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Abstract

The likelihood of suffering a bone fracture is not solely predicated on areal bone mineral density. 

As people age, there are numerous changes to the skeleton occurring at multiple length scales 

(from millimeters to submicron scales) that reduce the ability of bone to resist fracture. Herein is a 

review of the current knowledge about the role of the extracellular matrix (ECM) in this resistance, 

with emphasis on engineering principles that characterize fracture resistance beyond bone strength 

to include bone toughness and fracture toughness. These measurements of the capacity to dissipate 

energy and to resist crack propagation during failure precipitously decline with age. An age-

related loss in collagen integrity is strongly associated with decreases in these mechanical 

properties. One potential cause for this deleterious change in the ECM is an increase in advanced 

glycation end-products, which accumulate with aging through non-enzymatic collagen 

crosslinking. Potential regulators and diagnostic tools of the ECM with respect to fracture 

resistance are also discussed.
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Introduction

The risk of suffering a bone fracture increases with age, and in addition to post-menopausal 

osteoporosis, certain diseases such as diabetes [1] and chronic kidney disease (CDK) [2] also 

increase fracture risk. While an age-related or diabetes-related propensity to fall can 

certainly increase the chance of breaking a bone [3], the skeleton does undergo deleterious 

changes with aging and disease onset, and these changes reduce the ability of bone to resist 

fracture. One well recognized change is a loss of bone mass, and as such, osteoporosis 

therapies are designed to prevent bone loss (e.g., bisphosphonates) or promote bone gain 

(e.g., intermittent parathyroid hormone). Moreover, assessment of bone loss as a T-score or 

Z-score derived from dual-energy X-ray absorptiometry (DXA) are used clinically to assess 

fracture risk.

Despite the effectiveness of anti-resorptive therapy [4] and bone anabolic therapy [5] in 

increasing DXA-derived areal bone mineral density (aBMD) and more importantly reducing 

the incidence of fracture, certain individuals still sustain fractures with treatment. In 

addition, long-term bisphosphonate use has been associated with atypical, sub-trochanteric 

fractures, though no causal link has been established to date [6]. Thus, fractures are not 

solely the result of low bone mass or density, and treatment-related reductions in fracture 

incidence are not solely explained by changes in aBMD [7].

As further evidence supporting the notion that bone mass is not the sole determinant of 

fracture resistance, aBMD is not a particularly accurate predictor of an individual’s risk of 

fracture, with many fractures occurring in subjects with T-scores below −2.5 (the number of 

standard deviation below or above young adult normal mean aBMD) [8]. In effect, the age-

related increase in fracture risk is independent of the age-related decrease in BMD [8, 9]. 

That is, a 70 year old is at a much greater risk of breaking a bone than a 50 year old with the 

same BMD, an observation first published in the 1980’s [10]. In addition to aging, the 

diabetes-associated increased risk of bone fracture is disproportionate to differences in 

aBMD between diabetics and age-matched non-diabetics [11]. Type 2 diabetes (T2DM) is 

not necessarily associated with lower BMD [12], and, in several studies, aBMD was actually 

found to be higher in T2DM patients [11, 13] than in age-matched, non-diabetics. This 

inability of aBMD to predict individual fracture risk has various origins, but one indication 

is that aging and certain diseases affect bone in ways that are invisible to DXA-derived 

measures of bone mass (e.g., collagen integrity [14]). Capturing the importance of non-

BMD factors, bone quality was defined in a NIH conference as “the sum total of 

characteristics of the bone that influence the bone’s resistance to fracture” [15]. Those 

characteristics span the multiple length scales, from millimeters to submicrons, comprising 

the hierarchical organization of bone and include the extracellular matrix (ECM).

