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a b s t r a c t 

In this paper, we investigate an epidemic model of the novel coronavirus disease or COVID-19 using the 

Caputo–Fabrizio derivative. We discuss the existence and uniqueness of solution for the model under 

consideration, by using the the Picard–Lindelöf theorem. Further, using an efficient numerical approach 

we present an iterative scheme for the solutions of proposed fractional model. Finally, many numerical 

simulations are presented for various values of the fractional order to demonstrate the impact of some 

effective and commonly used interventions to mitigate this novel infection. From the simulation results 

we conclude that the fractional order epidemic model provides more insights about the disease dynamics. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The novel Coronavirus COVID-19 is an infectious respiratory dis- 

ases, emerged in November 2019 in Hubei Wuhan city of China. 

fter the outbreak of COVID-19 was noticed, the world health or- 

anization (WHO) announce the COVID-19 a pandemic diseases on 

arch 2020. Since then this infection reach the whole word due 

o its fast transmission. The COVID-19 symptoms reported so far 

re not specific, witch does not allow the detection of infected 

ases quickly. In fact the infection of this new virus has symp- 

oms similar to those of influenza which includes fever, respira- 

ory signs such as cough, muscle pain and fatigue. the incuba- 

ion period of this novel infection ranges from 1 to 14 days [1] .
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n more sever cases the infection leads to severe pneumonia res- 

iratory syndrome even death, It has noticed that the most severe 

ases seem to concern vulnerable individuals (the elderly, people 

uffering of chronic diseases). Other characteristics of the COVID- 

9 pandemic is that there is no specific treatment and no effec- 

ive vaccine, certain treatments are being tested in clinical trial. 

he COVID-19 can be spread from person to person through close 

ontact with an infected person. In the absence of effective treat- 

ent the physical distancing strategy is adopted to minimize the 

pread of infection. Other characteristics of COVID-19 is that a per- 

on may be asymptomatic and can be contagious at same time and 

he strategy adopted in this situation is the quarantine strategy. Al- 

hough a large part of mystery has been seen in the evolution of 

he COVID-19 and remains difficult to provide [2] . As part of con- 

ribution against the COVID-19 mathematical model seem appro- 

riate to understand the spread of the virus and allows as figure 

ut the effect of the strategy intervention adopted to slow down 
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he spread of the virus, perhaps one major goal is to flatten the 

urve of the epidemic. 

Different approaches have been adopted to control the out- 

reaks of the novel COVID-19 pandemic. Mathematical modeling 

s considered as one of useful tool to explore the transmission dy- 

amics of a disease and help the policy-makers to set some ef- 

ective strategy to control the disease outbreak. These mathemat- 

cal model generally given in terms of differential equations al- 

ows us to test a wide of possible scenarios of the dynamic of 

he virus in a short period of time. It is possible that some sus- 

icious parameters associated with certain model limit the accu- 

acy of predictions in the beginning of an epidemic. However, even 

n the absence of available data, the knowledge acquired during 

revious known epidemics makes it possible to build an initial 

odel to evaluate the intervention of the strategy to be adopted. 

ost of the recent model of COVID-19 are derived from the SIR 

odel, witch describes the transitions between population of sus- 

eptible ( S), infectious ( I) and recovery ( R ) individuals. Duccio and

rancesco proposed a deterministic model to analyze the dynam- 

cal patterns and future prediction of the outbreaks in three epi- 

enters of novel COVID-19 [3] . Asamoah et al., [4] formulated a 

athematical model with the environmental viral load and sug- 

ested some effective intervention strategies using optimal control 

pproach. Ullah and Khan suggested a novel mathematical model 

o explore the role of some useful public interventions on the dy- 

amics of COVID-19 in Pakistani population [5] . Tang et al., [6] de- 

eloped a realistic mathematical model to study the dynamics and 

nfluence of enhancement of different public health interventions 

gainst COVID-19 outbreak in China. 

