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a b s t r a c t 

Optimal economic evaluation is pivotal in prioritising the implementation of non-pharmaceutical and 

pharmaceutical interventions in the control of diseases. Governments, decision-makers and policy-makers 

broadly need information about the effectiveness of a control intervention concerning its cost-benefit to 

evaluate whether a control intervention offers the best value for money. The outbreak of COVID-19 in De- 

cember 2019, and the eventual spread to other parts of the world, have pushed governments and health 

authorities to take drastic socioeconomic, sociocultural and sociopolitical measures to curb the spread 

of the virus, SARS-CoV-2. To help policy-makers, health authorities and governments, we propose a Sus- 

ceptible, Exposed, Asymptomatic, Quarantined asymptomatic, Severely infected, Hospitalized, Recovered, 

Recovered asymptomatic, Deceased, and Protective susceptible (individuals who observe health proto- 

cols) compartmental structure to describe the dynamics of COVID-19. We fit the model to real data from 

Ghana and Egypt to estimate model parameters using standard incidence rate. Projections for disease 

control and sensitivity analysis are presented using MATLAB. We noticed that multiple peaks (waves) of 

COVID-19 for Ghana and Egypt can be prevented if stringent health protocols are implemented for a long 

time and/or the reluctant behaviour on the use of protective equipment by individuals are minimized. 

The sensitivity analysis suggests that: the rate of diagnoses and testing, the rate of quarantine through 

doubling enhanced contact tracing, adhering to physical distancing, adhering to wearing of nose masks, 

sanitizing-washing hands, media education remains the most effective measures in reducing the control 

reproduction number R c , to less than unity in the absence of vaccines and therapeutic drugs in Ghana 

and Egypt. Optimal control and cost-effectiveness analysis are rigorously studied. The main finding is that 

having two controls (transmission reduction and case isolation) is better than having one control, but is 

economically expensive. In case only one control is affordable, then transmission reduction is better than 

case isolation. Hopefully, the results of this research should help policy-makers when dealing with mul- 

tiple waves of COVID-19. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronaviruses are one of a group of RNA viruses that infect an- 

mals and humans, primarily the upper respiratory and gastroin- 

estinal tract, which has recently caused a major illness in hu- 

ans [1] . In 2002 there emerged the Severe Acute Respiratory Syn- 

rome (SARS) in Southern China, causing about 8,098 infections, 

nd 774 deaths in almost 17 countries [2] . Also, there emerged 

iddle East Respiratory Syndrome (MERS) in 2012, with 536 Labo- 
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Fig. 1. Confirmed statistics of cumulative and daily cases in Egypt and Ghana as at November 10, 2020. 
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atory confirmed cases and 145 deaths [3] . In late December 2019, 

 new coronavirus emerged, causing pneumonia in people, and 

ave been named COVID-19 (caused by novel SARS-CoV-2 coron- 

virus) [1] . The outbreak of the COVID-19 has raised a lot of health

nd economic concerns for health authorities and governments in 

he world. 

The preventive measures that were used for other coronaviruses 

SARS and MERS) are being used to reduce the spreading rate of 

he COVID-19. Other novel measures are also being used, such as 

ravel restrictions, stay at home, and lockdowns [1,4] . The World 

ealth Organization (WHO) has recommended the following pre- 

entive measures to reduce the general risk of acute respiratory 

nfections while travelling, or migrating from affected areas: (i) 

voiding close contact with people suffering from acute respiratory 

nfections, (ii) frequent hand washing, (iii) avoiding farm and wild 

nimals, (iv) wearing of face-mask, (v) avoiding crowded places, 

vi) staying at home except in order to attend to necessities and 

vii) self-isolation, even with minor symptoms, and so on [1,5,6] . 

In Africa, the first case was reported on February 14, 2020, in 

gypt [7,8] . The first case of COVID-19 in Ghana was recorded on 

arch 12, 2020 [9] . Fig. 1 (a) and 1 (b) shows the cumulative and

aily trajectories of COVID-19 for Egypt and Ghana after the first 

ecorded cases to November 10, 2020. 

In the light of studying the dynamics of COVID-19, El-Ghitany 

10] studied, a short-term forecast scenario for the COVID-19 epi- 

emic and allocated hospital readiness in Egypt and concluded that 

ases are expected to continue on the rise and expected to start 

o decline late in May 2020. Frost et al. [11] proposed a SECIR 

odel to study the disease in Africa and showed the relative im- 

ortance of lockdown measures (social distancing interventions). 

hao et al. [12] , studied an adjusted SEIR model to predict the 

OVID-19 spread in South Africa, Egypt, Algeria, Nigeria, Senegal, 

nd Kenya. Asamoah et al. [13] , proposed a compartmental model 

o study the effects of immigration on the spread of COVID-19. Sun 

t al. [14] studied a SEIQR model to predict the transmission dy- 

amics of COVID-19 in Wuhan, China with the effects of lockdown 

nd medical resources. They found out that, lockdowns result in 

ewer infected people in Wuhan, leading to a lower infection rate 

n other cities in China. During the spikes of new cases after the 

rst recorded cases in Ghana and Egypt, the aforementioned coun- 

ries implemented similar control measures to curb the spread of 
2 
he COVID-19, such measures included: (i) Protecting susceptible 

ndividuals, thus through lockdown directives and safety health 

rotocols of the use of nose masks, proper hand-washing and 

hysical distancing, the use of other PPEs, personal hygiene, physi- 

al distancing, etc, (ii) Quarantine of asymptomatic individuals due 

o contact tracing, (iii) Testing and diagnosing of symptomatic in- 

ividuals, (iv) Hospitalization (isolations) policy. But, to the best 

f our knowledge, these control measures received limited math- 

matical and economic evaluation attention in the previous math- 

matical studies. Hence, we propose a new mathematical model 

nvolving a system of ordinary differential equations to study the 

ransmission dynamics of the COVID-19 pandemic using real data 

ithin the time window March 12, 2020, to October 31, 2020, for 

hana; and February 12, 2020, to October 31, 2020, for Egypt, to 

omplement the already existing models on estimating the con- 

rol reproduction numbers for the pandemic within the stated time 

indow in some African regions. We also aim to assess the im- 

act of the control measures used in these countries using sen- 

itivity and optimal control analysis. We hope that this study pro- 

ides some insight on how to minimize cost and also increase non- 

harmaceutical control measures to prevent the COVID-19 in the 

ase of a second wave or multiple waves. 

The rest of the paper is organized as follows: In Section 2 the 

odel under consideration is formulated, and control reproduction 

umber R c , is obtained. In Section 3 , the parameter estimation 

nd some numerical simulations of confirmed cases in Ghana and 

gypt are presented. Section 4 contains the sensitivity analysis for 

he aforementioned countries. The domain of Section 5 contains 

he optimal control formulation, approaches, economic and effec- 

iveness evolution, and lastly, in Section 7 , we give concluding re- 

arks. 

. Model formulation 

In this model, we extend the generalized SEIR epidemic model 

o a SEAQI s HRR A DS p model. We assumed that births and natu- 

al death have no impact on the dynamics due to the relatively 

ast spread of COVID-19 and the short period considered in this 

tudy. The model focuses on two distinct groups of Susceptible in- 

ividuals: S, the most susceptible individuals who do not adhere 

o lockdown directives and safety health protocols of the use of 
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Fig. 2. Prototypical patterns of the model formulation. 

Fig. 3. An epidemic model without birth/deaths, the disease always dies out, irrespective of Theorem 2.1 and Theorem 2.2 . 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ose masks, proper hand-washing and physical distancing at time 

, and S p , the less susceptible individuals who partially or obey the 

overnment policy of lockdown, adhere to the safety health proto- 

ols (facemasks, PPE, hygiene, physical distancing, etc, i.e. all non- 

harmaceutical interventions) at time t . The rest of the popula- 

ion is compartmentalized as follows: E are the exposed individu- 

ls at time t, A are the asymptomatic (and/or mildly symptomatic) 

ndividuals at time t, I s are the severely symptomatic and infec- 

ious individuals at time t, Q are the quarantined asymptomatic 

ndividuals (i.e. travellers from epidemic countries and traced resi- 

ent contacts of infected persons), H are the reported hospitalized 

nd/or isolated individuals, R are the reported recovered individ- 

als, D records the individuals who have unfortunately lost their 

ives due to COVID-19, R A are the asymptomatic individuals who 

ecover but are not reported. Fig. 2 shows the epidemiological dy- 

amics of the proposed model. 