Besides bone mass, cortical bone structure and trabecular bone architecture are determinants 

of fracture resistance. Avoiding the DXA limitations of acquiring measurements from a 2D 

projection, quantitative, X-ray computed-tomography (QCT) provides both structural 

parameters and volumetric BMD (in equivalent density of a hydroxyapatite phantom). High 

resolution, peripheral CT (HR-pQCT) can provide additional architectural parameters such 

as trabecular thickness and connectivity density [16]. With regards to cortical bone structure, 
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moment of inertia and cross-sectional area correlate with whole bone strength as determined 

by biomechanical testing of cadaveric femurs and radii in simulated fall configurations (Fig 

1) [17, 18]. In clinical studies involving QCT, patients with a femoral neck or trochanteric 

fracture had a smaller cortical cross-sectional area and lower moment of inertia at the neck 

than age-matched non-fracture patients [19], indicating decreased bone strength. The 

importance of bone structure to fracture resistance has been further demonstrated in recent 

studies that used the finite element method (FEM) to predict bone strength from patients’ CT 

scan of the hip and found strength was strongly associated with fracture risk [20, 21••]. In 

addition, QCT-FEM assessment of vertebral body strength had a greater ability of 

discriminating vertebral fractures than areal BMD or volumetric BMD in a cross-sectional 

study of post-menopausal women [22]. Nonetheless, given that fractures can arise from 

fatigue loading, and that the fracture process involves the growth of cracks through the bone 

tissue, bone strength is not likely the sole contributor to a fracture event. Fracture resistance 

of bone also depends on the inherent quality of the ECM as described herein.

Age-related changes in bone toughness

From the 1960s to the present, studies involving the mechanical testing of fresh frozen, 

cadaveric bone have identified numerous age-related determinants of bone’s resistance to 

fracture (Table 1). In these cadaveric studies, bone samples are milled or cored to produce 

specimens with uniform geometry at the length scale of several millimeters (Fig 1) [23], 

which is 10–20 times greater than the size of an osteon or trabecula. With respect to cortical 

bone, aging affects the ability of bone to dissipate energy during failure (bone toughness) to 

a greater extent than it does the material strength [24–27]. Basically, older bone is brittle 

while younger bone is ductile, and this age-related change is primarily due to a loss in the 

ability of aged bone to deform or stretch beyond the point at which damage begins to form 

in the ECM (i.e., yield point or proportional limit) [27].The exact mechanism causing a 

decrease in bone toughness with age still requires further investigation. However, it is known 

that the organic phase of the ECM, namely type 1 collagen, is primarily responsible for bone 

toughness. For example, in mechanical testing studies of cadaveric bone, an age-related 

decrease in the stability of collagen correlated with bone toughness [26] as did an age-

related decrease in collagen content [27]. In addition, manipulations to the collagen, such as 

thermal-induced collagen denaturation [28], formalin fixation [29], and high energy, gamma 

or X-ray irradiation [30, 31], reduce the toughness of bone without necessarily affecting its 

material strength.

Fracture toughness as a measurement of fracture resistance

In engineering mechanics, strength is not the only material property guiding design. Since 

all materials have flaws or void spaces, however small, there is potential for a crack to form 

during the service life of the material. If the crack reaches a critical size, failure of the 

material is inevitable. Therefore, there are mechanical tests that characterize the ability of a 

material to resist crack initiation and crack propagation (a.k.a. fracture toughness) in 

addition to those that measure strength (yield or peak stress) and toughness (area under the 

stress-vs.-strain cure). Whether measured by the critical stress intensity factor [32, 33] or the 

strain energy release rate [34, 35], fracture toughness of human bone decreases during aging 

(Table 1). Moreover, healthy bone tissue possesses the ability to demand greater energy to 
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continue propagating a crack as the crack grows in length (i.e., R-curve behavior) [36, 37], 

and this behavior is lost or reduced with aging [38, 39].

The determinants of fracture toughness are rather complex, spanning multiple length scales 

(Table 1), and as such, clinical surrogates of fracture toughness are not obvious. With respect 

to mechanism, Vashishth and co-workers [40, 41] observed the formation of microscopic 

cracks within the ECM of bone – bovine, antler, and human – occupying ‘process zones’ 

ahead and in the wake of a propagating crack. Ritchie and co-workers [42, 43•] further 

observed unbroken ‘ligaments’ of bone tissue along the path of the propagating crack. As 

explained by Ritchie, these processes contribute to toughening, with an intrinsic mechanism 

of formation of the frontal microdamage zone and extrinsic mechanisms of crack bridging 

within the ECM as well as crack deflection around osteons [44]. The exact changes in the 

ECM affecting these mechanisms remain to be fully elucidated, but age-related increases in 

non-enzymatic collagen crosslinking are implicated [43•, 45, 46].