Epidemic models based on fractional derivatives is another ef- 

ective approach to study the dynamics of an infectious disease 

n a better way. Mathematical models with fractional order dif- 

erential equation provides more insights about a phenomena be- 

ause they posses the memory effect and are nonlocal in nature. 

he use of mathematical models in terms of fractional differen- 

ial equations gain much interest in last few years. The goal is to 

vercome some limitation related to the model depends on classi- 

al derivatives. Mathematical models with fractional derivative are 

uitable to demonstrate some natural phenomena including an in- 

ectious diseases under consideration [7–10] . Different non-integer 

rder operators with singular and nonsingular kernel were sug- 

ested in literature [11–13] . The application of these fractional op- 

rators can be found in Baleanu et al. [14] , Ullah et al. [15] , 16 ]

nd references therein. A number of mathematical models base 

n different fractional order operators were proposed in recent 

ew months to analyze the complex transmission patterns of novel 

OVID-19. A fractional order model using Caputo–Fabrizio operator 

s studied in Baleanu et al. [17] to analyzed the effect of mem- 

ry index and various parameters on the dynamics COVID-19. A 

ovel fractional-fractal operator is used to formulate a mathemat- 

cal model to explore the impact of lockdown on the dynamics 

f COVID-19 in Atangana [18] . A fractional order model based on 

tangana–Baleanu operator was formulated in Khan and Atangana 

19] to predict the COVID-19 situation in Wuhan, China. 

In the study in hand, we extend a COVID-19 virus transmis- 

ion model suggested in Tang et al. [6] under Caputo–Fabrizio frac- 

ional derivative. Initially, we discuss the model formulation us- 

ng classical integer-order differential equation and the reformu- 

ated the fractional order COVID-19 model and then prove the ex- 

stence and untidiness of the model solution. Moreover, the COVID- 

9 model with Caputo–Fabrizio operator is solved numerically, and 

he graphical impact of various parameters is depicted for different 

alues of fractional order. The rest of paper is organized as: The 

ext section consists the basic definition regarding fractional cal- 

ulus. The model formulation using Caputo–Fabrizio derivative is 

resented in Section 3 . The exitance and uniqueness of the model 
2 
olution is provided in Section 4 . The iterative scheme along with 

imulations and discussion is presented in Section 6 . Finally, a brief 

onclusion of the present work is given in Section 5 . 

. Preliminaries 

In this section we present essential definitions and result from 

ractional calculus. The aim is to recall the definitions and propri- 

ties of the Caputo–Fabrizio derivatives used in this paper. the au- 

hor can see [13] for more detail. 

Let H 

1 (] a, b[) = { f | f ∈ L 2 (] a, b[) , and f ′ ∈ L 2 (] a, b[) } , where

he L 2 (] a, b[) is the usual Exergue space of square integrable func- 

ion on the interval ] a, b[ . 

efinition 2.1 (Caputo and Fabrizio [13] ) . Let f ∈ H 

1 (] a, b[) and

∈ ]0 , 1[ , then the Caputo–Fabrizio fractional derivative is defined 

o be 

F D 

ν
t ( f (t)) = 

M(ν) 

1 − ν

∫ t 

a 

f ′ ( s ) exp 

(
− ν

t − s 

1 − ν

)
ds, (1) 

here, M(ν) define a normalization function with M(0) = M(1) = 

 . 

emark 1 (Caputo and Fabrizio [13] ) . 

1. According to (1) when f (t) is constant then 

CF D 

ν
t ( f (t)) = 0 . 

2. If f / ∈ H 

1 (] a, b[) then the Caputo–Fabrizio fractional derivative is 

defined also for 

f ∈ L 1 (] − ∞ , b[) having order ν ∈ ]0 , 1[ as 

CF D 

ν
t ( f (t)) = 

νM(ν) 

1 − ν

∫ t 

−∞ 

( f ( t) − f (s )) exp 

(
− ν

t − s 

1 − ν

)
ds. 

(2) 

3. If we put ρ = 

1 −ν
ν ∈ ]0 , + ∞ [ , then ν = 

1 
ρ+1 ∈ ]0 , 1[ . The

Eq. (1) become 

CF D 

ν
t ( f (t)) = 

N(ρ) 

ρ

∫ t 

a 

f ′ (s ) exp 

(
− t − s 

ρ

)
ds. (3) 

where ρ ∈ ]0 , + ∞ [ and N(ρ) is the relative normalization term 

of M(ν) , such that N(0) = N(+ ∞ ) = 1 . 

emark 2. Because of the singularity when ν = 1 in (1) the case 

= 1 is shown to be as the limit lim 

ν→ 1 

CF D 

ν
t ( f (t)) , knowing in ad- 

ition that lim 

ρ→ 0 

1 

ρ
exp (− t − s 

ρ
) = δ(t − s ) we have 

lim 

→ 1 

CF D 

ν
t ( f (t)) = f ′ (t) . 

lim 

→ 0 

CF D 

ν
t ( f (t)) = f (t) − f (a ) . 