The transmission rate due to effective contact of S with 

, A, I s , H is denoted as λ = β (η0 E+ η1 A + I s + η2 H) S 
N−Q−D . Also, let λ1 = 

1 − β1 ) β
(η0 E+ η1 A + I s + η2 H) S P 

N−Q−D be the reduced transmission rate of in- 

ection of S p due to effective contact with E, A, I s , H, where pa-

ameters ηi , i = 0 , 1 , 2 , 0 ≤ ηi < 1 are the relative COVID-19 trans-

issibility of E, A, and H respectively. The parameter, β is the 

ransmission rate from the infectious classes to the Susceptible 

lass (S and S p ). Due to fact that new cases continue to be reported

ven after the lockdowns and use of other safety health protocols, 

e assume that the S p class can get infected, albeit at a reduced 

ate of (1 − β1 ) with 0 ≤ β1 < 1 . 

The parameters r and κ are COVID-19 recovery rate and 

isease-induced mortality rate for the H class respectively. The 

ther parameters used in Fig. 2 are as fellows, α is the rate of pro-
3 
ection of susceptible individuals, thus, 0 ≤ α < 1 , ω is the rate at 

hich protected susceptible individuals rejoin the main suscepti- 

le class, ρ is the rate of exposure to the asymptomatic class, γ is 

he rate of progression from severely infected to hospitalization, f

s the proportion of individuals who develop severe symptoms, τ
s the rate of quarantine, varied and optimized to fit the existing 

ata [15] , σ is the rate of progression of asymptomatic to severely 

nfected class, also varied to fit the existing data [15] , δ and ν rep- 

esent the rate of hospitalization or confinement to isolation cen- 

re of the quarantined class and severely infected class respectively, 

ith the notion that δ ≥ ν. The rate of natural recovery of mildly 

ymptomatic individuals is denoted by φ, the death rate of COVID- 

9 in the I s class is denoted by d. Based on the above assumptions,

he set of differential equations in (1) describe the dynamics of the 

roposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS 
dt 

= −β ( η0 E+ η1 A + I s + η2 H ) S 
N−Q−D 

− αS + ωS p , 

dE 
dt 

= β ( η0 E+ η1 A + I s + η2 H ) S 
N−Q−D 

+ ( 1 − β1 ) β
( η0 E+ η1 A + I s + η2 H ) S p 

N−Q−D 

−( 1 − f ) ρE − fγ E, 

dA 
dt 

= ( 1 − f ) ρE − τA − σA − φA, 

dQ 
dt 

= τA − νQ, 

dI s 
dt 

= fγ E + σA − ( δ + d ) I s , 
dH 
dt 

= νQ + δI s − rH − κH, 

dR A 

dt 
= φA, 

dR 
dt 

= rH , 

dD 
dt 

= κH, 

dS p 
dt 

= αS − ωS p − ( 1 − β1 ) β
( η0 E+ η1 A + I s + η2 H ) S p 

N−Q−D 
. 

(1) 
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ith initial conditions 

 ( 0 ) = S 0 ≥ 0 , E ( 0 ) = E 0 ≥ 0 , A ( 0 ) = A 0 ≥ 0 , ρ ≥ γ , 

(0) = Q 0 ≥ 0 , I s (0) = I s 0 ≥ 0 , H(0) = H 0 ≥ 0 , 

 ( 0 ) = R 0 ≥ 0 , R 

A ( 0 ) = R 

A 
0 ≥ 0 , D ( 0 ) = D 0 ≥ 0 , S p ( 0 ) = S p 0 ≥ 0 . 

.1. Basic properties 

To carry out the simulations of the model (1) and then assess 

he economic evaluations of the various control interventions, it 

s important to study the fundamental properties of the proposed 

odel [16] . Thus, the feasible region of the model is given as 

N = { ( S, E, A, Q, I s , H, R, D, S p ≤ N(0) ) } . 
hich is positively-invariant; that is the solutions of model 

1) that start in �N stays in �N as time progresses (t > 0) and 

lso “attract all solutions of the model” [16,17] . Therefore, the pro- 

osed model is well-posed mathematically and epidemiologically 

n the feasible region �N [16–18] . 

There is a disease-free equilibrium (DFE) with 

S, E, A, Q, I s , H, R, R A , D, S p ) . To obtain the disease-free equilib-

ium, we set the right-hand side of model (1) to zero. Hence, the 

isease-free equilibrium of model (1) is given by: 

 

0 = (S ∗, E ∗, A 

∗, Q 

∗, I ∗s , H 

∗, R 

∗, R 

A ∗, D 

∗, S ∗p ) 

= 

(
N(0) − S ∗p , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , S ∗p 

)
, 

here, N(0) represent the total initial population, 0 < S ∗ ≤ N(0) , 

 ≤ S ∗p < N(0) , and 0 < S ∗ + S ∗p ≤ N(0) [16] . To calculate the control

eproduction number and the asymptotic stability of the disease- 

ree equilibrium, we used the van den Driessche and Watmough 

19] next-generation method, thus considering the compartments 

E, A, I s , H) , with the assumptions that the total population is en-

irely susceptible. Then, the control reproduction number is ob- 

ained as 

 c = 

((1 − β1 ) β + β) η0 

( fγ + (1 − f ) ρ) ︸ ︷︷ ︸ 
secondary infection seeded by E state 

+ 

((1 − β1 ) β + β) η1 (1 − f ) ρ

( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by A state 

+ 

((1 − β1 ) β + β)[(1 − f ) ρσ + fγ (σ + τ + φ)] 

(d + δ)( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by I state 

+ 

((1 − β1 ) β + β) η2 δ[ fγ (σ + τ + φ) + (1 − f ) ρσ ] 

(d + δ)( fγ + (1 − f ) ρ)(σ + τ + φ)(κ + r) ︸ ︷︷ ︸ 
secondary infection seeded by H state 

. (2) 

uppose one assumes that the total population is not entirely sus- 

eptible then 

 

∗
c = 

((1 − β1 ) βS ∗p + βS ∗) η0 

N 

∗( fγ + (1 − f ) ρ) ︸ ︷︷ ︸ 
secondary infection seeded by E state 

+ 

((1 − β1 ) βS ∗p + βS ∗) η1 (1 − f ) ρ

N 

∗( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by A state 

+ 

((1 − β1 ) βS ∗p + βS ∗)[(1 − f ) ρσ + fγ (σ + τ + φ)] 

N 

∗(d + δ)( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by I state 

+ 

((1 − β1 ) βS ∗p + βS ∗) η2 δ[ fγ (σ + τ + φ) + (1 − f ) ρσ ] 

N 

∗(d + δ)( fγ + (1 − f ) ρ)(σ + τ + φ)(κ + r) ︸ ︷︷ ︸ 
secondary infection seeded by H state 

. 

(3) 
4 
uppose one assumes no transmission in the protective class, S p , 

hen the control reproduction number can be calculated as 

 ec | β1 =1 = 

βS ∗η0 

N 

∗( fγ + (1 − f ) ρ) ︸ ︷︷ ︸ 
secondary infection seeded by E state 

+ 

βS ∗η1 (1 − f ) ρ

N 

∗( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by A state 

+ 

βS ∗[(1 − f ) ρσ + fγ (σ + τ + φ)] 

N 

∗(d + δ)( fγ + (1 − f ) ρ)(σ + τ + φ) ︸ ︷︷ ︸ 
secondary infection seeded by I state 

. (4) 

lease, refer to Appendix A for details on the computation of R c , 

nd R 

∗
c , as given in (2) , and (3) . 

