13, GEM-Path14, novoPathFinder15, NovoStoic16,
ReactPRED17, RetroPath2.018, and Transform-MinER19. These
tools have typically been used in retrobiosynthesis studies, where
the aim is to determine potential bioproduction pathways by

biochemically walking back from a target compound to the native
metabolism of a chassis organism20–22 via predicted enzymatic
reaction steps. The prediction of novel reactions is subsequently
followed by the search for suitable enzymes that can catalyze the
predicted step. Enzyme prediction tools such as BridgIT23, EC-
BLAST24, E-zyme25, and Selenzyme26 determine the structural
similarity of a novel reaction to all well-characterized reactions in
biochemical databases, and propose a list of enzyme candidates
ranked by their likelihood to catalyze the desired transformation.

Here, we develop a computational workflow to identify
potential derivatives of intermediates of a given biosynthetic
pathway and subsequently predict enzyme candidates that may
carry out the desired transformation(s) (Fig. 1). Our workflow
expands the chemical space around a pathway of interest using
BNICE.ch to create a map of all compounds accessible with
known or predicted biochemical reactions and then identifies
enzymes capable of carrying out the desired transformations on
the prioritized set of compounds using the enzyme prediction
tool BridgIT. We apply this workflow to the reconstructed nos-
capine biosynthetic pathway in yeast. We narrow our search to
enzyme candidates capable of producing (S)-tetrahydropalmatine,
a PNP found in plants of the genus Corydalis that has been shown
to possess analgesic and anxiolytic effects and has shown promise
as a potential treatment for opiate addiction27–29. After experi-
mental evaluation of seven of the top enzyme candidates in yeast
strains engineered to produce the noscapine biosynthetic inter-
mediate (S)-tetrahydrocolumbamine de novo, we identify two
enzymes that enabled production of (S)-tetrahydropalmatine. We
then apply our workflow to identify three additional derivatives of
pathway intermediates, predict enzymes for their biosyntheses,
and then construct S. cerevisiae strains to produce these three
products de novo. As the number of reconstructed heterologous
pathways for PNPs continues to increase, we anticipate that the
described workflow can be used to produce many chemically
complex compounds spanning diverse therapeutic activities.

Results
Computational expansion of the noscapine pathway reveals
thousands of potential target molecules. Each biosynthetic
pathway presents an opportunity to produce numerous deriva-
tive compounds by chemically modifying functional groups of
the pathway product and its intermediates. Computational
reaction prediction tools, such as BNICE.ch, allow rapid
exploration of the hypothetical chemical space of potential
pathway derivatives. Their generalized enzymatic reaction rules
mimic known enzymatic activities in silico by recognizing and
transforming a specific functional group on a substrate to gen-
erate a product. Iterative application of these rules to biosyn-
thetic pathway intermediates creates a reaction network to
hypothetical derivatives of all pathway intermediates, offering
targets for bioproduction.

We applied this computational expansion process on the
noscapine pathway, which starts from (S)-norcoclaurine and
involves 17 metabolites connected by 17 reactions (Fig. 2).
BNICE.ch expanded the network around the 17 metabolites for
four generations, generating both known and novel reactions to
produce compounds known to any biological30–39, bioactive40,41,
or chemical42 database. This expansion yielded a network
spanning 4838 compounds (Supplementary Data 1) and 17,597
reactions (Supplementary Data 2). As our analysis focused on
BIAs, we required the substrate and product to contain the
minimal elemental composition of the 1-benzylisoquinoline
scaffold (i.e., at least 16 carbon atoms, 13 hydrogen atoms, and
1 nitrogen atom). The resultant trimmed BIA network spanned
1518 compounds, of which 99 were classified as biological or
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Fig. 1 Overall workflow integrating computational prediction of target compounds, pathways, and enzymes with experimental validation. a Applied
design-build-test cycle. b Computational workflow. Circles represent compounds, edges represent biotransformations. Green is used to designate known
biological reactions and compounds and blue circles are compounds from the chemical space without specific biological annotation. Red circles show
compounds selected for their popularity in scientific literature and in the patent landscape, and red edges represent their corresponding biosynthesis
pathways.

Fig. 2 Visualization of the expanded biosynthesis network of the noscapine pathway. The nodes and edges drawn in red show the original noscapine
pathway. Around the original pathway, the predicted network of compounds (nodes) and reactions (edges) is visualized. The top 10 compounds in terms of
popularity (total number of patents plus citations) are named and localized on the map. The color of the nodes shows in which iteration the compound was
generated in the network reconstruction process, which is also the number of reaction steps between the original pathway and the compound. The size of
the nodes is proportional to the popularity. The molecular structure of the pathway precursor, norcoclaurine, and the final product, noscapine, are shown.
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bioactive, and the remaining 1419 as chemical compounds
(Supplementary Table 1). The compounds in the network were
connected by 7527 reactions, of which 49 were known to be
catalyzed by well-characterized enzymes linked to a genetic
sequence from at least one organism in our reference database,
the Kyoto Encyclopedia of Genes and Genomes (KEGG)30. As an
additional validation, we collected 13 secondary metabolites with
known biosynthesis pathways around the noscapine pathway
from external sources, and we could show that all but one were
found in the BIA network (Supplementary Table 2).

Our network expansion was nonuniform across the noscapine
biosynthetic pathway (Fig. 2). The upstream portion of the
network is highly connected, whereas the downstream portion
near noscapine is less populated. This likely results from the
downstream intermediates and their derivatives increasing in size
and complexity, complicating their experimental detection and
structural characterization. Consequently, these compounds are
less represented in biological or chemical databases, and therefore
are not part of the predicted network despite their increased
diversity of functional groups.

A ranking algorithm for candidate molecules highlights well-
studied compounds. To guide experimental efforts toward
interesting targets for bioproduction, the numerous candidate
compounds were ranked and filtered. To focus on compounds with
broader interest to biomedical researchers, we ranked the candidates
by popularity, defined here as the sum of the number of citations
and patents reported. We screened the 1501 potential target com-
pounds (1518 satisfying the BIA requirement minus the 17 in the
noscapine pathway) and found that 204 returned at least one cita-
tion, while 467 had at least one associated patent. In total, at least
one annotation (citation or patent) was obtained for 545 distinct
compounds (Supplementary Data 3, Supplementary Fig. 1).

Sorting the compounds by popularity, we found that
papaverine was ranked highest, with 22,918 annotations, followed
by bicuculline and berberine with 16,118 and 12,154 total
annotations, respectively. While the citation count reflects
scientific interest in a compound, the number of patents indicates
its commercial applications. As an example, the compound
bicuculline, which ranked first in citations but fourth in patents, is
widely employed in medical research to mimic epilepsy in
mammals43, but has a relative lack of clinical applications.

Computational pathway construction identifies tetra-
hydropalmatine as a high-priority target. While the application

of a ranking algorithm to the potential compounds generated by
BNICE.ch identifies top candidates, it does not prioritize those
which can be feasibly produced experimentally. To maximize the
probability of successful in vivo production of a target molecule,
we applied additional filters to determine the best candidates for
bioproduction. Four criteria were considered: (i) one or more
production pathways toward the target compound are thermo-
dynamically feasible; (ii) enzymes are available which natively
perform similar transformations; (iii) the target compound is only
one chemical transformation from an intermediate in the original
pathway to focus experimental efforts on a single enzymatic step;
and (iv) the target molecule is a potential or confirmed
pharmaceutical.

