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Many intracellular signaling pathways are composed of molec-
ular switches, proteins that transition between two states—on
and off. Typically, signaling is initiated when an external stim-
ulus activates its cognate receptor that, in turn, causes down-
stream switches to transition from off to on using one of the
following mechanisms: activation, in which the transition rate
from the off state to the on state increases; derepression, in
which the transition rate from the on state to the off state
decreases; and concerted, in which activation and derepression
operate simultaneously. We use mathematical modeling to com-
pare these signaling mechanisms in terms of their dose–response
curves, response times, and abilities to process upstream fluctu-
ations. Our analysis elucidates several operating principles for
molecular switches. First, activation increases the sensitivity of
the pathway, whereas derepression decreases sensitivity. Second,
activation generates response times that decrease with signal
strength, whereas derepression causes response times to increase
with signal strength. These opposing features allow the concerted
mechanism to not only show dose–response alignment, but also
to decouple the response time from stimulus strength. However,
these potentially beneficial properties come at the expense of
increased susceptibility to upstream fluctuations. We demonstrate
that these operating principles also hold when the models are
extended to include additional features, such as receptor removal,
kinetic proofreading, and cascades of switches. In total, we show
how the architecture of molecular switches govern their response
properties. We also discuss the biological implications of our
findings.
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Several molecules involved in intracellular signaling pathways
act as molecular switches. These are proteins that can be

temporarily modified to transition between two conformations,
one corresponding to an on (active) state and another to an off
(inactive) state. Two prominent examples of such switches are
proteins that are modified by phosphorylation and dephosphory-
lation and GTPases that bind nucleotides. For phosphorylation–
dephosphorylation cycles, it is common for the covalent addition
of a phosphate by a kinase to cause activation of the modified
protein. A phosphatase removes the phosphate to turn the pro-
tein off. In the GTPase cycle, the protein is on when bound to
guanosine triphosphate (GTP) and off when bound to guano-
sine diphosphate (GDP). The transition from the GDP-bound
state to the GTP-bound state requires nucleotide exchange,
whereas the transition from the GTP-bound to the GDP-bound
state is achieved via hydrolysis of the γ phosphate on GTP.
The basal rates of nucleotide exchange and hydrolysis are often
small. These reaction rates are increased severalfold by Guanine
Exchange Factors (GEFs) and GTPase Accelerating Proteins
(GAPs), respectively (1, 2).

A signaling pathway is often initiated upon recognition of a
stimulus by its cognate receptor, which then activates a down-
stream switch. In principle, a switch may be turned on by three
mechanisms: (a) activation, by increasing the transition rate from

the off state to the on state; (b) derepression, by decreasing the
transition rate from the on state to the off state; and (c) concerted
activation and derepression. Examples of these three mecha-
nisms are found in the GTPase cycles in different organisms.
In animals, signaling through many pathways is initiated by G-
protein-coupled receptors (GPCRs) that respond to a diverse
set of external stimuli. These receptors act as GEFs to acti-
vate heterotrimeric G proteins (3–6). Thus, pathway activation
relies upon increasing the transition rate from the off state to
the on state. There are no GPCRs in plants and other bikonts;
the nucleotide exchange occurs spontaneously, without requir-
ing GEF activity (7–9). G proteins are kept in the off state by
a repressor such as a GAP or some other protein that holds
the self-activating G protein in its inactive state. In this sce-
nario, the presence of a stimulus results in derepression, i.e.,
removal of the repressing activity (10–12). Concerted activation
and dererpression occur in the GTPase cycle of the yeast mating-
response pathway (13, 14), in which the inactive GPCRs recruit
a GAP protein and act to repress, whereas active receptors have
GEF activity and act to activate. Thus, perception of a stimu-
lus leads to concerted activation and derepression by increasing
GEF activity while decreasing GAP activity.

These three mechanisms of signaling through molecular
switches also occur in many other systems. For example, the
activation mechanism described here is a simpler abstraction of
a linear signaling cascade, a classical framework used to study
general properties of signaling pathways (15–19), as well as to
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model specific signaling pathways (20–22). While derepression
may seem like an unusual mechanism, it occurs in numerous
important signaling pathways in plants (e.g., auxin, ethylene,
gibberellin, and phytochrome), as well as gene regulation (23–
27). In many of these cases, derepression occurs through a
decrease in the degradation rate of a component instead of its
deactivation rate. Concerted mechanisms are found in bacterial
two-component systems, wherein the same component acts as
kinase and phosphatase (28–35).