From model (1) , the basic reproduction number R 0 is defined 

s R 0 = R c | τ=0 . The control reproduction number R c , corresponds 

o τ � = 0 , and the effective control reproduction number R ec can 

e defined for model (1) when η2 = 0 , τ � = 0 , α � = 0 , and β1 = 1 .

he basic reproduction number, R 0 , represents the number of sec- 

ndary cases one infected person produces on average through- 

ut its infectious period, in a completely susceptible population 

hen no special control measures are applied [20] . It correlates 

ith the total susceptibility of the considered population (there- 

ore, it may be different for different countries or regions) [20] , 

ut mostly it does not change during the spread of the disease if 

he individuals’ behaviour remains constant towards the disease. 

he control reproduction number, R c , is defined as the number 

f secondary infections one infectious person produces on average 

hroughout its infectious period in the presence of mitigation mea- 

ures. Here the effective control reproduction number R ec is de- 

ned when: the rate of transmission in-hospitals (isolated centres) 

o susceptible individuals is zero, the use of protective equipment 

nd quarantine of susceptible individuals is 100% effective (thus 

1 = 1 ). Therefore we state that, the disease spread slackens when 

 ec (i, t) < R c (i, t) < 1 . [20] . 

heorem 2.1. The disease-free equilibrium (E ∗) of the model (1) is 

ocally-asymptotically stable if R c < 1 . If R c > 1 the epidemic initially 

ises to a point (peak) and then finally downslope to zero, provided 

he implemented controls are effective or when S + S p approaches 

ero. 

heorem 2.2. The disease-free equilibrium (E ∗) of the model (1) is 

lobally-asymptotically stable if R c ≤ 1 . 

The ramification of Theorem 2.1 is that a small inflow of in- 

ectious individuals in the total population will not result in an 

utbreak if R c < 1 [16] . That is the disease will eventually leave

he population (when R c < 1 ) suppose the initial data of the infec-

ious people lies in the catchment area of the disease-free equilib- 

ium [16] . The epidemiological ramification of Theorem 2.2 is that 

he eradication of COVID-19 is not dependent on the initial size 

f the population [16] . Thus, the initial data of the infectious peo- 

le do not have to lie in the catchment area of the disease-free 

quilibrium [16] . Now concerning the model (1) , thus, an epidemic 

odel without birth/deaths, the disease always die out, irrespec- 

ive of Theorem 2.1 and Theorem 2.2 , see Fig. 3 . Hence, we did not

how the mathematical proof of Theorem 2.1 and Theorem 2.2 in 

his work. 

emark 1 

Using the ideas from [16] , we notice the significance of the 

rotective class S p . From the notion of incidence ratio, thus S ∗
N ∗

ives S ∗
N ∗ = 

S ∗
S ∗+ S ∗ = 

N(0) −S ∗p 
N(0) 

= 

[
1 −

(
α
ω 

)]
= 

S ∗
P 

N ∗ ≤ 1 is the proportion 
P 
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Fig. 4. Predictive logistic model fit for COVID-19 reflecting real data from Ghana and Egypt taken from [24] . Red: fast growth phase, yellow: transition to steady-state phase, 

green: ending phase [28] . 

Fig. 5. Number of cases per day. 
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f protective individuals. Hence, replacing S ∗
N ∗ by (1 − α

ω ) shows 

hat the value of R 

∗
c , R ec reduces as the value of α

ω increases, and

 

∗
c , R ec increases as the value of α

ω decreases. Hence, the higher 

he proportion of individuals in the protective susceptible class the 

igher the chance of eliminating the second or multiple wave(s) of 

he disease in Ghana and Egypt. 

. Parameter estimations and Numerical results 

To estimate the basic reproduction number and the associated 

arameter values typically require an indirect method, due to the 

ifficulties in obtaining all parameter values directly from the epi- 

emic data [21] . The most commonly used method is to fit the 

odel to some epidemiological data [21] , which provides the min- 

mized estimates of the needed parameters [22] . Model parame- 

ers can be obtained by the use of least-square fitting. Thus, the 

odel solution is fitted to the epidemic data [22] . Here, we em- 

loy the least square method to the proposed model to obtain the 

est-fit parameters for Ghana and Egypt using the standard inci- 

ence rate. The procedure looks for the set of initial guesses and 

re-estimated parameters � for the model whose solutions best fit 

r pass through all the data points [22,23] , by reducing the sum of

he square difference between the observed data x t and the model 

olution K(t, �) [22] , such that 

 (�) = 

n ∑ 

t=1 

(x t − K(t, �)) 2 . 

he data used was taken from the Center for System Science and 

ngineering at Johns Hopkins University and can be found at [24] . 

he population for Ghana and Egypt were obtained from the worl- 
5 
ometer.info [4] . In literature, it is estimated that, the incubation 

eriod is from 

1 
5 . 2 to 1 

3 [25–27] , so we set the initial guess to 

= γ = 

1 
5 . 2 and σ = 

1 
3 for both countries. Also, from literature the 

roportion of infectious with timely diagnosis is estimated to be 

0.3,0.65) in China [27] . Thus, we set our initial guess to f = 0 . 2 for

oth countries. The initial conditions chosen for R (t) , D (t) , R A (t) ,

nd S p (t) are R (0) = D (0) = R A (0) = S p (0) = 0 , the initial hospital-

zed (and or isolated cases) is taken to be the number of reported 

ases at time t 0 . The number of initial asymptomatic and exposed 

re assumed to be equal to the number of initial confirmed cases 

or both countries. Finally, we assume the initial severely infected 

ndividuals yet to be diagnosed for Ghana to be equal to the num- 

er of reported cases at time t 0 , and that of Egypt to be equal to

he number of confirmed cases at time t 0 . Using the logistic fit, 

e obtained the initial epidemic rate per day as 8 . 754380 × 10 −2 ,

nd 7 . 987195 × 10 −2 for Ghana and Egypt respectively as of May 

, 2020. These values are then used as initial transmission rate 

uesses for the proposed model (1) (see Fig.s 4 (a) and 4 (b) for the

ogistic fit). 

In Fig. 5 , we fitted the proposed COVID-19 model to the epi- 

emic data from March 15, 2020, to May 7, 2020, for Ghana, and 

arch 6, 2020, to May 7, 2020, for Egypt. The red line corresponds 

o compartment H in the model (1) , the red circled corresponds to 

he real data from Johns Hopkins University [24] . The green circled 

nd the line represents the cumulative active cases respectively. 

ig. 5 show that our model relatively fit well to the reported data 

oints. 

In Fig. 6 , we fitted the proposed COVID-19 model to the epi- 

emic data from the onset of the first recorded cases to the end 

f May for both Ghana and Egypt by focusing on the number of 

onfirmed cases. The red line corresponds to compartment H in 
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Fig. 6. Model fitting of COVID-19 data to SEAI s HR A RDS p epidemic model from March 12, 2020 to May 31, 2020 for Ghana, and February 14, 2020 to May 31, 2020 for Egypt. 

Fig. 7. Model fitting of COVID-19 data to SEAI s HR A RDS p epidemic model from July 1, 2020, to October 31, 2020, for Ghana, and Egypt. 
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he model (1) , the red circled corresponds to the real data from 

ohns Hopkins University [24] . Fig. 6 show that our model rela- 

ively fit well to the reported data points when time is increased 

nd backdated. In Fig. 7 , we fitted the proposed COVID-19 model 

o the epidemic data from July 01, 2020, to October 31, 2020, 

or both Ghana and Egypt by focusing on the number of con- 

rmed cases. From Fig. 5 - 7 , we show that our model relatively de-

icts the COVID-19 real data and control measures implemented 

n the aforementioned countries within the period March to Oc- 

ober 2020, for Ghana, and February to October 2020, for Egypt. 

rom these fittings, the parameter estimates are given in Table 1 . 

e obtain the control reproduction number, R c = 1 . 23 for Egypt, 

nd R c = 1 . 02 for Ghana, thus assuming the entire population is 

usceptible. 

In Fig. 8 , we simulated model (1) using the estimated param- 

ters in Table 1 , to depict the populations trajectories. Fig.s 8 (a) 

nd 8 (b) show the projected peaks for both countries, we see that 

hana has only one peak, thus when the reluctant behaviour on 

he use of protective equipment is minimized. Which suggest that 

he second wave of the disease can be stopped if the measures 

sed in curbing the disease are maintained. Alternatively, in Fig. 9 

e show that an increase in the reluctant behaviour on the use 

f protective equipment will lead to a second wave of the COVID- 

9 in Ghana. In Fig. 8 (b) we noticed that there could be a sec-

nd wave of the disease in Egypt, but this can be avoided if strin- 

ent use of protective equipment is implemented for a long time 

r the reluctant behaviour on the use of protective equipment is 

inimized as depicted by the blue line. Fig.s 8 (c) and 8 (d) fore-

ell the projected trajectory of the number of recoveries from the 

isease in Ghana and Egypt, indicating a continuous raise in recov- 

ry in the number of detected and undetected cases respectively, 
n

6 
ith the number of undetected cases over-seeding that of detected 

ases. 