We first examined the biological feasibility of the potential
pathways to our target compounds. For the top 50 ranked
candidates, we enumerated all possible pathways connecting a
noscapine pathway intermediate to each target within a
maximum of four reaction steps. Reaction directionalities with
a highly positive standard Gibbs free energy of reaction (i.e.,
reactions producing molecular oxygen, binding carbon dioxide to
the substrate, or demethylating the substrate via S-adenosylho-
mocysteine) were excluded to avoid thermodynamic and catalytic
bottlenecks. We identified feasible pathways for 42 of 50 targets,
furnishing a total of 1338 pathways (Supplementary Data 4). All
of the proposed pathways are listed and visualized online (https://
lcsb-databases.epfl.ch/pathways/GraphList).

To assess the availability of enzymes to catalyze the proposed
reactions, we predicted enzymes for each novel reaction step
using BridgIT23. BridgIT calculates a reactive-site centric
similarity score (BridgIT score) between the novel reaction and
a reference database of known, well-characterized reactions
(KEGG). The output is a ranked list of candidate enzyme classes
and associated similarity scores that indicate the probability that
members of the candidate enzyme class will catalyze the novel
reaction. As an overall metric for compound feasibility, we used
the mean of the top BridgIT scores of each reaction in the
pathway (available as part of the pathway visualization online).

We next examined the distance (i.e., number of reaction steps) of
the target compounds from the original pathway. We restricted our
search to candidates that are only one reaction from an
intermediate, resulting in 15 candidates, each produced by a feasible
reaction and associated with a ranked list of predicted, putative
enzymes (Table 1, Supplementary Table 3). The highest ranked
candidate was berberine, for which a heterologous biosynthetic
pathway has already been established44. We therefore selected
the second highest ranked candidate, (S)-tetrahydropalmatine, for

Table 1 Compounds ordered by descending popularity that are one reaction step away from intermediates in the noscapine
pathway.

Popularity rank Name Best BridgIT score Predicted EC Number of citations Number of patents Citations+ patents

1 Berberine 1.00 1.3.3.8 5430 6751 12154
2 Tetrahydropalmatine 1.00 2.1.1.89 530 355 885
3 Columbamine 0.99 1.3.3.8 131 235 366
4 Salutaridine 1.00 1.14.19.67 85 264 349
5 Norlaudanosoline 0.99 1.14.14.102 144 177 321
6 Stepholidine 0.78 1.14.13.31 157 140 297
7 Allocryptopine 0.32 1.14.13.239 111 159 270
8 Laudanine 1.00 2.1.1.291 23 112 135
9 Codamine 0.79 2.1.1.121 13 61 74
10 Norreticuline 0.09 1.5.3.10 33 40 73
11 Corytuberine 0.56 1.14.19.67 18 39 57
12 Lambertine 0.45 1.3.1.29 30 23 53
13 Armepavine 1.00 2.1.1.291 28 15 43
14 1,2-Dehydroreticuline 1.00 1.5.1.27 3 40 43
15 Nandinine 1.00 1.14.19.73 1 39 40
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experimental validation. (S)-Tetrahydropalmatine naturally occurs
in a number of plants, especially those in the genus Corydalis and
Stephania rotunda, which are traditionally used in Chinese herbal
medicine45. (S)-Tetrahydropalmatine (i.e., levo-tetrahydropalma-
tine) has been used for its analgesic, anxiolytic, and sedative effects
as an alternative to opiates and benzodiazepines, and has shown
promise in treating opiate, cocaine, and methamphetamine
addiction29.

BridgIT analysis indicates top enzyme candidates for tetra-
hydropalmatine bioproduction. Once a compound of interest is
chosen, enzyme(s) catalyzing the desired transformation must be
identified. BridgIT identifies known enzymes whose native reac-
tions most closely resemble our desired reaction, and the BridgIT
similarity score can be used to rank the candidates by their
likelihood to catalyze the desired transformation.

(S)-Tetrahydropalmatine can be produced in one step via
methylation of the 2-hydroxyl of the noscapine pathway
intermediate (S)-tetrahydrocolumbamine with concomitant con-
version of S-adenosylmethionine to S-adenosylhomocysteine
(Fig. 3a). Because of the lack of sequence annotation for this
reaction in KEGG, we used the BridgIT data described above to
identify candidate enzymes. The BridgIT analysis produced a list
of enzyme classes ranked by their BridgIT scores, measuring the
structural similarity of the (S)-tetrahydrocolumbamine methyla-
tion to the native reactions of those enzymes (Table 2). Enzymes
without protein sequence annotation were removed.

The top enzyme classes yielded promising candidates for
in vivo testing. The first candidate, reticuline 7-O-methyltrans-
ferase (EC 2.1.1.291), has a BridgIT score of 0.98, making it a
good candidate for in vivo testing; one variant occurs in Papaver
somniferum. Ranked second (BridgIT score of 0.76) is the enzyme
columbamine O-methyltransferase (EC 2.1.1.118; variant from
Coptis japonica referred to here as CjColOMT), which converts
(S)-columbamine to (S)-palmatine, a similar reaction to our
target reaction. A literature search showed that CjColOMT has
previously been found to exhibit promiscuous activity in vitro on
(S)-tetrahydrocolumbamine46. However, while KEGG catalogues
the methylation of (S)-tetrahydrocolumbamine to produce (S)-
tetrahydropalmatine, it does not link it to CjColOMT or any
other known gene sequence.

The analysis further showed that the O-methyltransferases
(OMTs) in the noscapine pathway are among the top-ranked
candidates for catalyzing the predicted reaction. It has been shown
that the majority of metabolic reactions are catalyzed by
promiscuous enzymes47, and enzymes that participate in specia-
lized metabolism are even more likely to be promiscuous48–50. The
potential promiscuity of the noscapine biosynthetic enzymes is
thus unsurprising, especially if promiscuous activity is seen on
other pathway intermediates that necessarily resemble their native
substrates structurally. The enzymes 6OMT (EC 2.1.1.128) and
4’OMT (EC 2.1.1.116), which O-methylate the noscapine pathway
intermediates (S)-norcoclaurine and (S)-3′-hydroxy-N-methylco-
claurine, respectively, are ranked third and fourth, with BridgIT
scores of 0.75. The enzyme S9OMT (EC 2.1.1.117) is ranked tenth
with a BridgIT score of 0.64. The high BridgIT scores associated
with these three enzymes indicate their potential for promiscuous
activity on (S)-tetrahydrocolumbamine. As variants of these three
enzymes are already present in the noscapine pathway prior to
(S)-tetrahydrocolumbamine, their potential to produce (S)-tetra-
hydropalmatine will necessarily be evaluated in vivo.