The aforementioned observations of toughening mechanisms were made through analyses of 

ex vivo bone samples using non-clinical instruments such as scanning electron microscopy 

and synchrotron micro-CT (SR-μCT). Perhaps the closest clinical measurement of bone’s 

resistance to crack propagation is the indentation distance increase (IDI) that is quantified 

using reference point indentation (RPI). Unlike microindentation or nanoindentation in 

which a hard tip (e.g., diamond) penetrates the material such that depth, force, and contact 

area are recorded to quantify hardness and modulus, RPI utilizes a reference probe (akin to a 

hypodermic needle) and a test probe that slides through the reference probe indenting the 

bone tissue (Fig 1) [47]. Moreover, RPI is designed for clinical use. Specifically, the RPI 

reference probe engages the patient’s bone under the periosteum of the tibial mid-shaft; the 

test probe performs 20 cycles of micro-indents into the tissue (50–100 μm in diameter x 

100–200 μm in depth) in force control; and then, among other properties, the instrument 

records IDI, the relative distance that the test probe travels into the ECM of bone. During 

indentation, microdamage forms below the indenter (Fig 1), and presumably, bone matrix 

with less resistance to microdamage formation allows the test probe to penetrate deeper than 

bone matrix with high resistance. Recently, the IDI for 27 fracture patients was observed to 

be 47% greater than the IDI for 8 age-matched patients (p=0.008) in the same hospital for 

non-fracture reasons [48••]. Using cadaveric bone from several donors, IDI was found to be 

inversely proportional to crack growth toughness [48••], thus linking local indents to 

apparent-level fracture toughness.

Formation of fatigue microdamage in the extracellular matrix

Although the bone’s ECM dissipates energy through the generation of microdamage as a 

means to improve its fracture toughness, bone must still minimize the accumulation of 

fatigue-induced microdamage in non-cracked regions. When subjected to repeated (i.e., 

cyclic) loading over time at stresses well below the yield strength of bone, the bone matrix 

accumulates linear microcracks and diffuse patches of nanocracks. Among other functions, 

bone remodeling serves to remove this fatigue-induced microdamage [49, 50]. Nonetheless, 

the degree of microdamage in bone increases with age [51, 52], suggesting age-related 

changes in bone’s ECM favors microdamage formation. Certainly, engineering 
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measurements of fatigue properties such as fatigue life (number of cycles to failure, Nf) and 

fatigue strength (y-intercept on an applied stress vs. Nf semi-log curve) of cadaveric bone 

decrease with age [53, 54]. The changes in the ECM that lead to such declines are not fully 

understood, but fatigue microdamage is known to accumulate between osteons in the 

interstitial sites [55], and interstitial sites (i.e., remnants of remodeled osteons) have an older 

tissue age with higher mineral-to-collagen ratio [56] and greater concentrations of mature 

collagen crosslinks [57]. Moreover, the number of lacunae in the ECM and the degree of 

mineralization in peri-lucanar space has been observed to decrease and increase, 

respectively, with age [58•]. Also, greater microdamage has been associated with a reduction 

in osteocyte lacunar density [59]. Thus, a ‘brittling’ of the ECM with human and tissue age 

lowers the tissue strain surrounding a crack, allowing it to propagate through micro-

structural barriers like cement lines, as recently observed for human cortical bone [60].

Organic contribution to fracture resistance: collagen, AGEs, and NCPs

As previously discussed, Type 1 collagen, which comprises 90% of the organic matrix, is the 

primary determinant of bone toughness. It is critical to overall fracture resistance, even 

though increasing mineral content is still the primary focus of drug discovery for fracture 

prevention. The classic example of collagen’s importance in bone is osteogenesis imperfecta 

(OI), known of course as the brittle bone disease, in which mutations in the gene encoding 

collagen strands (col1a1) lead to various grades of severity in the loss of fracture resistance. 

OI mice have bones with less post-yield deformation (i.e., more brittle) than do wild-type 

mice [61, 62], and there is greater microdamage formation with altered morphology in OI 

bones [63]. Beyond this defect in collagen that causes other changes in the matrix (e.g., 

crystallinity), crosslinking is also important. For example, disrupting enzymatic collagen 

crosslinking by treating rats with a lysyl oxidase inhibitor reduces bone strength without 

affecting mineralization [64].