. Sensitivity analysis 

Now, we apply the concept of sensitivity analysis to obtain the 

elative importance of each model parameter in the control re- 

roduction number, R c , for the countries Ghana and Egypt, using 

he fitted values in Table 1 . In the present case, the focus is to

etermine how changes in the model parameters impact the ef- 

ective reproduction number [29] . This is done through the nor- 

alized forward-sensitivity index, Latin hypercube sampling and 

he partial rank correlation coefficients (PRCC) [29] . Mathemati- 

ally, the ability to reduce a disease transmission is directly linked 

o the basic/control reproduction number R C , and the prevalence 

f the disease is linked to the endemic equilibrium point [29,30] . 

hus, knowing the relative importance of the various parameters in 

he basic/control reproduction number helps in determining which 

trategies should be used to combat the spread of the disease. 

Following [29] , the normalized forward sensitivity index of R c 

ith respect to parameter p i is defined as 

R c 
p i 

= 

∂R c 

∂ p i 
× p i 

R c 
. (5) 

Using the parameters values in Table 1 , we obtain the sen- 

itivity indices for the two countries as presented in Table 2 . 

rom Table 2 , it is clear that, the following parameters 

β, β1 , η0 , η1 , η2 , f, γ , ρ, σ ) influence the control reproduction 

umber positively. Thus, a relative increase in these parameters 

ill have a relative index increase in the control reproduction 

umber. Among these parameters, we notice that, the transmission 
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Fig. 8. Model-predicted time series of the number of infected cases and recoveries. 

Fig. 9. Time series forecast plot for Ghana, with an increase in reluctant behaviour on the use of protective equipment. 
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ate β, the relative transmissibility, η1 , of asymptomatic individu- 

ls has the highest impact on R c . 

Fig.s 10 (a) and 10 (b) shows the global sensitivity analysis of the 

arameters in the control reproduction number R c , with a sample 

ize of 2500 runs for both countries. Averagely, we noticed from 

he Tornado plots in Fig.s 10 (a) and 10 (b) that, any positive per-

urbation in the parameters (β, ρ, γ , η0 , η1 , η2 , σ, β1 , f ) will have

 corresponding percentage increase in the severity of the disease 

n both countries. We also noticed from Fig.s 10 (a) and 10 (b) that,

he most influential parameters that affect R c positively are: β, η0 , 

nd (1 − β1 ) . Thus, measures such as the washing of hands, wear- 

ng of an effective nose mask, the use of effective personal protec- 

ive equipment in the hospitals or the isolation centres, and the 

ontinuous advocacy on prevention measures through the media 

nd adhering to social distancing will help reduce the intensity of 

, η0 , and (1 − β1 ) . Furthermore, in Table 2 , it shows that the con-

rol reproduction number, R c , can be reduced through an increase 

n the values of (δ, τ, r, k, d, φ) . But, since k and d represent
7 
eath rates, we cannot use them as a control measure, therefore, 

e can strengthen the remaining four parameters (δ, τ, r, φ) so 

s to reduce the number of infections. Thus, the increase in the 

imely diagnosis of infected individuals, increase in contact trac- 

ng, managing of detected cases and consumption of foods that 

oost the immune system and/or healthy lifestyle practices (such 

s avoiding smoking) will help reduce the severity of the disease. 

From the PCCR plots in Fig. 10 , we notice that, β, η0 , (1 − β1 ) ,

nd ρ are the most influential parameters on R c ; and that, its 

ontrol will reduce the rate of secondary infections. Therefore, in 

ig. 11 (a) and 11 (b), we show the positive impact of health proto-

ols (lockdowns, facemasks, PPE, hygiene, physical distancing, etc, 

.e. all non-pharmaceutical interventions apart from case isolation) 

or both countries. Fig. 11 (a) and 11 (b), depicts that, an increase 

n the effectiveness of protective materials or health protocols will 

educe the number of confirmed cases. 

Fig. 12 (a) and 12 (b), shows the contour plot of the control re- 

roduction number R c , as a function of diagnosis parameter (δ) , 
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Fig. 10. PRCC plots for parameters in R c . 

Fig. 11. Effect of varying the impact of (1 − β1 ) health protocols. 

Fig. 12. The dynamical effect of timely diagnoses and effective quarantine. 
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a

nd effective quarantine of asymptomatic individuals through con- 

act tracing for Ghana and Egypt respectively. This indicates that 

o effectively reduce the control reproduction number to less than 

 unity requires effective non-pharmaceutical interventions such 

s the strict use of nose mask and face shields in public, media 

ducation campaigns on preventive measures, physical distancing, 

nd doubling enhanced contact-tracing. From the PRCC plots in 

ig. 10 , we notice that, β, η0 , (1 − β1 ) , and ρ are the most in-

uential parameters on R c , and that, its control will reduce the 

ate of secondary infections. The estimated proportion of individu- 

ls who become severely infected from the exposed class based on 

he model (1) is estimated to be approximately 2.7% and 5.2% for 
8 
hana and Egypt respectively, which implies that the percentage 

f asymptomatic individuals who get the disease without know- 

ng is approximately 97.30% and 95.80% respectively, this reinforces 

he need for more effective contact tracing and testing in both 

ountries. In Fig. 13 (a) and 14 (a), we show the impact of having

 low transmissivity rate of exposed individuals to the suscepti- 

le individuals, which can be achieved by the washing of hands 

ith soap, cleaning of doorknobs and surfaces, etc. In parameter 

erms, it indicates that, a range of values of (0 . 1 − 0 . 2) for both β
nd η0 will peak the control reproduction number, R c in the range 

0 . 1 − 0 . 88) for Ghana and (0 . 2 − 0 . 95) for Egypt. In Fig.s 13 (b)

nd 14 (b), we show the impact of high values of β and η0 on 
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Fig. 13. Effect of varying the values of the transmission rate, β, and the transmissibility rate of the exposed class, η0 . 

Fig. 14. Effect of varying the values of transmission rate, β, and transmissibility rate of the exposed class, η0 . 
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he proposed model and the computed control reproduction num- 

er, R c . It indicates that any possible combination of the param- 

ter values in Table 1 , together with the following range of val- 

es, [0 . 22 − 1] for β and η0 will produce high control reproduction 

umber. 

. Optimal control model and analysis 

.1. Non-autonomous version of model (1) 

Now, we update the model (1) based on the sensitivity analysis 

esults in Section 4 to study the effects of optimal health protocols- 

ersonal protections (thus, physical distancing, media advocacy, 

earing of a nose mask, the use of hand sanitiser-washing of 

ands, lockdowns, stringent safety measures in hospitals (and/or 

solation centres), with a constant supply of effective personal pro- 

ective equipment (PPE)), testing-diagnoses and contact tracing. 

hus, we seek to determine the optimal trajectories which depict 

he effects of these controls. To determine the optimal trajecto- 

ies strategies, we let u 1 (t) to represent health protocols-personal 

rotections (thus, physical distancing, media advocacy, wearing of 

 nose mask, the use of hand sanitiser-washing of hands, lock- 

owns, stringent safety measures in hospitals (and/or isolation 

entres), with a constant supply of effective personal protective 

quipment (PPE)), while u 2 (t) denotes contact tracing (testing- 

iagnoses). Thus, the two control variables are incorporated into 

he autonomous system (1) such that the disease transmission 

erms in model (1) are reduced by the factor [1 − u 1 (t)] while 

he rate of contact tracing (testing-diagnoses) of asymptomatic in- 

ected individuals for quarantine, τ, is modified as u 2 τ . Hence, the 

ptimal control model corresponding to the adjusted model (1) is 
9 
xpressed by the model (6) as 

dS 
dt 

= −(1 − u 1 ) β
(η0 E+ η1 A + I s + η2 H) S 

N−Q−D 
− αS + ωS p , 

dE 
dt 

= (1 − u 1 ) β
(η0 E+ η1 A + I s + η2 H) S 

N−Q−D 

+(1 − β1 )(1 − u 1 ) β
(η0 E+ η1 A + I s + η2 H) S p 

N−Q−D 
− (1 − f ) ρE − fγ E, 

dA 
dt 

= (1 − f ) ρE − u 2 τA − σA − φA, 
dQ 
dt 

= u 2 τA − νQ, 
dR A 

dt 
= φA, 

dR 
dt 

= rH, 
dI s 
dt 

= fγ E + σA − (δ + d) I s , 
dH 
dt 

= νQ + δI s − rH − κH, 
dD 
dt 

= κH, 
dS p 
dt 

= αS − ωS p − (1 − u 1 ) β
(η0 E+ η1 A + I s + η2 H) S 

N−Q−D 
, 

(6) 

ubject to suitable initial conditions at time t = 0 . 