Two predicted enzymes enable tetrahydropalmatine produc-
tion in vitro and in vivo. The preceding workflow generates a
ranked list of candidate enzymes predicted to produce the target

product. Validation of candidate enzymes can be performed
in vitro and/or in vivo in the context of a heterologous pathway.
The ranking of potential enzymes enables a smaller set of
enzymes to be tested experimentally, thereby maximizing the
success of the project.

We selected seven of the top 18 hits from BridgIT for
experimental validation, with the objective to sample a broad
range of BridgIT scores. As described above, three of these
enzymes—Ps6OMT, Ps4’OMT, and PsS9OMT—are already
present in the biosynthetic pathway upstream of (S)-tetrahydro-
columbamine. The other four enzymes were selected based on the
diversity of their native substrates, which span a range of less than
300 Da (2,4′,7-trihydroxyisoflavanone) to greater than 900 Da
(caffeoyl-CoA) (Table 2). These four candidate enzymes—
columbamine OMT from Coptis japonica (CjColOMT, ranked
second), O-demethylpuromycin OMT from Streptomyces alboni-
ger (SaPurOMT, ranked 9th), 2,4′,7-Trihydroxyisoflavanone OMT
from Lotus japonica (LjFlaOMT, ranked 11th), and caffeoyl-
coenzyme A OMT from Arabidopsis thaliana (AtCafOMT,
ranked 17th)—were codon optimized for expression in S.
cerevisiae, cloned into high-copy plasmids, and transformed into
a de novo (S)-tetrahydrocolumbamine-producing S. cerevisiae
strain. (S)-Tetrahydropalmatine was produced in every strain
tested (Fig. 3b). However, the strain expressing the highest ranked
candidate of those tested, CjColOMT, produced eight-fold more
(S)-tetrahydropalmatine relative to an empty plasmid control. We
hypothesized that the background (S)-tetrahydropalmatine in all
strains was due to one or more of the other methyltransferases
present in the heterologous (S)-tetrahydrocolumbamine-produ-
cing strain. As these enzymes’ native substrates are precursors of,
and structurally similar to, (S)-tetrahydrocolumbamine, they may
possess promiscuous activity on (S)-tetrahydrocolumbamine
itself. In fact, the other four pathway methyltransferases—
S9OMT (acts natively on (S)-scoulerine), CNMT (acts natively
on coclaurine), 6OMT (acts natively on norcoclaurine), and
4’OMT (acts natively on 6-methyl-(S)-laudanosoline)—were
assigned high scores by BridgIT for their potential activity on
(S)-tetrahydrocolumbamine, further supporting this hypothesis.

We next tested each pathway methyltransferase in vitro to
determine their contribution to the background (S)-tetrahydro-
palmatine production. In the originally constructed heterologous
(S)-tetrahydrocolumbamine pathway, the four methyltransferases
were derived from Papaver somniferum, and thus were named
Ps6OMT, PsCNMT, Ps4’OMT, and yPsS9OMT (the y prefix on
the lattermost denotes that it has been codon optimized for
expression in the yeast S. cerevisiae). Ps6OMT, PsCNMT,
yPsS9OMT, and CjColOMT expressed well in E. coli, but no
conditions tested afforded soluble Ps4’OMT. Accordingly, we
examined 4’OMT variants from other species and codon
optimized three for expression in E. coli—Cj4’OMT from Coptis
japonica, Ec4’OMT from Eschscholzia californica, and Tf4’OMT
from Thalictrum flavum. These variants expressed well in E. coli
and were purified for in vitro analysis. As these 4’OMT variants
might not possess the same substrate promiscuity as the variant
originally tested (Ps4’OMT), we created strains with Ps4’OMT
replaced with each alternative 4’OMT codon optimized for
expression in S. cerevisiae. We verified that, in each of these
strains, (S)-tetrahydropalmatine was still observed and that
expression of CjColOMT resulted in 3- to 7-fold increased
production of (S)-tetrahydropalmatine (Fig. 3c).

We tested each pathway methyltransferase and CjColOMT
in vitro to determine which convert (S)-tetrahydrocolumbamine
to (S)-tetrahydropalmatine. In vitro reactions were performed
with Ps6OMT, PsCNMT, Cj4’OMT, Ec4’OMT, Tf4’OMT,
yPsS9OMT, and CjColOMT. Ps6OMT, PsCNMT, and the
4’OMT variants produced no (S)-tetrahydropalmatine in vitro
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(Fig. 3d). While PsCNMT does accept (S)-tetrahydrocolumba-
mine as a substrate, the product is presumably the N-methylated
derivative, as the mass is consistent with a second methylation
event, no (S)-tetrahydropalmatine production was observed, and
the N-position is the only other available site likely to be
methylated by a methyltransferase. Of the pathway enzymes, only

PsS9OMT produced (S)-tetrahydropalmatine in vitro and thus is
likely the sole source of the background (S)-tetrahydropalmatine
observed in vivo. To further support this hypothesis, a
strain lacking both yPsS9OMT and CjColOMT produced
no (S)-tetrahydropalmatine (Fig. 3b). When tested in vitro,
CjColOMT afforded over 11-fold higher conversion of (S)-
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tetrahydrocolumbamine to (S)-tetrahydropalmatine than yPs-
S9OMT (Fig. 3d), which is consistent with the significantly higher
production of (S)-tetrahydropalmatine in vivo upon expression of
CjColOMT (Fig. 3b). CjColOMT also accepted (S)-scoulerine as a
substrate and performed methylations at both available hydroxyl
groups, producing (S)-tetrahydrocolumbamine, (S)-tetrahydro-
palmatrubine, and (S)-tetrahydropalmatine (Supplementary
Fig. 2).

Our workflow guided production of three additional deriva-
tives in vivo. In order to demonstrate the generality of our
approach, we applied our workflow to the prediction and experi-
mental validation of three additional derivatives of intermediates in
the noscapine pathway. We reexamined our list of the top candidate
products that are one enzymatic step away from an intermediate in
the noscapine pathway and that possess a high combined number of
associated citations and patents (Table 1, Supplementary Table 3)
and selected three products for experimental validation: (S)-arme-
pavine, (S)-laudanine, and (S)-nandinine (Fig. 4a). (S)-Armepavine
and (S)-laudanine can each be produced via regioselective
O-methylations of the 7-hydroxyl groups of (S)-N-methylcoclaurine
and (S)-reticuline, respectively, while (S)-nandinine can be produced
from (S)-scoulerine through methylenedioxy ring formation from
vicinal hydroxyl and methoxyl groups performed by a cytochrome
P450. The top five candidate enzymes to perform each of these three
reactions were determined by BridgIT (Supplementary Tables 4 and
S5). The same five enzymes—CjColOMT, CjN6OMT, Ps7OMT,
PsHNC4’OMT, and Ps6OMT (this last enzyme was already inte-
grated into both parent strains, but was also tested on a high-copy
plasmid as it was one of the top hits identified by BridgIT)—were
the top candidates for both (S)-armepavine and (S)-laudanine bio-
synthesis, likely because both are the result of N-methylations of
structurally similar substrates. For (S)-nandinine biosynthesis, the
top five candidate enzymes were AmCYP719A13, EcCYP719A3,
NnSCNS, CYP719A21, and ShCYP719A23. Each gene was codon
optimized for expression in S. cerevisiae (Supplementary Data 5),
cloned into a high-copy plasmid, and transformed into the strain
that produces the substrate of its predicted product de novo: for (S)-
armepavine biosynthesis (Fig. 4b), a de novo (S)-N-methylcoclaur-
ine strain (CSY1322) was used as the parent; for (S)-laudanine
biosynthesis (Fig. 4c), a de novo (S)-reticuline strain (CSY1171); and
for (S)-nandinine biosynthesis (Fig. 4d), a de novo (S)-scoulerine
strain (CSY1320) (Supplementary Table 6). Each candidate strain
was grown and then analyzed by LC-MS/MS for production of the

predicted products; for each product, two of the enzymes tested
were found to produce the desired derivative.