Increases in advanced glycation end-products (AGEs) perhaps have garnered the greatest 

attention as a potential change in the organic matrix causing a decrease in fracture resistance 

of bone. Formed through a non-enzymatic reaction process involving sugar, these crosslinks 

of collagen increase in concentration with age and diabetes, even though bone turns over or 

remodels. Age-related increases in pentosidine, a quantifiable biomarker of AGEs, are 

associated with a decrease in post-yield energy dissipation and fracture toughness of bone 

[27, 45]. Clinically, serum or urine levels of pentosidine have been associated with higher 

incidence of fracture in post-menopausal women [65, 66••] and subjects with T2DM [67, 

68]. The concentration of pentosidine is higher in rodents with diabetes relative to control 

bone [69], and given enough time for diabetes to progress in rodents, bones become brittle 

[70]. Although a mechanism is not fully delineated, one possibility is that AGEs stiffen the 

collagen matrix such that the fibrils dissipate less energy, allowing microdamage to more 

readily form and propagate through the ECM.

Recently, attention has also been given to non-collagenous proteins (NCPs) as contributors 

to the fracture resistance of bone. Initially, small-scale mechanics using atomic force 

microscopy demonstrated that phosphorylated proteins can bridge neighboring mineralized 

collagen fibrils forming so-called sacrificial bonds resisting fibril separation [71]. 
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Subsequently, osteopontin was one NCP observed to dissipate energy through this 

mechanism [72]. Indeed, mice lacking osteopontin (OPN−/− mice) have bones with 30% 

lower fracture toughness compared to wild-type bones. However, it should be noted that this 

difference may not solely be due to the role of OPN as a sacrificial bonding agent since OPN 

is involved in mineralization and OPN−/− bones exhibited greater tissue heterogeneity than 

OPN+/+ bones [73]. Interestingly, osteonal tissue has higher amounts of OPN and 

osteocalcin than does interstitial tissue [74], and as previously mentioned, interstitial sites 

are where microcracks are most often observed in cortical bone.

The role of water in fracture resistance

As an essential component of the ECM, water is bound to both collagen and mineral phases 

via hydrogen-hydrogen bonding. As the amount of water removal from human cortical bone 

increases with an increase in drying temperature (24°C to 50 °C to 70 °C), the toughness of 

bone significantly decreases, suggesting loosely and tightly bound water contribute to 

fracture resistance [75]. Using solid-state nuclear magnetic resonance (NMR), a structural 

layer of water was observed between the collagen and mineral phases of bone [76] and could 

act as another sacrificial layer protecting collagen fibrils from shear forces [76]. 

Measurements of bound water using 1H NMR spectroscopy have been correlated with the 

mechanical properties of human cortical bone [77, 78], and if successfully translated to 

clinical imaging (magnetic resonance imaging), bound water could potentially be an 

important indicator of fracture resistance.

Spectroscopic characterization of bone tissue with respect to fracture resistance

Fourier Transform Infrared (FTIR) and Raman Spectroscopy (RS) are two complementary 

optical techniques widely used to gain insight into the biophysical nature of bone’s ECM as 

it relates to fracture resistance. In brief, when light impinges on chemical bonds, energy is 

gained or lost depending on the light wavelength and molecular vibrations of the chemical 

moieties in the tissue. The intensity spectrum of collected light (Fig 1) corresponds to the 

biochemical distribution of the bone matrix. FTIR indirectly measures differential 
absorption of light by anti-symmetric vibrations through the attenuation of transmitted 

infrared wavelengths. Due to water absorption, FTIR usually requires thin, dehydrated ex-
vivo samples [79]. RS utilizes direct reflectance measures of differential scattering off 

symmetric vibrations, shifted relative to the input wavelength. Despite limited spectral 

sensitivity relative to its FTIR counterpart and added complications from concurrent 

fluorescence, RS with its reflectance design has clinical potential as a noninvasive 

instrument for bone matrix measures in situ and even diagnostic capability through skin [80, 

81].