.2. Objective functional 

Our goal is to minimize the numbers of infected (including 

he exposed, asymptomatic, symptomatic and hospitalized) indi- 

iduals along with the costs of implementing health protocols- 

ersonal protections and contact-tracing (testing-diagnoses) con- 

rols simultaneously. Thus, the mathematical setup of the optimal 

ontrol problem includes the minimization of an objective func- 

ional J given as 

[ u 1 , u 2 ] = 

∫ t k 

0 

[
W 1 E + W 2 A + W 3 I s + W 4 H + 

C 1 u 

2 
1 (t) 

2 

+ 

C 2 u 

2 
2 (t) 

2 

]
dt

(7) 
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Table 2 

Sensitivity signs of R c to the parameters in Eq. (2) . 

Parameter Ghana (sensitivity index) Egypt (sensitivity index) 

β + 1.0000 + 1.0000 

q = (1 − β1 ) + 0.0068 + 0.0179 

η0 + 0.1861 + 0.2067 

η1 + 0.5718 + 0.5552 

η2 + 0.1129 + 0.1077 

γ + 0.1785 + 0.0512 

f + 0.1785 + 0.0512 

ρ -0.3646 -0.2579 

(1 − f ) -0.3646 -0.2579 

σ + 0.0327 + 0.0796 

δ -0.1203 -0.1121 

τ -0.2056 -0.2437 

φ -0.3989 -0.3910 

r -0.0988 -0.0869 

κ -0.0141 -0.0208 

d -0.0092 -0.0142 
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10 
onstrained by the system (6) , where the positive balancing con- 

tants W i > 0 , i = 1 , 2 , 3 , 4 and C 1 , C 2 > 0 are correctly taken. The

oefficients, W 1 > 0 , W 2 > 0 , W 3 > 0 , W 4 > 0 are introduced to keep

he balance of the cost size of reducing the disease transmission, 

 1 and C 2 are the corresponding weights associated with the cost 

f the control measures u 1 and u 2 , with C 1 being the cost associ- 

ted with health protocols-personal protections and C 2 is the cost 

ssociated with contact tracing (testing-diagnoses). The final time 

or the implementation of the two controls is denoted t k . The non- 

inearities with the cost of controls are taken care of by the square 

erms in the objective functional (7) and the half terms normalize 

he cost associated with our chosen controls [31–33] . Further, the 

otal cost ( T C ) for the proposed optimal control is defined as 

 C = 

∫ t k 

0 

1 

2 

2 ∑ 

i =1 

C i u 

2 
i (t ) dt , (8) 

here C 1 , C 2 > 0 , are the hypothetical unit cost of the control in-

erventions. Our interest, in particular, is to seek an optimal control 

 

∗ = (u ∗1 , u 
∗
2 ) such that 

(u 

∗) = min { J(u 1 , u 2 ) : u 1 , u 2 ∈ U } (9) 

here, U is an admissible control set U, which is Lebesgue mea- 

urable and defined as 

 = { (u i )(t) | 0 ≤ u i (t) ≤ u i max (t) ≤ 1 , t ∈ [0 , t k ] , i = 1 , 2 } . (10) 

.3. Existence and characterization of optimal controls 

heorem 5.1. Given an optimal control u ∗ = (u ∗1 , u 
∗
2 ) ∈ U exists for

odel (6) then 

(u 

∗
1 , u 

∗
2 ) = min 

(u 1 ,u 2 ) ∈ U 
J(u 1 , u 2 ) . 

roof. Using the Fleming and Rishel ( [34] , Theorem 4.1, 68-69), 

he existence of the proposed optimal control is an outcome of the 

onvexity of the integrand of J with respect to u 1 , and u 2 , a priori

oundedness of the state variables, and the Lipschitz property of 

he state system with respect to the state variables [35–38] . The 

ompactness required for the existence of control problem is ob- 

ained from the boundedness of the optimal system. Furthermore, 

he term W 1 E + W 2 A + W 3 I s + W 4 H + 

C 1 u 
2 
1 
(t) 

2 + 

C 2 u 
2 
2 
(t) 

2 in Eq. (7) is

onvex on the control set U . Hence, we can now state that there is 

 positive constant η∗ > 1 and nonnegative constants v 1 > 0 , v 2 > 0

uch that 

 ( u 1 , u 2 ) ≥ v 1 
(∣∣u 1 | 2 + 

∣∣u 2 | 2 
) η∗

2 − v 2 , 
his leads to the existence of the optimal control problem 
39,40] . �
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.3.1. Characterization of optimal controls 

Employing the Pontryagin’s maximum principle (PMP), model 

6) and the objective functional (7) is converted into a pointwise 

amiltonian, H, with respect to (u 1 , u 2 ) . Thus, 

 = W 1 E + W 2 A + W 3 I s + W 4 H + 

C 1 u 

2 
1 

2 

+ 

C 2 u 

2 
2 

2 

+ λS 

[
−( 1 − u 1 ) β

( η0 E + η1 A + I s + η2 H ) S 

N − Q − D 

− αS + ωS p 

]

+ λE 

[
( 1 − u 1 ) β

( η0 E + η1 A + I s + η2 H ) S 

N − Q − D 

]

+ λE 

[
( 1 − β1 ) ( 1 − u 1 ) β

( η0 E + η1 A + I s + η2 H ) S p 
N − Q − D 

]
+ λE [ −( 1 − f ) ρE − fγ E ] 

+ λA [ ( 1 − f ) ρE − u 2 τA − σA − φA ] + λQ [ u 2 τA − νQ ] 

+ λI s [ fγ E + σA − ( δ + d ) I s ] 

+ λH [ νQ + δI s − rH − κH ] + λR A [ φA ] + λR [ rH ] + λD [ κH ] 

+ λS p 

[
αS − ωS p − ( 1 − u 1 ) β

( η0 E + η1 A + I s + η2 H ) S 

N − Q − D 

]
, (11) 

here λS , λE , λA , λQ , λI s , λH , λR A , λR , λD , λS p are the adjoint vari-

bles or co-state variables associated with the state variables 

, S p , A, I s , Q, H, D, R A , R . Then, the necessary conditions for the op-

imal control u ∗ = (u ∗1 , u 
∗
2 ) is summarized in Theorem 5.2 . 

heorem 5.2. Given the optimal controls (u 1 , u 2 ) = (u ∗1 , u 
∗
2 ) and cor-

esponding solutions 

S, S p , A, I s , Q, H, R A , R = S �, S �p , A 

�, I �s , Q 

�, H 

�, D 

�R A 
�
, R � of model

6) that minimizes J(u ∗1 , u 
∗
2 ) over U. Then there exists co-state vari-

bles or adjoint variables, λS , λE , λA , λQ , λI s , λH , λR A , λR , λD , λS p that 

atisfies 

dλ j 

dt 
= −∂H 

∂ j 
, (12) 

ith transversality conditions 

j (T ) = 0 , where j = (λS , λE , λA , λQ , λI s , λH , λR A , λR , λD , λS p ) . 

hen the optimality conditions that minimize the Hamiltonian, H, of 

quation (11) with respect to the controls is 

∂H 

∂u i 

= 0 , i = 1 , 2 

n the domain of the control set U. Hence, these controls are charac- 

erized by 

 

∗
1 = min 

{ 

max 

{ 

0 , 

S � β ( I �s + A � η1 + E � η0 + H � η2 ) 
N �−Q �−D �

(
(λE − λS ) + (λE − λS p ) 

)
C 1 

} 

, u 1 max 

}

 

∗
2 = min 

{
max 

{
0 , 

τA �(λA − λQ ) 

C 2 

}
, u 2 max 

}
. (13

he results in (13) indicate that the controls are bounded with lower 

ounds zeros and upper bounds u 1 max = 1 , u 2 max = 1 , such that 

 1 = 

{ 

0 if ( � 

∗) ≤ 0 , 

( �∗) if 0 < ( � 

∗) < u 1 max , 

u 1 max if ( � 

∗) ≥ u 1 max , 

 2 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if 
τA �( λA −λQ ) 

C 2 
≤ 0 , 

τA �( λA −λQ ) 
C 2 

≤ 0 , if 0 < 

τA �( λA −λQ ) 
C 2 

< u 2 max , 

u 2 max if 
τA �( λA −λQ ) 

C 2 
≥ u 2 max , 

here 

 

∗ = 

S � β ( I �s + A � η1 + E � η0 + H � η2 ) 
N �−Q �−D �

(
( λE − λS ) + 

(
λE − λS p 

))
C 

. 