Discussion
In silico tools for novel biosynthetic pathway design can guide
and accelerate metabolic engineering to produce molecules of
interest. In this work, we employed the biochemical reaction
prediction tool BNICE.ch12 to explore potential biosynthesis
targets that can be produced from the noscapine pathway. While
multiple pathway prediction tools have been reported, most
extract reaction rules automatically from biochemical
databases15–18, risking the propagation of errors (e.g., unba-
lanced, orphan or hypothetical multistep reactions) from database
entries to the rules. In contrast, BNICE.ch rules are created
manually to ensure that the predicted reactions follow bio-
chemical logic. Furthermore, typical retrobiosynthetic approaches
focus on a single predetermined compound, whereas our work-
flow quickly identifies a large number of candidate molecules
without requiring prior knowledge of their identities. The high
number of available tools stands in contrast to the small number
of reported experimental validations of novel, predicted reactions.
The first successfully predicted novel bioproduction pathway was
established for 1,4-butanediol51 using the commercial tool Sim-
Pheny which, like BNICE.ch, relies on expert-curated generalized
reaction rules. Furthermore, novel reactions predicted by BNICE.
ch in the ATLAS of Biochemistry52,53, a repository of hypothe-
tical biochemical reactions, have only recently been experimen-
tally tested and validated54. Both of the examples of successful
implementation of predicted novel reactions to date have utilized
expert-curated reaction rules.

Once a pathway has been designed, enzymes need to be found
to catalyze the predicted biotransformations. Available tools for
enzyme function prediction determine the structural similarity of
the desired reaction’s reactants and products to substrates and
products of known enzymes23–26. In contrast to other tools,
BridgIT incorporates information encoded in the BNICE.ch
reaction rules to identify the reactive site and then examines the
atom connectivity around the reactive sites of the known and
desired substrates. While all mentioned tools benchmarked their
predictive capacity on datasets of known enzyme-reaction pair-
ings, no direct experimental validation of an enzyme prediction
tool has been reported to our knowledge.

In this study, BNICE.ch identified 15 potential compounds that
are one reaction step from an intermediate of the noscapine
biosynthetic pathway. We chose to rank these compounds by the

Fig. 3 In vivo and in vitro activity of predicted enzymes. a Biosynthetic pathway from (S)-norcoclaurine, the first dedicated intermediate in the pathway,
to (S)-tetrahydropalmatine. The specific enzyme(s) used in our strains are indicated above each reaction arrow, while below each arrow is the enzyme
class and, for methyltransferases, the BridgIT score (in red) obtained for the likelihood of members of that class to perform our proposed reaction. Our
proposed reaction, the methylation of (S)-tetrahydrocolumbamine to afford (S)-tetrahydropalmatine, is shown in the box at the bottom left. Shown in
dotted lines is the native reaction of CjColOMT, the enzyme which was predicted and demonstrated to perform our proposed reaction. The site of
methylation of each methyltransferase is highlighted on its product in pink. b De novo production of (S)-tetrahydropalmatine in yeast strains engineered
to express members of the two most downstream O-methyltransferase classes (S9OMT & ColOMT) predicted by BNICE.ch & BridgIT to accept (S)-
tetrahydrocolumbamine as a substrate. PsS9OMT is integrated into the yeast genome, while CjColOMT, AtCafOMT, LjFlaOMT, and SaPurOMT were
expressed from a high-copy plasmid; the first two strains shown contain an empty version of this plasmid. Strains were cultured in selective media (YNB-
Ura) with 2% dextrose, 2 mM L-DOPA, and 10mM ascorbic acid at 30 °C for 120 h before LC-MS/MS analysis of the growth media. Data are presented as
mean values ± the standard deviation of three biologically independent samples. Asterisks represent Student’s two-tailed t-test: *p < 0.05, **p < 0.01, ***p <
0.001. Exact p-values are given in Supplementary Table 8. c In vitro reactions of purified methyltransferases on (S)-tetrahydrocolumbamine to produce (S)-
tetrahydropalmatine (shown in pink) or the putative N-methyl-(S)-tetrahydrocolumbamine product (shown in gray). BridgIT score denotes the score
obtained by BridgIT for the enzyme class to which each enzyme belongs. Data are presented as mean values ± the standard deviation of three biologically
independent samples. Asterisks represent Student’s two-tailed t-test: *p < 0.05, **p < 0.01, ***p < 0.001. Exact p-values are given in Supplementary Table 8.
d De novo production of (S)-tetrahydropalmatine in yeast strains engineered to express alternative 4’OMTs. Strains were cultured in selective media
(YNB-Ura) with 2% dextrose, 2 mM L-DOPA, and 10mM ascorbic acid at 30 °C for 72 h before LC-MS/MS analysis. Data are presented as mean values ±
the standard deviation of three biologically independent samples. Source data underlying Fig. 3b–d are provided as a Source Data file.
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sum of their reports in the scientific literature and patents, in
order to identify compounds of known biological interest.
Alternatively, the ranking could be reversed to identify com-
pounds for which no scientific reports are available, and to
engineer the biosynthesis of these molecules to facilitate their
further characterization. Literature-based ranking has the
advantage that it can be used without defining a strict objective
prior to the analysis, as it is the case in our study. For other
applications of our workflow, alternative ranking algorithms
could be used; for example, if searching for drug candidates,
Lipinski’s rule of five55 could be employed, prioritizing com-
pounds over a given molecular mass, calculated partition coeffi-
cient, and/or number of hydrogen bond donors and acceptors. In
a similar way, text mining techniques could be used to retrieve
associations of a given compound with clinical data or pharma-
ceutical studies from literature. One could also prioritize the
potential compounds’ chemical novelty in order to most

effectively leverage the biosynthesis platform to manufacture
molecules that cannot be synthesized chemically. Additional
information could be integrated into our workflow as well; for
example, transcriptomics data could be used to analyze a PNP
biosynthetic pathway with enzymes missing for one or more
steps. BNICE.ch could determine which enzyme classes are likely
to perform the missing steps, then BridgIT could rank all
enzymes that are co-expressed with known pathway enzymes to
determine which candidates should be investigated by virus-
induced gene silencing (VIGS) or functional assays.