While the potential for optical spectroscopy to assess fracture resistance clinically is nascent, 

many studies into the ECM of bone have already contributed to our understanding of 

fracture resistance. Investigations utilizing optical spectroscopies have demonstrated: FTIR 

sensitivity to many processes involved in matrix mineralization [82]; Raman sensitivity to 

damage and defects in the bone matrix [83]; and Raman spectral changes in the ECM related 

to age-related changes in the mechanical properties of cortical bone [84, 85]. Building upon 

established Raman markers of bone quality [86], we recently demonstrated consistent 
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Raman measurements of compositional differences between osteonal and interstitial tissue 

from human cortical bone across bone orientation and processing conditions [56].

Recently,there have been efforts to determine whether spectroscopy can assess fracture risk 

and treatment-related changes to the ECM. Expanding upon evidence for a spectroscopic 

profile of osteoporosis[87], Boskey and co-workers analyzed iliac crest biopsies with FTIR. 

They correlated matrix turnover rates of osteoporotic bone with relative tissue homogeneity 

and specifically demonstrated globally decreased mineral to matrix ratio and increased 

crystal size in tissue from patients with osteoporosis [88]. In another FTIR study, Gourion-

Arsiquaudet al. [89] showed that fragility fractures were associated with locally increased 

mineral content, carbonate substitution and collagen crosslinking. Interestingly, carbonate 

substitution provided the greatest difference between fracture and non-fracture patients. 

Moreover, the associations of the FTIR-derived properties of mature to immature collagen 

crosslinking ratio and mineral to collagen ratio with fracture risk were independent of 

aBMD. Further insight into the effects of bisphosphonates (BisP) on bone matrix was 

provided by, Gourion-Arsiquaud et al.. They examined the tibia of beagles after 1 year BisP 

treatment and found increased mineral content and increased collagen cross-linking maturity 

that was also more homogenous than bone from untreated controls [90]. Then, in an FTIR 

analysis of iliac crest samples obtained from patients enrolled in the Fracture Prevention 

Trial, Paschalis et al. showed a spectral profile of teriparatide (recombinant human PTH) 

treated bone that displayed lower matrix mineralization, crystallinity, and relatively fewer 

mature collagen crosslinks, all factors consistent with indicators of younger bone matrix 

[91]. Spectral profiles of bone ECM provide a powerful resource for the investigation of 

treatment effects and mechanistic studies in ways that go beyond mineral content.

To begin establishing a profile for fracture risk assessment by RS, McCreadie et al. analyzed 

both iliac crest biopsies and proximal femurs from donors with and without an osteoporotic 

fracture [92]. In the case of the femoral head samples, the mineralization was greater for 

fracture patient than for non-fracture controls. Analysis of the cortical bone of the iliac crest 

showed that carbonate substitution (a mineral lattice change that occurs with tissue aging) 

was also greater for the fracture group than for the non-fracture group. Taken together, these 

spectroscopic studies suggest that osteoporosis causes the ECM to become more 

homogenous and exhibit accelerated aging. As technology advances toward noninvasive 

instrumentation, spectroscopy could provide clinical evaluation of bone matrix quality.

Potential regulators of bone tissue quality

There are several factors that affect the fracture resistance of bone through their influence on 

the formation of the ECM. One such factor is transforming growth factor beta (TGF-β), an 

abundant protein sequestered in the bone matrix that regulates bone cell recruitment and 

differentiation upon being activated. Examining the bones of several mouse models of 

inhibited or augmented TGF-β signaling by X-ray tomography, RS, and micro- and macro- 

mechanical testing, Balooch et al. showed that bone matrix quality and fracture resistance 

decreased as TGF-β activity increased [93]. In subsequent research, TGF-β repression of 

Runx2 was found to modulate bone ECM properties such that that the repression-induced 

decrease in modulus and hardness of cochlear bones caused deafness in a model of 
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cleidocranial dysplasia (Runx2 +/−) [94]. Given the ability of TGF-β to regulate tissue 

mineralization and fracture resistance, several pre-clinical studies investigated the effect of 

inhibiting TGF-β. When given to young mice, a small molecule inhibitor of TGF-β type I 

receptor kinase activity (SD 208) increased trabecular bone volume and vertebral body 

failure load by increasing osteoblast differentiation and reducing osteoclast differentiation 

[95]. In another mouse study, an anti-TGF-β antibody, directed at all three isoforms of TGF-

β ligand, also increased trabecular bone volume fraction and mineralization [96]. In 

addition, this antibody-mediated inhibition of TGF-β increased the estimated bending 

strength of the femur mid-shaft as assessed by three point bending tests. At the tissue level, 

TGF-β inhibition increased the mineral to matrix ratio and modulus, as assessed by RS and 

nanoindentation, respectively.