1 

11 
roof. Taking the partial derivatives of the Hamiltonian H, with 

espect to the associated state variable we obtain the following ad- 

oint system, which reflect (12) . 

dλS 

dt 
= λS 

(
α + 

β ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 
D �−N �+ Q �

)
−λS p 

(
α − β ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

D �−N �+ Q �
)

−β λE ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 
D �−N �+ Q � , 

dλE 

dt 
= λE 

(
f γ − ρ ( f − 1 ) − S � β η0 ( u 1 −1 ) 

D �−N �+ Q �
)

+ λE 

(
S �p β η0 ( β1 −1 ) ( u 1 −1 ) 

D �−N �+ Q �
)

−W 1 − f γ λI s + λA ρ ( f − 1 ) + 

S � β η0 λS ( u 1 −1 ) 
D �−N �+ Q �

+ 

S � β η0 λS p ( u 1 −1 ) 

D �−N �+ Q � , 
dλA 

dt 
= λA ( φ + σ + τ u 2 ) − λR A φ − λI s σ − W 2 

−λE 

(
S � β η1 ( u 1 −1 ) 

D �−N �+ Q � − S �p β η1 ( β1 −1 ) ( u 1 −1 ) 

D �−N �+ Q �
)

−λQ τ u 2 + 

S � β η1 λS ( u 1 −1 ) 
D �−N �+ Q � + 

S � β η1 λS p ( u 1 −1 ) 

D �−N �+ Q � , 
dλQ 

dt 
= λQ ν − λH ν

+ λE 

(
S � β ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 
)

+ λE 

(
− S �p β ( β1 −1 ) ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 
)

− S � β λS ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 

− S � β λ�
S p 

( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 , 

dλI s 

dt 
= λI s ( d + δ) − λE 

(
S � β ( u 1 −1 ) 
D �−N �+ Q � − S �p β ( β1 −1 ) ( u 1 −1 ) 

D �−N �+ Q �
)

−W 3 − δ λH 

+ 

S � β λS ( u 1 −1 ) 
D �−N �+ Q � + 

S � β λS p ( u 1 −1 ) 

D �−N �+ Q � , 
dλH 

dt 
= λH ( κ + r ) − W 4 − κ λD − λR r 

−λE 

(
S � β η2 ( u 1 −1 ) 

D �−N �+ Q � − S �p β η2 ( β1 −1 ) ( u 1 −1 ) 

D �−N �+ Q �
)

+ 

S � β η2 λS ( u 1 −1 ) 
D �−N �+ Q � + 

S � β η2 λS p ( u 1 −1 ) 

D �−N �+ Q � , 

dλD 

dt 
= λE 

(
S � β ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 
)

−λE 

(
S �p β ( β1 −1 ) ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 
)

− S � β λS ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 

− S � β λS p ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

( D �−N �+ Q �) 2 , 

dλS p 

dt 
= λS p ω − λS ω 

+ 

β λE ( β1 −1 ) ( u 1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 
D �−N �+ Q � . 

lso, taking the partial derivatives of H with respect to the controls 

ives 

∂H 

∂u 1 

= C 1 u 1 

+ λE 

(
S � β ( I �s + A � η1 + E � η0 + H � η2 ) 

D �−N �+ Q � − S �p β ( β1 −1 ) ( I �s + A � η1 + E � η0 + H � η2 ) 

D �−N �+ Q �
)

− S � β λS ( I 
�
s + A � η1 + E � η0 + H � η2 ) 

D �−N �+ Q � − S � β λS p ( I 
�
s + A � η1 + E � η0 + H � η2 ) 

D �−N �+ Q � = 0 , 

∂H 

∂u 2 

= C 2 u 2 − A 

� λA τ + A 

� λQ τ = 0 . 

(14) 

eplacing u 1 = u ∗1 , u 2 = u ∗2 into Eq. (14) and solving for u ∗
i 
, i = 1 , 2

espectively leads to the results in Eq. (13) , which completes the 

roof. In the next section, we present the numerical results of the 

ptimality system, the control profile and discussions. �

.4. Numerical illustration and discussion 

In this section, we observe the optimal trajectories of the 

ptimality system. Thus, in doing so we applied the forward- 

ackward sweep method which has been extensively explained by 
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Fig. 15. Optimal simulation with the implementation of various control strategies for Egypt. 
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enhart and Workman [41] . The constraint system (6) is solved 

orward in time and the adjoint system is solved backward in 

ime with corresponding lower and upper bounds for the controls, 

nd initial conditions for the state variables. For the simulation 

e used the following initial conditions, N(0) = 102334404 , δ = 

 . 05114 , d = 0 . 0 0 0425 , 

[ N(0) − 135 , 100 , 10 , 10 , 15 , 0 , 0 , 0 , 0 , 0] 

= [ S(0) , E(0) , A (0) , Q(0) , I(0) , H(0) , R 

A (0) , R (0) , D (0) , S P (0)]

or Egypt, and N(0) = 31072940 , [ N(0) −
26 , 100 , 10 , 10 , 6 , 0 , 0 , 0 , 0 , 0] , β = 0 . 9250 , σ = 0 . 1025 , δ = 

 . 2126 , ν = 0 . 2118 for Ghana, together with the other parame-

ers values in Table 1 , N(0) = Initial total population . The weight 

ssociated with the objective function (7) , is hypothetically taken 

s W 1 = 2 , W 2 = 2 , W 3 = 2 , W 4 = 2 , the cost weight is hypotheti-

ally taken as C 1 = $2 . 00 , C 2 = $2 . 00 , and the lower (LB) and upper

UB) bounds is taken as LB 1 = 0 , UB 1 = 1 , LB 2 = 0 , UB 2 = 1 . The

imulations of the optimal control is divided into different strate- 

ies to illustrate the diverse impact of considering one or more 

ontrols. Thus: 

i) Strategy A: the implementation of health protocols-personal 

protections and contact tracing (testing-diagnoses), thus, 

(u , u � = 0) , 
1 2 

12 
ii) Strategy B: the use of health protocols-personal protections 

only (u 1 � = 0 , u 2 = 0) , 

ii) Strategy C: the use of contact tracing (testing-diagnoses) only 

(u 1 = 0 , u 2 � = 0) . 

Fig. 15 and 16 shows the implementation of the various con- 

rols strategies on the model. It indicates that, the disease in the 

nfectious population can be brought down faster when both con- 

rols are implemented as compared to situations without controls 

r with the use of a single control. The optimal control trajec- 

ories from the simulations shows that a proper combination of 

he control strategies may lead to a desirable control of COVID- 

9. Fig. 17 (a)- 17 (b) shows the implementation of strategy A on the 

umber of confirm cases. It indicates that, the confirm population 

an be eliminated within 120 days for Egypt and within 70 days for 

hana, as compared to situations without controls. Fig. 17 (c)- 17 (d) 

hows the impact of health protocols-personal protections only on 

he number of confirm cases. Fig. 17 (c)- 17 (d) equally shows the 

fficacy of strategy B, which indicates that strategy B is the best 

lternative control if a country does not implement strategy A. 

ig. 17 (e)- 17 (f), indicates that, if one wants to achieve the desired

rajectories as depicted in Fig. 17 (a)- 17 (b), then the use of contact 

racing (testing-diagnoses) should not be the only control choice 

y health authorities. The control profiles for Fig. 17 , has similar 

ynamics as that of Fig. 15 and Fig. 16 , therefore it is not shown
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Fig. 16. Optimal simulation with the implementation of various control strategies for Ghana. 
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ere. The simulations of the optimal control strategies show that 

 proper combination of the control strategies or a good choice of 

 single control strategy may lead to a desirable control COVID-19. 

evertheless, it is also important to choose a strategy that gives 

ptimal cost (thus less cost) when these controls are implemented 

n a large scale. Hence, we study the cost-effectiveness of these 

ontrols in the preceding section. 