Many previous studies have focused on the properties of a sin-
gle switch mechanism without drawing comparisons between the
three potential ways for initiating signaling. For example, the
classical Goldbeter–Koshland model studied zero-order ultra-
sensitivity of an activation mechanism (15). Further analyses
examined the effect of receptor numbers (36–38), feedback
mechanisms (39, 40), and removal of active receptors via endo-
cytosis and degradation (41, 42). Similarly, important properties
of the concerted mechanism have been elucidated, such as its
ability to perform ratiometric signaling (13, 14), to align dose
responses at different stages of the signaling pathway (43), as well
as its robustness (29, 44). The derepression mechanism is rela-
tively less studied. Although there are models of G-signaling in
Arabidopsis thaliana (45–47), these models have a large number
of states and parameters and do not specifically examine distinct
behaviors conferred by derepression.

What are the evolutionary constraints that may favor acti-
vation over derepression and vice versa? Seminal studies have
investigated this question for gene-regulatory networks (48–50).
However, an analysis of differences in the functional charac-
teristics of activation, derepression, and concerted mechanisms
in the context of cell signaling is still lacking. To address this
deficiency, we perform a systematic comparison of the three
mechanisms using the following metrics: 1) dose–response, 2)
response time, and 3) ability to suppress or filter stochas-
tic fluctuations in upstream components. The rationale behind
comparing dose–response curves is that they provide informa-
tion about the input sensitivity range and the output dynamic
range, both of which are of pharmacological importance. We
supplement this comparison with response times, which pro-
vide information about the dynamics of the signaling activ-
ity. The third metric of comparison is motivated from the
fact that signaling pathways are subject to intrinsic fluctua-
tions that occur due to the stochastic nature of biochemical
reactions (51–56).

We construct and analyze both deterministic ordinary differ-
ential equation (ODE) models and stochastic models based on
continuous-time Markov chains. We show that activation has the
following two effects: It makes the switch response more sen-
sitive than that of the receptor, and it speeds up the response
with the stimulus strength. In contrast, derepression makes the
switch response less sensitive than the receptor occupancy and
slows down the response speed as stimulus strength increases.
These counteracting behaviors of activation and derepression
lead to intermediate sensitivity and intermediate response time
for the concerted mechanism. In the special case of a per-
fect concerted mechanism (equal activation and repression),
the dose–response curve of the pathway aligns with the recep-
tor occupancy, and the response time does not depend upon
the stimulus level. The noise comparison reveals that the con-
certed mechanism is more susceptible to fluctuations than the
activation and derepression mechanisms, which perform sim-
ilarly. We further show that these results qualitatively hold
for more complex models, such as those incorporating recep-
tor removal and proofreading. We finally discuss our findings
to suggest reasons that might have led biological systems to
evolve one of these mechanisms over the others, a question
that has received considerable attention in the context of gene
regulation (48–50).

Model Formulation
We consider a two-tier model for each of three mechanisms
of signaling through a molecular switch (Fig. 1). The first tier
is common for all mechanisms, where an inactive receptor
(X ) becomes active (X ∗) when its corresponding input (stimu-
lus) is presented. The second tier is the molecular switch that
transitions between off (Y ) and on (Y ∗) states. In the activa-
tion mechanism, the transition rate from the off state to the
on state increases as the number of active receptor molecules
increases (Fig. 1A). In the derepression mechanism, the transi-
tion rate from the on state to the off decreases with a decrease
in the number of inactive receptor molecules (Fig. 1B). In the
concerted mechanism, both activation and derepression occur
simultaneously (Fig. 1C). We model these mechanisms using
ODEs, assuming mass-action kinetics. To this end, we denote
the time by t , the stimulus level by S , the total number of
receptors by XT , and the total number of switches by YT .
We use X ∗ and Y ∗ to denote the number of active recep-
tors and the number of active switches, respectively. The rate
constants are as follows: k1 is the rate of receptor activation
per unit stimulus, k2 is the rate of receptor deactivation, k3
is the basal rate of activation of the switch, k4 is the basal
rate of deactivation of the switch, k5 is the strength of activa-
tion of an individual active receptor, and k6 is the strength of
repression of an individual inactive receptor. Thus, the (total)
activation strength is k5XT , and the (total) repression strength
is k6XT . Lastly, we assume that XT and YT are conserved and
that each model is in steady state before presentation of the
stimulus at t = 0.