.1. The associated fractional integral 

The corresponding integral of order 0 < ν < 1 is a natural re- 

uirement after defining the fractional derivative of order 0 < ν < 

 . The above Caputo–Fabrizio operator described in (1) was modi- 

ed by Losanda and Nieto [20] and we have the following defini- 

ion. 

efinition 2.2 (Losada and Nieto [20] ) . Let f ∈ H 

1 (] a, b[) and ν ∈
0 , 1[ , then the Caputo–Fabrizio fractional derivative is defined to 

e 

F D 

ν
t ( f (t)) = 

(2 − ν) M(ν) 

2( 1 − ν) 

∫ t 

a 

f ′ ( s ) exp 

(
− ν

t − s 

1 − ν

)
ds. (4) 

The fractional integral corresponding to (4) is then defined as 

ollows. 
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Table 1 

Description of the parameters of the system (9) . 

Parameter Description Estimated value Source 

� Birth rate 294 Estimated [21] 

μ Natural death rate 1/76.79 [21] 

c Contact rate 14.78 [6] 

β Probability of transmission per contact 2 . 1011 × 10 −8 [6] 

q Quarantined rate of exposed living to E q compartment 1 . 88 × 10 −7 [6] 

σ Transition rate from the E to I compartments 1/7 [6] 

λq The rate of isolation release 1/14 [6] 

ρ Probability for having symptoms among infected person 0.8683 [6] 

δ
I 

Transition rate from I to H 0.1326 [6] 

δq Transition rate from E q to H 0.1259 [6] 

γ
A 

Recovery rate of pre symptomatic person 0.1397 [6] 

γ
I 

Recovery rate of infected person 0.33029 [6] 

γ
H 

Recovery rate of quarantined person 0.11624 [6] 

d 1 Infected death rate 1 . 7826 × 10 −5 [6] 

d 2 Quarantined death rate 1 . 7826 × 10 −5 [6] 

θ Infectiousness rate due to A class 0.02 [19] 
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Fig. 1. Diagram of different stages of transmission of a novel coronavirus in differ- 

ent compartment. 
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efinition 2.3 (Losada and Nieto [20] ) . Let 0 < ν < 1 , then the in-

egral of non integer order ν of a function f is given as follows: 

F I ν ( f (t)) = 

(2 − 2 ν) 

( 2 − ν) M(ν) 
f ( t) + 

2 ν

( 2 − ν) M( ν) 

∫ t 

0 

f ( s ) ds, t ≥ 0 .

(5) 

We have this useful proposition with constant use in the rest of 

he paper. 

roposition 2.1 (Losada and Nieto [20] ) . For a differential equation 

aving fractional order 0 < ν < 1 

F D 

ν
t ( f (t)) = h (t) , T ≥ 0 . (6) 

hen we have 

f (t) − f (0) = 

CF I ν (h (t)) 

= 

(2 − 2 ν) 

M(ν)(2 − ν) 
h (t) + 

2 ν

(2 − ν) M(ν) 

∫ t 

0 

h (s ) ds, t ≥ 0 . (7) 

. Mathematical model 

In this section, we consider the deterministic COVID-19 model 

roposed in Tang et al. [6] . Initially, we reformulate the model by 

dding the birth rate � and the natural death rate μ. Further, 

he classical integer order model is then extended to fractional or- 

er using Caputo–Fabrizio derivative with nonsingular exponential 

ype kernel. The biological meaning of the model parameters is de- 

cribed in Table 1 and the transition between various population 

lasses is shown in Fig. 1 . The formulated mathematical model for 

he transmission of a novel COVID-19 pandemic is given by the fol- 

owing system of equations: 

dS 

dt 
= � − (βc + cq (1 − β)) S(I + θA ) + λq S q − μS, 

dE 

dt 
= βc(1 − q ) S(I + θA ) − (σ + μ) E, 

dI 

dt 
= σρE − (δ

I 
+ γ

I 
+ μ + d 1 ) I, 

dA 

dt 
= σ (1 − ρ) E − (μ + γ

A 
) A, 

dS q 

dt 
= (1 − β) cqS(I + θA ) − (λq + μ) S q , 

dE q 

dt 
= βcqS(I + θA ) − (μ + δq ) E q , 

dH = δ
I 
I + δq E q − (γ

H 
+ μ + d 2 ) H, 
dt 

3 
dR 

dt 
= γ

A 
A + γ

I 
I + γ

H 
H − μR. (8) 

n the model described in (8) , the total human population denoted 

y N at time t is divided into eight different classes: susceptible 

, exposed E, symptomatic (infectious with clinical symptoms) I, 

symptomatic (infectious but not yet show any clinical symptoms) 