The top two compounds in our ranking that are one biosyn-
thetic step from a noscapine pathway intermediate were berberine
and (S)-tetrahydropalmatine. The heterologous biosynthesis of
berberine has been previously reported56; however, the final
reaction in its biosynthesis in this strain occurs spontaneously, as
the enzyme thought to carry out its biosynthesis in plants appears
to be inactive in S. cerevisiae, as is a related enzyme57. We

Fig. 4 Pathway expansion to produce three additional derivatives de novo. a Portion of noscapine biosynthetic pathway from (S)-N-methylcoclaurine to
(S)-scoulerine with potential additional enzymatic steps to produce three derivatives: (S)-armepavine, (S)-laudanine, and (S)-nandinine. For steps
upstream of (S)-N-methylcoclauine, downstream of (S)-scoulerine, or the structure of the omitted intermediate ((S)-3′-hydroxy-N-methylcoclaurine), see
Fig. 3a. De novo production of the three derivatives are shown in panels b ((S)-armepavine production), c ((S)-laudanine production), and d ((S)-nandinine
production). The y-axes of each graph in panels b–d show the integrated area of the peak measured by LC-MS/MS multiple reaction monitoring (MRM) at
the quantifier transition indicated for each compound (see Supplementary Table 7 for additional details). For each derivative, all genes necessary for
biosynthesis of the substrate are integrated into the genome of the parent strain (CSY1322 for (S)-armepavine production; CSY1171 for (S)-laudanine
production; CSY1320 for (S)-nandinine production), while the genes encoding the enzymes predicted by BridgIT (shown on the x-axes of the graphs in
panels b–d) are expressed from a high-copy plasmid. Strains were cultured in selective media (YNB-Ura) with 2% dextrose, 2 mM L-DOPA, and 10mM
ascorbic acid at 25 °C for 96 h before LC-MS/MS analysis of the growth media. Data are presented as mean values ± the standard deviation of three
biologically independent samples. Asterisks represent Student’s two-tailed t-test: *p < 0.05, **p < 0.01, ***p < 0.001. Exact p-values are given in
Supplementary Table 8. Source data underlying Fig. 4b–d are provided as a Source Data file.
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therefore chose to focus our efforts on (S)-tetrahydropalmatine,
as numerous methyltransferases have been reported to be active
in S. cerevisiae, thus decreasing the likelihood that we would
encounter false negatives due to lack of expression or proper
folding. We recently reported the de novo heterologous bio-
synthesis of (S)-tetrahydropalmatine in S. cerevisiae via an engi-
neered variant of TfS9OMT, a homologue of PsS9OMT from
Thalictrum flavum58. In particular, the biosynthesis of (S)-tetra-
hydropalmatine was observed with one of two native isoforms of
TfS9OMT tested at a level of 0.7 µg/L, and was then increased
over fivefold via structure-guided engineering, ultimately yielding
a titer of 3.60 µg/L. In contrast, using BridgIT we identified a
scoulerine 9-O-methyltransferase (PsS9OMT) and a columba-
mine O-methyltransferase (CjColOMT) that both perform this
transformation, and their expression together in Saccharomyces
cerevisiae led to a titer of 3.45 µg/L using only native, non-
engineered enzymes, nearly matching the titer reported with the
best engineered TfS9OMT variant. Replacement or supple-
mentation of PsS9OMT with the engineered TfS9OMT variant
could increase our titer of (S)-tetrahydropalmatine, or active-site
mutagenesis, as was performed for TfS9OMT, could enhance the
activity of PsS9OMT or CjColOMT.

The ability of CjColOMT and PsS9OMT to methylate (S)-
tetrahydrocolumbamine may seem unsurprising, as the native
substrates of both enzymes are chemically similar to (S)-tetra-
hydrocolumbamine (Fig. 3a). In fact, both of these enzymes have
been reported to have promiscuous activity toward (S)-tetra-
hydrocolumbamine in vitro59; however, these non-native activ-
ities were not available in our reference database (KEGG). While
KEGG includes an entry on the conversion of (S)-tetra-
hydrocolumbamine to (S)-tetrahydropalmatine, this is an orphan
reaction with no gene or protein sequence associated with it.
Recent studies have indicated that 40–50% of all reactions cata-
logued in KEGG are orphan reactions60,61. In some of these cases,
non-native activity data may be available, but is buried in lit-
erature and not readily accessible via existing databases, and thus
might be overlooked by or unavailable to researchers. In such
cases, our computational workflow can provide predictions to
guide researchers to enzyme candidates to investigate further,
both experimentally and in the existing literature. Furthermore,
in cases where the desired non-native enzyme activities have not
been reported, our workflow has demonstrated the capability to
infer likely off-target activity from only native enzyme data.

The biosyntheses of three additional derivatives—(S)-armepa-
vine, (S)-laudanine, and (S)-nandinine—demonstrated the gen-
erality of our workflow and also highlighted interesting details of
some of the evaluated enzymes. CjColOMT, one of the enzymes
predicted by BridgIT (and verified experimentally) to convert (S)-
tetrahydrocolumabine to (S)-tetrahydropalmatine (vide supra)
also converted (S)-N-methylcoclaurine to (S)-armepavine
(Fig. 4b) and (S)-reticuline to (S)-laudanine (Fig. 4c), indicating
that this enzyme is able to accept and functionalize a range of BIA
substrates. Furthermore, CjColOMT also accepted (S)-scoulerine
as a substrate, methylating both open hydroxyl groups on
opposite ends of the substrate (Supplementary Fig. 2). Despite the
chemical similarity of (S)-N-methylcoclaurine and (S)-reticuline,
strikingly different activities were observed with the other can-
didate methyltransferases tested: N6OMT from C. japonica
(CjN6OMT) was found to accept (S)-N-methylcoclaurine as a
substrate, producing (S)-armepavine, but demonstrated no such
activity on (S)-reticuline to produce (S)-laudanine, while
HNC4’OMT from P. somniferum (PsHNC4’OMT) showed the
exact opposite activities. For (S)-nandinine biosynthesis, both
CYP719A3 from E. californica (EcCYP719A3) and CYP719A21
from P. somniferum (PsCYP719A21) accepted (S)-scoulerine as a
substrate to produce (S)-nandinine (Fig. 4d), though with very

different activities; the activity of EcCYP719A3 is over 100-fold
higher than that of PsCYP719A21. As was the case for the
activities of CjColOMT and PsS9OMT on (S)-tetra-
hydrocolumbamine, EcCYP719A362 has been previously shown
to accept (S)-scoulerine as a substrate in vitro. Conversely, the
CYP719A13 from Argemone mexicana (AmCYP719A1363) was
also shown to accept (S)-scoulerine as a substrate in vitro, while
we saw no such activity in vivo, and PsCYP719A2164 was
reported to not accept (S)-scoulerine as a substrate in vitro, while
we did see activity in vivo. Taken together, these results indicate
differences in activity seen for these enzymes under different
reaction conditions, whether in vitro or in vivo, and the value of
having a rapid in silico determination of top enzyme candidates
for experimental validation.