Besides TGF-β, enzymes that process collagen such as the matrix metalloproteinases 

(MMPs) may have specific roles in the maintenance of the bone ECM, thereby regulating 

fracture resistance. Our study of cortical and trabecular bone from wild-type, Mmp2−/−, and 

Mmp9−/− mice indicated differential effects on the biochemical, structural, and 

biomechanical properties of the bone across multiple length scales [97•]. Specifically, the 

loss of MMP-2 caused a decrease in strength with no effect on toughness, whereas the loss 

of MMP-9 did not affect strength but caused the bones to become brittle. These MMPs are 

both a gelatinase. However, among the bone cells, MMP-2 is expressed by osteoblasts and 

MMP-9 is primarily expressed in osteoclasts, indicating that each cell type likely plays a 

unique role in fracture resistance.

A significant number of rare congenital defects involve connective tissues and can 

subsequently provide a wealth of knowledge about the development and remodeling of bone 

ECM. Recent investigations have shown this through Neurofibromatosis type 1. An 

osteoblast-specific deletion of NF1, which normally functions to inhibit RAS-ERK signaling 

in multiple cell lineages, using Cre-LOX technology caused hypomineralization in intact 

bones [98] as well as in fracture calluses, which were also found to be weaker than those of 

age-matched wild-type mice [99]. Loss of NF1 in osteochondroprogenitor cells also leads to 

hypomineralization as well as skeletal dysplasia with a phenotype similar to the human 

disease [100].

Conclusions

Beyond mineral density and content, the integrity of the extracellular matrix is an important 

contributor to the fracture resistance of bone. The ECM is especially organized to prevent 

the initiation and propagation of microdamage. With aging though, changes occur in the 

ECM that cause bone to become brittle. Thus, the age-related increase in fracture risk may 

be thought of as problem of bone brittleness, not just poor bone strength. A lack of bone 

brittleness requires a well-organized collagen phase of the ECM dissipating energy as strains 

exceed the elastic limit of bone. This organization can be disrupted by disease and aging, 

and such disruption may include increases in non-enzymatic collagen crosslinks. Recent 

efforts are providing new insight into the factors regulating the compositional and 

biomechanical properties of the ECM. By viewing bone as an organ organized in a precise 

hierarchical fashion with a dynamic extracellular matrix, novel insights are possible for 
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establishing the mechanisms by which diseases and aging affect fracture resistance, and 

ultimately uncovering new treatment and diagnostic strategies for the prevention of bone 

fractures.
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Figure 1. 
To fully characterize the contributors to the fracture resistance of bone, the tissue is tested at 

multiple length scales, which involves analyses at progressively smaller length-scales A. 
macro-structure (> 10 mm), testing of a femur in a side-ways fall configuration to whole 

bone strength; B. sub-macro-structure (2–5 mm), tensile mechanical testing of uniform 

cortical bone strips to quantify apparent material propeties; C. micro-structure (150–350 

μm), reference point indentation (RPI) to characterize in situ or in vivo damage resistance of 

the ECM, as shown in the scanning electron micrograph in the lower portion of the panel; D. 
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sub-micro-structure (0.5–25 μm), Raman spectroscopy (RS) to assess compositional 

properties of the matrix such as mineral to collagen ratio and crystallinity and 

nanoindentation to acquire complimentary properties of modulus and hardness
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Table 1.

Age-related changes in bone at different length scales have been associated with changes in fracture resistance

Length Scale (μm) Bone tissue characteristic Material Property Ref

100 Osteons per area ↑ Tensile strength ↓ [23]

100 Percentage osteons ↑ Resistance to crack propagation ↓ [34]

10–50 Porosity ↑ Post-yield toughness ↓ [25]

10–50 Porosity ↑ Resistance to crack propagation ↓ [35]

1–5 Microdamage ↑ Resistance to crack propagation ↓ [33]

0.1 Collagen integrity ↓ Toughness ↓ [26]

0.1 Collagen crosslinks ↑ Fracture toughness ↓ [45]

0.1 Collagen content ↓ Post-yield energy dissipation ↓ [27]
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