, quarantined susceptible individuals S q , quarantined/isolated ex- 

osed individuals E q , hospitalized individuals H, and finally the 

ecovered or removed individuals R . Mathematical models with 

nteger order derivatives play an important role and have their 

ignificant to understand the dynamic of epidemiological system. 

owever, it is known that a model based on classical derivatives 

ave some limitations. Theses systems do not posses memory or 

on local effects and therefore, the models with integer order 

erivatives are some time not suitable. To deal with this limitation 

any model of epidemiology are converted to fractional differen- 

ial equations. In fractional differential calculus the differential op- 

rators used are non integer and possesses memory impacts and 

re efficient to explore many natural phenomena, and facts hav- 

ng non local dynamics behavior. In the next subsection of the pa- 

er, we are reconstructed the classical model (8) by applying the 

aputo–Fabrizio fractional derivative of order ν ∈ (0 , 1] . 
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3

by utilizing the Caputo–Fabrizio operator. For this model we suppose 

t ulate the fractional model we replace the classical derivative in (8) by 

t us, we obtain the following system 

C

C

(9) 

I

 

(0) = S q 0 ≤ 0 , 

E (10) 

A nstant, and their biological description are presented in the following 

t

d in (9) is given by the following equation 

N

(11) 

W

P  fractional system (9) is 

�  + R ≤ �

μ

} 

. (12) 

4

the system (9) with initial condition (10) , using fixed point theory and 

P ional integral operator in Caputo–Fabrizio sense defined by (5) to both 

s

) , 

E

(13) 

S

 

, 

, 

r, 

E r, 

, 
.1. The Caputo–Fabrizio COVID-19 model 

In this section we introduce the fractional COVID-19 epidemic 

hat in each compartment have a natural death at rate μ. To form

he Caputo–Fabrizio fractional derivative having order 0 < ν < 1 . Th

CF D 

ν
t (S(t)) = � − (βc + cq (1 − β)) S(I + θA ) + λq S q − μS, 

CF D 

ν
t (E(t)) = βc(1 − q ) S(I + θA ) − (σ + μ) E, 

CF D 

ν
t (I(t)) = σρE − (δ

I 
+ γ

I 
+ μ + d 1 ) I, 

CF D 

ν
t (A (t)) = σ (1 − ρ) E − (μ + γ

A 
) A, 

F D 

ν
t (S q (t)) = (1 − β) cqS(I + θA ) − (λq + μ) S q , 

F D 

ν
t (E q (t)) = βcqS(I + θA ) − (μ + δq ) E q , 

CF D 

ν
t (H(t)) = δ

I 
I + δq E q − (γ

H 
+ μ + d 2 ) H, 

CF D 

ν
t (R (t)) = γ

A 
A + γ

I 
I + γ

H 
H − μR. 

n addition with the following initial values: 

S(0) = S 0 ≤ 0 , E(0) = E 0 ≤ 0 , I(0) = I 0 ≤ 0 , A (0) = A 0 ≤ 0 , S q

 q (0) = E q 0 ≤ 0 H(0) = H 0 ≤ 0 , R (0) = R 0 ≤ 0 . 

ll parameter used the system (9) are considered to be positive co

able. 

The total dynamic of the fractional model of COVID-19 describe

 

′ (t) = � − μN − (d 1 I + d 2 H) 

≤ � − μN. 

hen t goes to ∞ , we get N ≤ �
μ . 

roposition 3.1. The biological feasible region for the Caputo–Fabrizio

= 

{ 

(S, E, I, A, S q , E q , H, R ) ∈ R 

8 
+ : 0 ≤ S + E + I + A + S q + E q + H

. Existence and uniqueness of solution of system (9) 

We investigate the existence and uniqueness of the solution of 

icard–Lindelöf technique. To proceeds further we Utilize the fract

ides of equations in system (9) and using Proposition 2.1 , we get 

S(t) − S(0) = 

CF I ν (� − (βc + cq (1 − β)) S(I + θA ) + λq S q − μS

E(t) − E(0) = 

CF I ν (βc(1 − q ) S(I + θA ) − (σ + μ) E) , 

I(t) − I(0) = 

CF I ν (σρE − (δ
I 
+ γ

I 
+ μ + d 1 ) I) , 

A (t) − A (0) = 

CF I ν (σ (1 − ρ) E − (μ + γ
A 
) A ) , 

S q (t) − S q (0) = 

CF I ν ((1 − β) cqS(I + θA ) − (λq + μ) S q ) , 

 q (t) − E q (0) = 

CF I ν (βcqS(I + θA ) − (μ + δq ) E q , 

H(t) − H(0) = 

CF I ν (δ
I 
I + δq E q − (γ

H 
+ μ + d 2 ) H) , 

R (t) − R (0) = 

CF I ν (γ
A 
A + γ

I 
I + γ

H 
H − μR ) . 