This work serves as a proof-of-concept that our computational
workflow can use a heterologous biosynthetic pathway to identify
a series of potential products and the enzymes required to make
those products, thus generating a starting point for subsequent
optimization. Protein engineering can then be employed to sub-
stantially increase the activity of the integrated enzyme, as has
been demonstrated for many classes of enzymes in the past65–67.
Recent years have seen a dramatic increase in the complexity of
biosynthetic pathways expressed in heterologous hosts4, as well as
in the efficiency with which these pathways have been recon-
structed, spurred by advances in DNA synthesis, sequencing,
analytical techniques, and methods for genetic engineering. As
increasing numbers of heterologous biosynthetic pathways
become available to the research community, as they have for
such diverse compound classes as noscapinoids5, opioids68,
flavonoids69,70, cannabinoids71, and carotenoids72, computational
tools to leverage these pathways for the production of additional
products of interest will become increasingly useful. As the
number of reported enzymes and compounds also increases,
reflected by the continuous growth of biochemical databases like
KEGG, we anticipate that computational tools will play a vital
role in leveraging this vast amount of data to drive engineering
efforts toward the bioproduction of valuable chemicals and
pharmaceuticals.

Methods
Computational exploration of the biochemistry surrounding the noscapine
pathway. The computational workflow consists of three steps: (i) expansion of a
biochemical reaction network around the original pathway, (ii) popularity assess-
ment of compounds via annotation and ranking, and (iii) feasibility assessment via
reaction annotation, pathway assembly, and pathway evaluation. The output of the
computational analysis was directly used for the design of engineered yeast strains.

Expansion of a biochemical network. A hypothetical biochemical network using
BNICE.ch12 was expanded around the input pathway, consisting of 17 metabolites
connected by 17 reactions and catalyzed by a total of 11 generalized reaction rules,
using a collection of 442 bidirectional generalized enzymatic reaction rules. In a
first iteration, the integrated network generation algorithm applies the reaction
rules on the input molecular structures (MDL molfiles), which generates all bio-
chemically possible reactions according to the reaction mechanisms represented in
BNICE.ch. The products of these reactions are stored, and used as input com-
pounds for the next iterations of reaction generation. This iterative process gen-
erates hypothetical biochemical networks around any given set of input molecules.

BNICE.ch distinguishes between known and novel compounds by looking up
the generated molecular structures in different databases: if the compound is part
of any biological, bioactive, or chemical database it is considered as known and
annotated with the corresponding database identifiers. The following databases are
used: the Kyoto Encyclopedia of Genes and Genomes (KEGG)30, SEED31,
HMDB32, MetaCyc33, Brenda73, MetaNetX35, Rhea36, BiGG74, PMN38,
KNApSAcK39 for biological compounds, ChEBI40 and ChEMBL41 for bioactive
compounds, and PubChem42 for chemical compounds. In this workflow, only
known molecular structures are allowed in the network generation. Reactions are
classified as known if they are part of the KEGG reaction database or the noscapine
pathway, and as novel if they are not.

Compound annotation and ranking. We assessed the popularity of the generated
compounds in the second step of the workflow by determining how many times

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22022-5

10 NATURE COMMUNICATIONS |         (2021) 12:1760 | https://doi.org/10.1038/s41467-021-22022-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


each compound appears in scientific publications, and how many patents are
associated with the molecule. The number of publications was derived from
PubChem and PubMed, while the number of patent annotations was extracted
from PubChem. We used the PUG-REST service to retrieve information on
compounds from the PubChem website (https://pubchem.ncbi.nlm.nih.gov/)75 on
the number of associated patents and citations. We also used the Entrez Pro-
gramming Utilities (E-utilities) API service to search the PubMed database for
citations by compound name76. We only kept compounds with at least one
annotation as potential targets for biosynthesis.

Reaction annotation and pathway ranking. To determine if the potential targets
for biosynthesis have valid bioproduction pathways, we listed all possible pathways
connecting any noscapine pathway intermediate to the potential target within a
maximum of four reaction steps. The pathway search algorithm NICEpath was
employed to extract linear pathways from the network of reactant-product pairs77.
The maximal number of reaction steps allowed in a pathway was set to 4, and all
possible pathways connecting the noscapine pathway intermediate to the target
compound were extracted. Reaction directionalities producing molecular oxygen
and reverse decarboxylations were excluded from the pathway search because of
their high energy demand. Also, demethylation reactions producing S-adeno-
sylmethionine from S-adenosylhomocysteine were not allowed (other demethyla-
tion transformations were allowed).

To find enzymes for the predicted reactions in each pathway, we used the
enzyme prediction tool BridgIT23. BridgIT calculates a similarity score between the
novel reaction and reactions from a reference database of known, enzyme-
annotated reactions (KEGG reaction database, downloaded in February 2018) by
comparing the molecular fingerprints on and around the reactive sites of the
participating reactants. The similarity between fingerprints is expressed as a score
ranging from zero (no similarity) to one (the two reactions are identical up to seven
atoms around the reactive site). A BridgIT score above 0.3 is considered as
significant. For each reaction in the pathways, we performed BridgIT and we
collected all the reactions from the reference database that had a score of 0.3 or
higher. From the top score of each reaction in the pathway, we calculated the
average to provide an overall metric for the enzymatic feasibility of the pathway.
The pathways are available online including the top five enzymes predicted by
BridgIT and associated similarity scores.

Validation of predicted BIA network on known biosynthesis pathways. To
validate the biochemical relevance of the BNICE.ch network prediction, we col-
lected all known secondary metabolites and their biosynthetic pathways around
noscapine pathway intermediates. The test metabolites had to fulfill the following
criteria: (i) The compound is 4-reaction steps away from an intermediate, or it is
the endpoint of the biosynthesis pathway. (ii) The compound fits the definition of a
simple BIA (single BIA unit of at least 16 carbon atoms, 13 hydrogen atoms, and 1
nitrogen atom). (iii) The compound is not a stereoisomer of a noscapine pathway
intermediate, since BNICE.ch does not consider stereochemistry. We found seven
compounds in the KEGG map ‘Isoquinoline alkaloid biosynthesis’ that matched
the criteria, and another eight compounds in the MetaCyc Pathways Class ‘Iso-
quinoline and Benzylisoquinoline Alkaloid Biosynthesis’. For each of the 13
compounds in the unified list we determined whether or not its biosynthesis
pathway is present in the predicted BIA network (Supplementary Table 2).

Yeast strain construction. Strains used in this work are listed in Supplementary
Table 6. All strains used are derived from the previously reported strain
CSY117158. Strains were grown nonselectively in yeast-peptone media supple-
mented with 2% w/v dextrose (YPD media), yeast nitrogen base (YNB) defined
media (Becton, Dickinson and Company, BD) supplemented with synthetic
complete amino acid mixture (YNB-SC; Clontech) and 2% w/v dextrose, or on agar
plates made using the aforementioned media. Strains transformed with plasmids
bearing the URA3 auxotrophic selection marker were grown selectively in YNB
media supplemented with 2% w/v dextrose and uracil (YNB-Ura; Clontech) or on
YNB-Ura agar plates.