. Cost-effectiveness analysis 

To control or eradicate COVID-19 infections in a population can 

e either labour-intensive or expensive, or even both. For these 

easons, it is crucial to conduct a cost-effectiveness analysis. The 

urrent section discusses the application of cost-effectiveness anal- 

sis to examine the cost-effectiveness related to the use of two 

ime-dependent control functions u 1 (t) and u 2 (t) . To this end, we 

onsider three strategies for the use of the two time-dependent 

ontrol functions u 1 (t) and u 2 (t) as defined in subsection 5.4 . 

To implement the cost-effectiveness analysis, we use three 

pproaches, namely, the Infection Averted Ratio (IAR), the Av- 
13 
rage Cost-Effectiveness Ratio (ACER) and the Incremental Cost- 

ffectiveness Ratio (ICER), as defined in [31,37,42–45] . The three 

ost-effectiveness approaches are iterated as follows: 

nfection Averted Ratio (IAR) 

The most effective strategy when using (IAR) is the strategy 

ith the highest ratio. The mathematical representation of the in- 

ection averted ratio is defined as: 

AR = 

Cumulative infection averted 

Cumulative recoveries 
. 

From the parameter values in Table 1 , the IAR for the various 

ptimal interventions were obtained. Fig. 18 depicts the IAR for the 

hree optimal strategies. Strategy B containing the implementation 

f health protocols-personal protections (u 1 (t)) such as the use of 

hysical distancing, media advocacy, wearing of a nose mask, the 

se of hand sanitiser-washing of hands, lockdowns, stringent safety 

easures in hospitals (and/or isolation centres), with a constant 

upply of effective personal protective equipment (PPE) generates 
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Fig. 17. Optimal simulation with the implementation of various control strategies for Egypt and Ghana. 

Fig. 18. Infection Averted Ratio (IAR) results for Strategies A–C. 

14 
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Fig. 19. Average cost-effectiveness ratio (ACER) results for Strategies A–C. 

Table 3 

Strategies A–C in order of increasing number of COVID-19 infections averted. 

Strategy Total infections averted( ×10 5 ) Total cost ($) ACER ICER 

�= No strategy, (u 1 = u 2 = 0 ): 0 0 - - 

C: u 2 (t) 1.0348 561.2034 0.0054 0.0054 

B: u 1 (t) 3.7625 562.5000 0.0015 4 . 7535 × 10 −6 

A: u 1 (t) , u 2 (t) 3.8530 996.8271 0.0026 - 

Table 4 

ICER for Strategies A and B. 

Strategy Total infections averted( ×10 5 ) Total cost ($) ACER ICER 

B: u 1 (t) 3.7625 562.5000 0.0015 0.0015 

A: u 1 (t) , u 2 (t) 3.8530 996.8271 0.0026 0.0480 

t

b

p

d

o

A

t  

u

A

(  

o

p

m  

c

m

t

s  

c  

a

e

I

f

r

e

or a

ns a

e

6

f

t

F

S

n

c

i

r

t

s

i

I

I

he highest IAR ratio and hence the most effective. This is preceded 

y Strategy A containing the implementation of health protocols- 

ersonal protections measures (u 1 (t)) and contact tracing (testing- 

iagnoses) (u 2 (t)) . Strategy C, contact tracing (testing-diagnoses) 

nly shows to be the least effective measure for both countries. 

verage Cost-Effectiveness Ratio 

The average cost-effectiveness ratio (ACER) is calculated against 

he worst cases of no intervention (i.e., u 1 = u 2 = 0 ). It is calculated

sing the formula: 

CER = 

Total cost invested on the intervention 

Total number of infections averted using the intervention 

. 

(15) 

The total number of infections averted is obtained by using, 

 

∫ t k 
0 

P̄ d t − ∫ t k 
0 

P d t) , P̄ is the solution of the infected classes with-

ut controls and P is the optimal solution with controls [31] . We 

oint out that the total cost invested on the intervention is esti- 

ated based on the total cost, T C , given in (8) . According to this

ost analysis approach, a strategy with the least ACER value is the 

ost cost-effective [46,47] . 

Now, using the formula in (15) , we found that Strategy B has 

he least ACER value, followed by Strategy A, then Strategy C as 

een in Fig. 19 (a) and Fig. 19 (b) respectively. The result is also

learly shown in Table 3 and Table 6 . Thus, the result of ACER cost

nalysis support the IAR that, the most effective intervention strat- 

gy is Strategy B, followed by Strategy A, and lastly Strategy C. 

ICER = 

Difference in the costs f

Difference in the total number of infectio
15 
ncremental cost-effectiveness ratio (ICER) 

ICER is a cost-effectiveness ratio useful to determine the dif- 

erences between two alternative control intervention strategies as 

egards to their costs and benefits. It is calculated using the math- 

matical expression given as 

pplying Strategies m and n 

verted by implementing Strategies m and n 

. (16) 

The corresponding cost to the application of a particular strat- 

gy is obtained from the expression given in (8) . 

.1. Optimal economic evaluation of the implemented Strategies A–C 

or Egypt 

In view of the simulated optimal control problem for 

he COVID-19 population dynamics in Egypt as illustrated in 

igs. 15 (a)–15 (f), we compute the cost-effectiveness analysis for 

trategies A, B and C. 

The ICER values are computed to further affirm the most eco- 

omical strategy from the other control intervention strategies 

onsidered in this study. From the results obtained for the numer- 

cal simulations of the optimal control problem, Strategies A–C are 

anked according to their increasing order with respect to the to- 

al number of COVID-19 infections averted in the community as 

hown in Table 3 . 

The ICER is computed for the competing Strategies C and B us- 

ng the formula in (16) as follows: 

CER(C/ � ) = 

561 . 2034 

1 . 0348 × 10 

5 
= 0 . 0054 , 

CER(B/C) = 

562 . 50 0 0 − 561 . 2034 

3 . 7625 × 10 

5 − 1 . 0348 × 10 

5 
= 4 . 7535 × 10 

−6 
. 
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Table 5 

Projected susceptibility cases prevented for Egypt. 

Strategy 100 days 1 year 2 years 3 years 

A: u 1 (t) , u 2 (t) 8 . 8424 × 10 5 2 . 0061 × 10 6 3 . 3483 × 10 6 4 . 6904 × 10 6 

B: u 1 (t) 8 . 6675 × 10 5 1 . 9687 × 10 6 3 . 2862 × 10 6 4 . 6037 × 10 6 

C: u 2 (t) 2 . 0653 × 10 5 5 . 0455 × 10 5 8 . 4745 × 10 5 1 . 1903 × 10 6 

Table 6 

Strategies A–C in order of increasing number of COVID-19 infections averted. 

Strategy 

Total infections 

averted ( ×10 5 ) Total cost ($) ACER ICER 

�= No strategy, 

(u 1 = u 2 = 0) : 

0 0 - - 

C: u 2 (t) 1.5891 529.6678 0.0033 0.0033 

B: u 1 (t) 5.1593 562.4772 0.0011 9 . 1874 × 10 −4 

A: u 1 (t) , u 2 (t) 5.2420 925.0752 0 . 0018 - 
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The computed results (as summarized in Table 3 ) indicate that 

he ICER value of strategy C, is higher than that of strategy B. This

eans that the singular application of contact tracing control u 2 
s more costly and less effective than when the health protocols- 

ersonal protections control u 1 only is implemented. Thus, Strat- 

gy C is eliminated from the list of alternative control intervention 

trategies. 

Then, it remains to re-compute the ICER for Strategies B and A. 

he computation is carried out as follows: 

CER(B/ �) = 

562 . 50 0 0 

3 . 7625 × 10 

5 
= 0 . 0015 , 

CER(A/B) = 

996 . 8271 − 562 . 50 0 0 

3 . 8530 × 10 

5 − 3 . 7625 × 10 

5 
= 0 . 0480 . 

he summary of the calculations is provided in Table 4 . 