ystem (13) reads in terms of kernels 

S(t) − S(0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 1 (S, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 1 (S, r) dr,

E(t) − E(0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 2 (E, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 2 (E, r) dr

I(t) − I(0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 3 (I, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 3 (I, r) dr, 

A (t) − A (0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 4 (A, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 3 (A, r) dr

S q (t) − S q (0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 5 (S q , t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 5 (S q , r) d

 q (t) − E q (0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 6 (E q , t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 6 (E q , r) d

H(t) − H(0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 7 (H, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

K 7 (H, r) dr

0 

4 
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, (14) 

w

(t) , 

K

(15) 

F

 , 

E  , 

 

(16) 

N{
(17) 

W  H(t ) , R (t ) 
)t 

and vector function F (t , Y (t )) is defined by 

F (18) 

w (0) , R (0)) t . 

given by the following 

Y (19) 

w

P the following condition hold. There exists � > 0 such that 

‖ (20) 

f

R (t) − R (0) = 

2(1 − ν) 

M (ν)(2 − ν) 
K 8 (R, t) + 

2 ν

M (ν)(2 − ν) 

∫ t 

0 

K 8 (R, r) dr

here the kernels are given by 

K 1 (S, t) = � − (βc + cq (1 − β)) S(t )(I(t ) + A (t)) + λq S q (t) − μS

K 2 (E, t) = βc(1 − q ) S(t )(I(t ) + A (t)) − (σ + μ) E(t) , 

K 3 (I, t) = σρE(t) − (δ
I 
+ γ

I 
+ μ + d 1 ) I(t) , 

K 4 (A, t) = σ (1 − ρ) E(t) − (μ + γ
A 
) A (t) , 

K 5 (S q , t) = (1 − β) cqS(t )(I(t ) + A (t)) − (λq + μ) S q (t) , 

 6 (E q , t) = βcqS(t)(I(t) + A (t)) − (μ + δq ) E q (t) , 

K 7 (H, t) = δ
I 
I(t) + δq E q (t) − (γ

H 
+ μ + d 2 ) H(t) , 

K 8 (R, t) = γ
A 
A (t) + γ

I 
I(t) + γ

H 
H(t) − μR (t) . 

urther, utilizing the Picard iterations are given by 

S n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 1 ( S n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 1 ( S n , r ) dr , 

E n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 2 ( E n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 2 ( E n , r ) dr , 

I n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 3 ( I n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 3 ( I n , r ) dr , 

A n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 4 ( A n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 4 ( A n , r ) dr , 

S q n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 5 

(
S q n , t 

)
+ 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 5 

(
S q n , r 

)
dr

 q n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 6 

(
S q n , t 

)
+ 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 6 

(
E q n , r 

)
dr

H n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 7 ( H n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 7 ( H n , r ) dr ,

R n +1 ( t ) = 

2 ( 1 − ν) 

M ( ν) ( 2 − ν) 
K 8 ( R n , t ) + 

2 ν

M ( ν) ( 2 − ν) 

∫ t 

0 

K 8 ( R n , r ) dr . 

ext, we rewrite the system (9) in the following form 

CF D 

ν
t Y (t) = F (t, Y (t)) , 

Y (0) = Y 0 0 < t < T , 

here, the vector variable Y (t) = 

(
S(t ) , E(t ) , I(t ) , A (t ) , S q (t ) , E q (t ) ,

 (t, Y (t)) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

� − (βc + cq (1 − β)) S(I + A ) + λq S q − μS, 
βc(1 − q ) S(I + A ) − (σ + μ) E, 

σρE − (δ
I 
+ γ

I 
+ μ + d 1 ) I, 

σ (1 − ρ) E − (μ + γ
A 
) A, 

(1 − β) cqS(I + A ) − (λq + μ) S q , 
βcqS(I + A ) − (μ + δq ) E q , 

δ
I 
I + δq E q − (γ

H 
+ μ + d 2 ) H, 

γ
A 
A + γ

I 
I + γ

H 
H − μR, 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

ith the initial condition Y 0 = (S(0) , E(0) , I(0) , A (0) , S q (0) , E q (0) , H

Due to (14) , and corresponding to (17) , the integral equation is 

 (t) = Y (0) + φ(ν) F (t , Y (t )) + ψ(ν) 