Yeast genomic modifications were performed using the CRISPRm method78.
Oligonucleotides used in this work (Supplementary Data 6) were synthesized by
the Stanford Protein and Nucleic Acid Facility (Stanford, CA). Biosynthetic genes
used in this study (Supplementary Table 5) were codon optimized using GeneArt
Gene Optimizer software (Thermo Fisher Scientific) either for expression in S.
cerevisiae or E. coli (Supplementary Data 5) and then synthesized as either gBlock
DNA fragments (Integrated DNA Technologies, IDT) or gene fragments (Twist
Bioscience). All biosynthetic genes were synthesized with overhangs on both the 5′
end (5′—TCGACGGATTCTAGAACTAGTGGATCCTATACA—gene—3′) and 3′
end (5′—gene—TAGCCATAAGAATTCAGACACTCGAGAACTCA—3′) for ease
of cloning. CRISPRm plasmids expressing Streptococcus pyogenes Cas9 (SpCas9)
and a single guide RNA (sgRNA) targeting a locus of interest in the yeast genome
were constructed by assembly PCR and Gibson assembly of DNA fragments
encoding SpCas9 (pCS3410), tRNA promoter and HDV ribozyme (pCS3411), a 20-
nt guide RNA sequence (synthesized by the Stanford Protein and Nucleic Acid
Facility), and tracrRNA and terminator (pCS3414)79. For gene insertions,
integration fragments containing the gene(s) of interest flanked by a promoter and

terminator were constructed by PCR amplification such that they possessed 40 bp
overhangs on either end with homology to the yeast genome surrounding the site
targeted by the guide RNA sequence. Approximately 300 ng of each integration
fragment was co-transformed with 300 ng of the CRISPRm plasmid expressing the
sgRNA targeting the desired genomic site. Positive integrants were identified by
yeast colony PCR, DNA sequencing (Quintara Biosciences; South San Francisco,
CA), and/or functional screening by LC-MS.

Plasmid construction. Plasmids used in this study (Supplementary Data 7) were
constructed through Gibson assembly. Gibson assembly was performed by
amplifying both the gene of interest and the destination plasmid (pCS95268 or
pET28) with 40 bp homologous overhangs. PCR amplifications were performed
using Q5 DNA polymerase (NEB) and linear DNA fragments were purified using
the DNA Clean and Concentrator-5 kit (Zymo Research). Assembled plasmids
were propagated in chemically competent E. coli (TOP10; Thermo Fisher Scien-
tific) using heat-shock transformation and selection on Luria-Bertani (LB)-agar
plates with carbenicillin (100 μg/mL; for pCS952 derived plasmids) or kanamycin
(50 μg/mL; for pET28 derived plasmids). Plasmid DNA was isolated by alkaline
lysis from overnight E. coli cultures grown at 37 °C and 250 rpm in selective LB
media using Econospin columns (Epoch Life Science) according to the manu-
facturer’s protocol.

Yeast transformations. Yeast strains were chemically transformed using the
Frozen-EZ Yeast Transformation II Kit (Zymo Research). Individual colonies were
inoculated into YPD media and grown overnight at 30 °C and 250 rpm. Saturated
cultures were back-diluted into three new cultures at 1:5, 1:10, and 1:20 dilutions in
YPD media and grown for an additional 5–7 h to reach exponential phase. For each
transformation, 1 mL aliquots from each back-diluted culture were pelleted by
centrifugation at 500 × g for 4 min (successively pelleting aliquots from each dif-
ferent dilution into a single pellet in a 1.5 mL microcentrifuge tube) and then
washed twice by resuspending the pellet in 1 mL of 50 mM Tris-HCl buffer, pH 8.5.
Washed pellets were resuspended in 50 μL of EZ2 solution per transformation and
mixed with 100–600 ng of total DNA and 500 μL of the EZ3 solution. The yeast
suspensions were incubated at 30 °C with gentle inversion for one hour. For
plasmid transformations, the transformed yeast was directly plated onto YNB-Ura
agar plates. For Cas9-mediated gene integrations, the yeast suspensions in the
EZ3 solution were first mixed with 1 mL YPD media, pelleted by centrifugation at
500 × g for 4 min, and then resuspended in 250 μL of fresh YPD media. The sus-
pensions were incubated at 30 °C with gentle inversion for an additional 90 min to
allow production of G418 resistance proteins and then spread onto YPD plates
containing 400 mg/L G418 sulfate. For all transformations, plates were incubated at
30 °C for 72 h before being used to inoculate cultures for metabolite assays.

Growth conditions for metabolite assays. Metabolite production tests were
performed in YNB-SC or YNB-Ura media with at least three replicates. Yeast
colonies were inoculated into 300 μL of media and grown in 2 mL deep-well 96-
well plates covered with AeraSeal gas-permeable film (Excel Scientific). Cultures
were then grown for 72–120 h at 25 °C or 30 °C (exact duration and temperature
are specified in each figure), 460 rpm, and 80% relative humidity in a Lab-Therm
LX-T shaker (Adolf Kuhner).

Analysis of metabolite production. Cultures were pelleted by centrifugation at
3500 × g for 5 min at 4 °C and 100 μL aliquots of the supernatant were removed for
direct analysis. Metabolite production was analyzed by LC-MS/MS using an Agi-
lent 1260 Infinity Binary HPLC and an Agilent 6420 Triple Quadrupole mass
spectrometer. Chromatography was performed using a Zorbax EclipsePlus C18
column (2.1 × 50 mm, 1.8 μm; Agilent Technologies) with water with 0.1% v/v
formic acid as solvent A and acetonitrile with 0.1% v/v formic acid as solvent B.
The column was operated with a constant flow rate of 0.4 mL/min at 40 °C and a
sample injection volume of 5 μL. Compound separation for the detection of (S)-
tetrahydropalmatine, (S)-laudanine, or (S)-nandinine was performed using the
following gradient: 0.00–0.10 min, 10% B; 0.10–5.00 min, 10–40% B; 5.00–5.50 min,
40% B; 5.50–6.00 min, 40–98% B; 6.00–10.00 min, 98% B; 10.00–10.01 min,
98–10% B; 10.01–13.00 min, equilibration with 10% B. Compound separation for
the detection of (S)-armepavine was performed using the following gradient:
0.00–0.20 min, 10% B; 0.20–10.00 min, 10-14% B; 10.00–11.00 min, 14–90% B;
11.00–12.00 min, 90% B; 12.00–12.20 min, 90-10% B; 12.20–12.70 min, equilibra-
tion with 10% B. The LC eluent was directed to the MS from 1–10 min operating
with electrospray ionization (ESI) in positive mode, source gas temperature 350 °C,
gas flow rate 11 L/min and nebulizer pressure 40 psi. Metabolites were quantified
by integrated peak area in MassHunter Workstation software (Agilent) based on
the multiple reaction monitoring (MRM) parameters in Supplementary Table 7.
Integrated peak areas were converted to titers by comparison to standard curves
prepared using a commercial standard of (S)-tetrahydropalmatine (Toronto
Research Chemicals). Primary MRM transitions for (S)-tetrahydropalmatine were
identified by analysis of a 0.1 mM standard in methanol using the MassHunter
Optimizer software package (Agilent); all other MRM transitions used were pre-
viously reported and are described in Supplementary Table 7.
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Enzyme expression and purification. Plasmids containing the gene of interest in a
pET28 expression vector (see Supplementary Data 7 for a full list of plasmids used
in this study) were used to transform E. coli BL21(DE3) (Invitrogen) competent
cells containing the pGro7 chaperone expression plasmid (Takara) via heat shock.
Briefly, 1 ng of plasmid DNA was added to a 50 µL aliquot of competent cells, the
tube was chilled on ice for 15 minutes, placed in a 42 °C water bath for 35 seconds,
then returned to ice for 2 min. Seven hundred fifty µL of SOC media were then
added and the tube was rotated at 37 °C for 45 min before being plated on an LB
agar plate containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol. A
single colony was then picked and used to inoculate a primary culture of 5 mL of
LB media containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol which
was then grown for 24 h. Five hundred microliter of this primary culture were then
used to inoculate a secondary or expression culture of 50 mL of TB medium
containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol (for all proteins
except PsS9OMT) or 500 mL of LB medium containing 50 µg/mL kanamycin (for
PsS9OMT). This expression culture was grown to an OD600 of 0.6–1.0 and then
induced with IPTG (for O-methyltransferase induction, GoldBio) and L-arabinose
(for groES/groEL induction, Fischer Scientific) at final concentrations of 0.1 mM
and 2mg/mL, respectively, for all proteins except PsS9OMT, which was induced
with only IPTG to a final concentration of 1 mM. The expression culture was then
grown at 30 °C (for all proteins except PsS9OMT) or 16 °C (for PsS9OMT) for 20 h
at 250 rpm, after which, the culture was harvested by centrifugation (10 minutes at
3500 × g in a 50 mL Falcon tube) and stored at −20 °C until lysis and purification.