It is noted from Table 4 that the ICER for Strategy A, is 

reater than the ICER of Strategy B. Then, this is an implication 

hat the simultaneous implementation of health protocols-personal 

rotections ( u 1 ) and contact tracing ( u 2 ) control is more costly 

hen compared with the singular application of health protocols- 

ersonal protections control u 1 . Consequently, the application of 

ealth protocols-personal protections controls only is the most 

ost-effective when considering all the three different control in- 

erventions applied to the optimal control of COVID-19 in an en- 

losed population (no natural birth and deaths) in Egypt, under in- 

estigation for this particular work. Nevertheless, Figs. 15 (a)- 15 (b) 

nd Table 5 shows that the combination of u 1 and u 2 (strategy 

) has the highest potential of reducing more infections and pre- 

enting more susceptible individuals from COVID-19 as time tra- 

erses. But, from the ICER analysis, we noticed that such interven- 

ion (strategy A) requires a lot of financial resources and human 

apital. 

.2. Optimal economic evaluation of the implemented Strategies A–C 

or Ghana 

Next, we calculate the ICER values to further affirm the most 

ost-effective strategy from the other strategies under examination 

or this particular work as demonstrated in Figs. 16 (a)–16 (f). Us- 

ng the simulated results of the optimal control problem, we rank 

trategies A–C based on their order of increase as regards the total 

umber of COVID-19 infections averted in the population as pre- 

ented in Table 6 . 
16 
For strategies C and B, the ICER is computed based on the for- 

ula given in (16) as follows: 

CER(C/ �) = 

529 . 6678 

1 . 5881 × 10 

5 
= 0 . 0033 , 

CER(B/C) = 

562 . 4772 − 529 . 6678 

5 . 1593 × 10 

5 − 1 . 58818 × 10 

5 
= 9 . 1874 × 10 

−5 
. 

The results of ICER calculation (as summarized in Table 6 ) re- 

eal that the ICER value of strategy C, is greater than that of strat- 

gy B. By implication, singular implementation of contact tracing 

ontrol u 2 is more costly and less effective compare to when only 

ealth protocols-personal protections control u 1 is in use. There- 

ore, Strategy C is discarded from the list of alternative control 

trategies. 

We now face the re-calculation of the ICER for Strategies B and 

. The calculations are made as follows: 

CER(B/ �) = 

559 . 8992 

5 . 1593 × 10 

5 
= 0 . 0011 , 

CER(A/B) = 

830 . 0470 − 559 . 8992 

5 . 24200 × 10 

5 − 5 . 1593 × 10 

5 
= 0 . 0327 . 

e provide the summary of the computations in Table 7 . 

It is clearly shown in Table 7 that Strategy A has an ICER value

igher that of Strategy B. It follows that the simultaneous use of 

ealth protocols-personal protections ( u 1 ) and contact tracing ( u 2 ) 

ontrols is more costly when compared with the singular use of 

ealth protocols-personal protections control u 1 . Conclusively, the 

se of health protocols-personal protections control only is the 

ost cost-effective when considering all the three different con- 

rol strategies applied to the dynamics of the COVID-19 popula- 

ion in Ghana under the analysis for this particular study. But, from 

igs. 16 (a)- 16 (b) and Table 8 shows that, the implementation of u 1 
nd u 2 reduces more infections and protecting more susceptible 

ndividuals as time span than using u 1 . Therefore, the ICER analy- 

is suggests that the optimal intervention (strategy A) will require 

 lot of financial and human resources in the event of multiple 

aves of COVID-19 in Ghana. 

. Concluding Remarks 

Based on the dynamics of COVID-19 control measures imple- 

ented by nations globally. We formulated a new determinis- 

ic model to capture the dynamics of the disease in Ghana and 

gypt using a ten compartmental model with a standard incidence 

ate. We hypothetically noticed that the number of undetected 

ecoveries overpasses the number of detected recoveries for the 

forementioned countries. Our sensitivity analysis findings suggest 
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Table 7 

ICER for Strategies A and B. 

Strategy 

Total infections 

averted( ×10 5 ) Total cost ($) ACER ICER 

B: u 1 (t) 5.1593 559.8992 0.0011 0.0011 

A: u 1 (t) , u 2 (t) 5.2420 830.0470 0.0018 0.0327 

Table 8 

Projected susceptibility cases prevented for Ghana. 

Strategy 100 days 1 year 2 years 3 years 

A: u 1 (t) , u 2 (t) 1 . 4367 × 10 6 1 . 6448 × 10 6 1 . 6650 × 10 6 1 . 6851 × 10 6 

B: u 1 (t) 1 . 4174 × 10 6 1 . 6236 × 10 6 1 . 6435 × 10 6 1 . 6634 × 10 6 

C: u 2 (t) 3 . 9112 × 10 5 4 . 5704 × 10 5 4 . 6264 × 10 5 4 . 6824 × 10 5 
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(

i

hat reducing the transmission rates and increasing contact tracing 

testing-diagnoses) is possible to hinder the fast spread of COVID- 

9, and multiple waves of COVID-19 in Ghana and Egypt. Hence, 

e adjusted our model to include time-variant controls (health 

rotocols-personal protections, contact tracing (testing and diag- 

oses)). The existence of the optimal control problem and opti- 

al trajectories are established. The outcome of the optimal con- 

rol analysis shows that the implementation of health protocols- 

ersonal protections and contact tracing (testing-diagnoses) re- 

uces more infections as compared to the one control strategy, but 

ostly than the use of only one control strategy. 
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ppendix A. The control reproduction number 

The evaluation of the control reproduction number R c , is done 

sing the concept of the next generation matrix approach as iter- 

ted in Asamoah et al. [5] . The control reproduction number, R c , is

efined as the number of secondary infections one infected per- 

on produces on average throughout its infectious period in the 

resence of mitigation measures. Thus, we let G = F V −1 be the 

ext generation matrix which consists of F i (x ) , v + 
i 
(x ) and v −

i 
(x ) ,

 = 1 , 2 , ..., n ∈ N ; where F(x ) is the rate at which a new infection

ccurs in compartment i . Also, v + 
i 

and v −
i 

are the rate of immigra-

ion into compartment i and the rate at which new individuals are 

ransferred from compartment i respectively [5] . Therefore F and V 

re defined 

 = 

[ 
∂ F i (x 0 ) 

∂x i 

] 
and V = 

[ 
∂V i (x 0 ) 

∂x i (x 0 ) 

] 
, 

here V i (x ) = v −
i 
(x ) − v + 

i 
(x ) . Now, from Eq. (1) , the matrix of F(x )

nd V(x ) , is given as 

 i (x ) = 

⎡ 

⎢ ⎢ ⎣ 

β(η0 E + η1 A + I s + η2 H) S + (1 − β1 ) β(η0 E + η1 A + I s + η2 H) S P 
N − D − Q 

0 

0 

0 

⎤
⎥⎥⎦

V i (x ) = 

⎡ 

⎢ ⎣ 

(1 − f ) ρE + fγ E 

−(1 − f ) ρE + τA + σA + φA 

− fγ E − σA + (δ + d) I s 
−δI s + rH + κH 

⎤ 

⎥ ⎦ 

. 

omputation of F i (x ) and V i (x ) evaluated at the disease-free equi-

ibrium: 

S, E, A, Q, I s , H, R, R, A DS p ) = (S ∗, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 
α

ω 

N(0)) , 

s given as 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100011321
https://doi.org/10.13039/501100004311
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(βη0 
S ∗
N ∗ + (1 − β1 ) βη0 

S ∗p 
N ∗ ) (βη1 

S ∗
N ∗ + (1 − β1 ) βη1 

S ∗p 
N ∗ ) (

0 0 

0 0 

0 0 

 = 

⎛ 

⎜ ⎝ 

((1 − f ) ρ + fγ ) 0 0 0 

−(1 − f ) ρ (τ + σ + φ) 0 0 

− fγ −σ δ + d 0 

0 0 −δ (r + κ) 

⎞ 

⎟ ⎠ 

. 

ote that, if there are no infectious persons in the population, then 

is zero, otherwise, α is a positive constant. Hence, the calculated 

ontrol (effective) reproduction R c given in Eqs. (2) and (3) are ob- 

ained from 

 c = ρ1 

(
F V 

−1 
)
, 

here ρ1 is the spectral radius of matrix F V −1 . 
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