∫ t 

0 

F (s, Y (s )) ds, 

here, φ(ν) = 

2(1 −ν) 
(2 −ν) M(ν) 

and ψ(ν) = 

2 ν
(2 −ν) M(ν) 

. 

roposition 4.1. Let � = [0 , T ] . Suppose that Y (t) ∈ C (�, R 

8 ) , then 

 F (t, Y 1 (t) − F (t, Y 2 (t) ‖ ≤ �‖ Y 1 (t) − Y 2 (t) ‖ 

or all Y (t) , Y (t) ∈ C (�, R 

8 ) , and t ∈ �. 
1 2 

5 
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P

‖

 μ) ‖ (S 1 (t) − S 2 (t)) ‖ 

 

(t)) ‖ 

 − I 2 (t)) ‖ 

 

(t)) ‖ 

 2 (t)) ‖ 

 2 (t)) ‖ 

H 2 (t)) ‖ 

) ‖ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

A 7 0 

0 A 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

‖ (Y 1 (t) − Y 2 (t)) ‖ (21) 

(22) 

w

A  3 = (δ
I 
+ γ

I 
+ μ + d 1 ) , 

A  d 2 ) , A 8 = γ
H 
. 

‖ (23) 

(24) 

w

� sup A 8 ) . (25) 

T he following condition holds 

( (26) 

P

P (27) 

t

Y (28) 

W p | ϕ (t) | is a Banach space. 

‖
 C 

 C 

ds 

‖ Y 1 (s )) − Y 2 (s ) ‖ C 

ds 
roof. We have by the definition of the kernels (15) 

 F (t, Y 1 (t) − F (t, Y 2 (t) ‖ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

‖ K 1 (S 1 , t) − K 1 (S 2 , t) ‖ 

‖ K 2 (E 1 , t) − K 2 (E 2 , t) ‖ 

‖ K 3 (I 1 , t) − K 3 (I 2 , t) ‖ 

‖ K 4 (A 1 , t) − K 4 (A 2 , t) ‖ 

‖ K 5 (S q 1 , t) − K 5 (S q 2 , t) ‖ 

‖ K 6 (E q 1 , t) − K 6 (E q 2 , t) ‖ 

‖ K 7 (H 1 , t) − K 7 (H 2 , t) ‖ 

‖ K 8 (R 1 , t) − K 8 (R 2 , t) ‖ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(βc + cq (1 − β))(‖ I(t) ‖ + ‖ A (t) ‖ ) +
(σ + μ) ‖ (E 1 (t) − E 2

(δ
I 
+ γ

I 
+ μ + d 1 ) ‖ (I 1 (t)

(μ + γ
A 
) ‖ (A 1 (t) − A 2

(λq + μ) ‖ (S q 1 (t) − S q
(μ + δq ) ‖ (E q 1 (t) − E q

(γ
H 

+ μ + d 2 ) ‖ (H 1 (t) −
γ

H 
‖ (R 1 (t) − R 2 (t)

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

A 1 0 0 0 0 0 

0 A 2 0 0 0 0 

0 0 A 3 0 0 0 

0 0 0 A 4 0 0 

0 0 0 0 A 5 0 

0 0 0 0 0 A 6 

0 0 0 0 0 0 

0 0 0 0 0 0 

= A‖ (Y 1 (t) − Y 2 (t)) ‖ , 

ere, 

 1 = βc + cq (1 − β))(‖ I(t) ‖ + ‖ A (t) ‖ ) + μ) , A 2 = (σ + μ) , A
 4 = (μ + γ

A 
) , A 5 = (λq + μ) , A 6 = (μ + δq ) , A 7 = (γ

H 
+ μ +

Then we have 

 F (t, Y 1 (t) − F (t, Y 2 (t) ‖ ≤ sup 

‖ x ‖ < 1 
‖A x ‖ 

≤ �‖ Y 1 (t) − Y 2 (t) ‖ , 

ere, 

= max ( sup A 1 , sup A 2 , sup A 3 , sup A 4 , sup A 5 , sup A 6 , sup A 7 , 

�

heorem 4.1. There exists a unique solution of system of Eqs. (9) if t

φ(ν) + ψ(ν) T )� < 1 . 

roof. Let the map P : C (�, R 

8 ) → C (�, R 

8 ) defined by 

(Y (t)) = Y 0 + φ(ν) F (t, Y (t)) + ψ(ν) 

∫ t 

0 

F (s, Y (s )) ds, 

hen the Eq. (19) become 

 (t) = P(Y (t)) . 