Frozen pellets were then thawed and resuspended in 25 mL of Ni-nitrilotriacetic
(Ni-NTA) equilibration buffer (50 mM sodium phosphate, 300 mM NaCl, 10 mM
imidazole, pH 7.4) and lysed by sonication while kept on ice (Branson Sonifier 450,
0.5” horn, 50% duty cycle, 4 ×1 min with 2 min rests). Lysed cultures were then
clarified by centrifugation (45 min at 35,000 × g at 4 °C) and the clarified lysate was
purified by Ni-NTA affinity chromatography. Briefly, 1 mL of Ni-NTA resin
(Fisher Scientific) was equilibrated with at least 5 volumes of Ni-NTA equilibration
buffer (described above) and then loaded with the clarified lysate. The loaded resin
was then washed with at least 5 volumes of Ni-NTA wash buffer (50 mM sodium
phosphate, 300 mM NaCl, 50 mM imidazole, pH 7.4) and then the bound protein
was eluted with 5 volumes of Ni-NTA elution buffer (50 mM sodium phosphate,
300 mM NaCl, 250 mM imidazole, pH 7.4). The eluted fractions were then
combined and concentrated using an Amicon® 30 kDa cutoff spin filter (EMD
Millipore) at 5000 × g at 4 °C. Concentrated protein fractions were then exchanged
into storage buffer (50 mM potassium phosphate, 100 mM NaCl, 10% glycerol,
pH 7.5), split into separate aliquots, and stored at −20 °C until use.

In vitro bioconversions. Analytical reactions were carried out at the 50 µL scale in
triplicate. To a 1.5 mL Eppendorf tube were added 5 nmol substrate (final con-
centration of 100 µM; (S)-norcoclaurine and (S)-scoulerine purchased from
Toronto Research Chemicals; norlaudanosoline purchased from Santa Cruz Bio-
technology), 1 µmol sodium ascorbate (final concentration of 25 mM), 5 nmol
S-adenosylmethionine (SAM, final concentration of 100 µM; purchased from
Sigma-Aldrich), and 150 pmol purified methyltransferase enzyme (3 µM final
concentration) in 50 mM potassium phosphate, pH 8.0. The reactions were shaken
at 600 rpm at 37 °C for 2 h before being quenched with an equal volume of
methanol, spun down at 20,000 × g for 10 min, and filtered prior to LC-MS analysis
(see ‘Analysis of metabolite production’ section above for details on LC-MS ana-
lysis conditions).

Metabolite purification. The large scale in vitro (S)-scoulerine conversion reaction
was carried out on the 20 mg scale at a final reaction volume of 610 mL in a 2 L
Erlenmeyer flask. To this flask were added 20 mg (61 µM) of (S)-scoulerine
(final concentration of 100 µM), 15 mmol sodium ascorbate (final concentration
of 25 mM), 61 µM SAM (final concentration of 100 µM), and 73 nmol of purified
TfS9OMT DS M111A58 (final concentration of 0.12 µM) in 50 mM potassium
phosphate, pH 8.0. The reaction was incubated at 37 °C at 250 rpm. The reaction
was ultimately run for 15 h, but was monitored to ensure conversion had stopped
by analytical LC-MS. To do so, 50 µL aliquots were pulled periodically, quenched
with an equal volume of MeOH, spun down at 20,000 × g for 10 min, and filtered
prior to LC-MS analysis (see ‘Analysis of metabolite production’ section above for
details on LC-MS analysis conditions).

Once the reaction was complete, 30 g of Amberlite XAD4 resin were added
and the flask was shaken overnight at 30 °C at 250 rpm. The Amberlite XAD4
resin was transferred to 50 mL Falcon tubes, the supernatant was decanted off,
and 50 mL total MeOH were then added to the four tubes containing resin. The
resin in MeOH was then vortexed for 10 minutes, after which it had turned
yellow. The MeOH was then pipetted into a 500 mL round-bottomed flask and
was concentrated by rotary evaporation to ~2 mL, which was then pipetted into
4 tared 1.5 mL Eppendorf tubes and concentrated to dryness overnight on a
speedvac. Approximately 400 mg of crude material were obtained from this
process, which were then resuspended in H2O to a final concentration of
100 mg crude material/mL. This material was then purified by preparative LC
(Agilent 1200 Series LC) with a Varian Pursuit XRs C18 250 × 10 mm column,
5 µm particle size (solvent A=H2O with 0.1% FA, solvent B= ACN with 0.1%
FA). The following LC method was used: 0–4.0 min, 20% B, 2.0 mL/minute;
4.0–12.0 min, 20–100% B, 2.0 mL/min; 12–20 min, 100% B, 2.0 mL/min;

4 minute postrun. Fractions were analyzed by LC-MS to determine, which
contained the desired products (see ‘Analysis of metabolite production’ section
above for details on LC-MS analysis conditions). Fractions containing the
desired product were concentrated and re-purified by preparative LC until the
desired purity was obtained.

Software. MarvinView was used for displaying chemical structures. Marvin 6.2.2,
ChemAxon (http://www.chemaxon.com). The graph visualization tool Gephi was
used to visualize metabolic networks80.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. All unique biological materials generated in this study
are available from the authors upon reasonable request. Additional source data beyond
those presented in this paper and the Supplementary Information files are available from
the corresponding authors upon request. The pathway visualization platform is available
at https://lcsb-databases.epfl.ch/pathways/GraphList upon request. Source data are
provided with this paper.

Code availability
A publicly accessible version of the BNICE.ch framework including user instructions can
be found at https://lcsb-databases.epfl.ch/Atlas2. The platform is freely available to
academia upon request. BridgIT is available as an online tool at https://lcsb-databases.
epfl.ch/Bridgit.
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