e know the space C (�, R 

8 ) equipped with the norm ‖ ϕ ‖ C 

= su
t∈ �

Now using the formula (19) , we have 

P(Y 1 (t)) − P(Y 2 (t)) ‖ C 

= ‖ φ(ν)(F (t, Y 1 (t)) − (F (t, Y 2 (t)) 

+ ψ(ν) 

∫ t 

0 

(F (s, Y 1 (s )) − (F (s, Y 2 (s ))) ds ‖
≤ φ(ν) ‖ (F (t, Y 1 (t)) − (F (t, Y 2 (t)) ‖ C 

+ ψ(ν) 

∫ t 

0 

‖ (F (s, Y 1 (s )) − (F (s, Y 2 (s ))) ‖

≤ φ(ν)�‖ Y 1 (t) − Y 2 (t) ‖ C 

+ ψ(ν)�

∫ t 
0 

6 
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Fig. 2. Simulations of the COVID-19 model (8) for different values of fractional order ν . 

7 
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Fig. 3. The impact of parameter c (contact rate) on total infective population where (a) ν = 1 , (b) ν = 0 . 9 , (c) ν = 0 . 8 , (d) ν = 0 . 7 . 

 1 (t)) − Y 2 (t) ‖ C 

S  the system of Eqs. (9) has a unique solution. �

5

the proposed fractional COVID-19 model (9) in order to demonstrate 

t n the disease dynamics. Initially, we explore the iterative scheme of 

t  derived iterative scheme is then used to demonstrate the simulation 

r model (9) , we use the technique of fractional Adams–Bashforth for CF 

f tive scheme, let consider only the first equation of the system (9) and 

t e following equation: 

S (29) 

A

S (30) 

a

S (31) 

F

S  , S) dt . (32) 
≤ φ(ν)�‖ Y 1 (t) − Y 2 (t) ‖ C 

+ ψ(ν)�T ‖ Y

≤ (φ(ν) + ψ(ν) T )�‖ Y 1 (t) − Y 2 (t) ‖ C 

. 

ince (φ(ν) + ψ(ν) T )� < 1 , the map P is a contraction, therefore

. Numerical scheme and simulations 

The present section investigates the numerical simulations of 

he effect of fractional order ν and other significant parameters o

he model using an efficient approach from recent literature. The

esults using Matlab. For the numerical solution of the proposed 

ractional order derivative [16,22,23] . To develop the required itera

hen applying the fundamental theorem of integration we obtain th

(t) − S(0) = 

(1 − ξ ) 

M( ν) 
K 1 ( t, S) + 

ν

M( ν) 

∫ t 

0 

K 1 ( ζ , S) dζ . 

t t = t n +1 we have 

(t n +1 ) − S(0) = 

(1 − ν) 

M( ν) 
K 1 ( t n , S n ) + 

ν

M(ν) 

∫ t n +1 

0 

K 1 (t , S) dt . 

nd similarly 

(t n ) − S(0) = 

(1 − ν) 

M( ν) 
K 1 ( t n −1 , S n −1 ) + 

ν

M(ν) 

∫ t n 

0 

K 1 (t , S) dt . 

rom these two Eqs. (30) and (31) we have 

 n +1 − S n = 

(1 − ν) 

M(ν) 
{ K 1 (t n , S n ) − K 1 (t n −1 , S n −1 ) } + 

ν

M(ν) 

∫ t n +1 

t 

K 1 (t

n 

8 
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tive population where (a) ν = 1 , (b) ν = 0 . 9 , (c) ν = 0 . 8 , (d) ν = 0 . 7 . 

T nge i  

[∫
 n )] dt

S

S
 

(t n −

S odel 

 K 2 (t n

 3 (t n −

 K 4 (t n

 

} K 5 (

E
 

} K 6 (

 K 7 (t

 K 8 (t n
aking h = t i +1 − t i , approximating K 1 (t, S) with the help of Lagra

 t n , t n +1 ] , we get 

 t n +1 

t n 

K 1 (t, S) dt = 

∫ t n +1 

t n 

[ 
K 1 (t n , S n ) 

h 

(t − t n −1 ) − K 1 (t n −1 , S n −1 ) 

h 

(t − t

= 

3 h 

2 

K 1 (t n , S n ) − h 

2 

K 1 (t n −1 , S n −1 ) . 

ubstituting this approximated value in Eq. (32) we have 

 n +1 = S n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 1 (t n , S n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
} K 1

imilarly for the remaining equations of the proposed COVID-19 m

E n +1 = E n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 2 (t n , E n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
}

I n +1 = I n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 3 (t n , I n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
} K

A n +1 = A n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 4 (t n , A n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
}

S q n +1 = S q n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 5 (t n , S q n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν)

 q n +1 = E q n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 6 (t n , E q n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν)

H n +1 = H n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 7 (t n , H n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
}

R n +1 = R n + { (1 − ν) 

M(ν) 
+ 

3 h 

2 M(ν) 
} K 8 (t n , R n ) − { (1 − ν) 

M(ν) 
+ 

νh 

2 M(ν) 
}

9 
nterpolation and calculating the integral portion in Eq. (32) over

 

(33) 

1 , S n −1 ) . (34) 

we have 

 −1 , E n −1 ) , 

1 , I n −1 ) , 

 −1 , A n −1 ) , 

t n −1 , S q n −1 ) , 

t n −1 , E q n −1 ) , 

 n −1 , H n −1 ) , 

 −1 , R n −1 ) . (35) 
Fig. 4. The impact of parameter δI (isolation rate) on total infec
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Fig. 5. The impact of parameter q (quarantine rate) on total infective population where (a) ν = 1 , (b) ν = 0 . 9 , (c) ν = 0 . 8 , (d) ν = 0 . 7 . 

Based on the iterative scheme (34) and (35) , we present some 

simulation results in order to analyze the impact of fractional or- 

eide on disease dynamics. The resulting simulations are depicted 

in Figs. 2–5 . 

5.1. Discussion 

In this section, we depict the simulation results using an itera- 

tive scheme developed in the previous section. The purpose of the 

graphical results is to explore the possible impact of memory in- 

dex and enhancement in various interventions like contact rate, 

hospitalization/isolation and quarantine on disease dynamics. The 

parameter values given in Table 1 are used to obtain the Figs. 2–

5 . These graphical interpretations reveal that the non integer or- 

der derivative has a significant impact on the dynamics of the epi- 

demic. In Fig. 2 , we analyze the variation in the dynamical behav- 

ior of model variables for different values of the fractional order ν
of CF operator. It can be observed that the symptomatic, asymp- 

tomatic and hospitalized infected individuals are decreased when 

we decrease ν . The impact of contact rate denoted by c on the total 

symptomatic, asymptomatic and hospitalized COVID-19 infective 

population is depicted in Fig. 3 . We have shown this interpreta- 

tion for four different value of ν as can be found in subplots 3 (a)–

(d). This analysis shows that when the contact rate c is decreas- 

ing, the peaks of infective population decreases significantly. The 

same behavior is observed for all values of ν . The impact of iso- 

lation rate δI on cumulative symptomatic, asymptomatic and hos- 

pitalized COVID-19 infective population is observed in Fig. 4 with 

subplots (a)–(d). With the increase in the hospitalization/isolation 

rate a reasonable decrease in the pandemic peaks is observed. Al- 

most the same effect is found for all values of ν . Finally, the im- 

pact of enhancement in quarantine rate (after contact tracing) is 

demonstrated in Fig. 5 . This analysis shows that the enhancement 

of quarantine rate can significantly reduce the pandemic peak and 

decrease the cumulative number of predicted reported COVID-19 

infected cases as can be seen in 5 (a)–(d). 

6. Conclusion 

The novel COVID-19 pandemic is a huge panic for human health 

and economy. Although most of the countries overcome this infec- 

tion still much research is needed to explore the complex trans- 

mission dynamics of COVID-19. In this paper, we have reformulated 

the mathematical model for the dynamic of COVID-19 virus stud- 

ied in Tang et al. [6] under the Caputo–Fabrizio fractional deriva- 

tives with an exponential kernel in order to capture the mem- 

ory effects. The positivity and the boundedness of solutions are 

proven. Moreover, by using Banach fixed point theory we have es- 

tablished the existence and uniqueness of the solution of fractional 

COVID-19 model (9) . An efficient iterative scheme is applied to de- 

rived the numerical solution of the fractional model. Many simu- 

lations are depicted and discussed for various values of fractional 

order describing the role of different interventions in the disease 

eradication. The present investigations revealed that the reduction 

in the contact rate c and enhancing the contact-tracing policy to 

quarantine the exposed individuals significantly reduced the peak 

of infected curves. Moreover, the decrease in the infected popula- 

10 
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tion becomes more significant for smaller values of fractional or- 

der. These graphical interpretations demonstrate the importance of 

memory index and thus, we conclude that the epidemic models 

with fractional operator can be used to gain more insights about a 

disease dynamics. 
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