Note that the concerted mechanism encompasses both acti-
vation and derepression. Therefore, writing ODEs for the con-
certed mechanism is sufficient to capture all three mechanisms.
The number of active receptors and the number of active
switches evolve over time according to the following ODEs (SI
Appendix, section S1):

dX ∗

dt
= k1SXT − (k1S + k2)X ∗, [1a]

dY ∗

dt
= k3YT + k5YTX

∗− (k3 + k4 + k6XT )Y ∗

− (k5− k6)X ∗Y ∗. [1b]

The activation and derepression mechanisms represent limit-
ing cases in which k6 = 0 and k5 = 0, respectively. Solving Eq.
1 requires rate constants and initial conditions to be specified.

A B C

Fig. 1. Mechanisms for signaling through molecular switches. Presentation
of a stimulus activates a receptor (X→X∗). The reverse reaction causes
deactivation of the receptor (X∗→X). These transitions govern the activ-
ity of a molecular switch downstream. (A) In the activation mechanism, X∗

increases the rate at which the inactive switch (Y) becomes active (Y∗).
The opposite reaction Y∗→Y has a constant rate. (B) In the derepres-
sion mechanism, the transition Y→Y∗ occurs at a constant rate. Activity
of the switch is controlled through X: The stimulus decreases X and conse-
quently increases Y∗. (C) In the concerted paradigm, both activation and
derepression simultaneously control the downstream component.
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We assume that initial conditions are given by the prestimulus
(S = 0) steady state:

X ∗0 = 0, Y ∗0 =
k3

k3 + k4 + k6XT
YT . [1c]

With the models described by Eq. 1, we next compare the
three signaling mechanisms in terms of their dose responses and
response times.

Dose Responses
We begin our analysis by examining the steady-state dose
responses of activation, derepression, and concerted mecha-
nisms. The steady-state solution to Eq. 1 is

X ∗=
SXT

S + k2
k1

, [2a]

Y ∗=

k2k3
k1(k3+k4+k5XT )

+ k3+k5XT
k3+k4+k5XT

S

k2(k3+k4+k6XT )
k1(k3+k4+k5XT )

+S
YT , [2a]

where X ∗ and Y ∗ represent the steady states for the number of
active (occupied) receptors and the number of active switches,
respectively. Notably, both X ∗ and Y ∗ have the form

R =
R0ΘR +R∞S

ΘR +S
, [3]

where R0 is the minimum response corresponding to S = 0,
R∞ is the maximum response corresponding to S�ΘR, and
ΘR is the stimulus concentration that produces half-maximal
response R0+R∞

2
. The dynamic range of the response is given

by R∞−R0, signifying the maximum the output can change
in response to the input. Eq. 3 shows that shapes of dose–
response curves are the same for the three signaling mechanisms.
Hence, comparison between them can be carried out in terms of
R0, R∞, and ΘR.

At the receptor level, X ∗0 = 0 and X ∗∞=XT . The ratio k2
k1

,
which equals the binding affinity of the stimulus with the recep-
tor, determines the half-maximal stimulus (ΘX∗ = k2

k1
) and the

fractional receptor occupancy ( X
XT

= k1S/k2
1+k1S/k2

). For the switch,
the response (Y ∗) is specified by:

Y ∗0 =
k3YT

k3 + k4 + k6XT
, [4a]

Y ∗∞=
(k3 + k5XT )YT

k3 + k4 + k5XT
, [4b]

ΘY ∗ = ΘX∗
k3 + k4 + k6XT

k3 + k4 + k5XT
. [4c]

These expressions show that the dose–response of the switch
depends upon the basal rates as well as activation strength
(k5XT ) and repression strength (k6XT ). A careful examination
of Eq. 4 provides the following insights:

1. The activation strength (k5XT ) does not affect the minimum
response (Y ∗0 ), but affects the maximum response (Y ∗∞). In
particular, increasing k5XT increases Y ∗∞. The repression
strength (k6XT ) decreases Y ∗0 and does not affect Y ∗∞.

2. Relative values of the repression and activation strengths dic-
tate the relationship between the half-maximal stimulus for
the switch response (ΘY ∗) vis-á-vis the half-maximal stim-
ulus for the receptor occupancy (ΘX∗). More specifically,
ΘY ∗ <ΘX∗ when k5XT > k6XT , ΘY ∗ = ΘX∗ when k5XT =
k6XT , and ΘY ∗ >ΘX∗ when k5XT < k6XT . Increasing k6XT

increases ΘY ∗ , while increasing k5XT does the opposite.
3. The limiting case of k3 = 0 implies Y ∗0 = 0, and that of k4 =

0 leads to Y ∗0 =YT . Thus, nonzero basal rates reduce the
dynamic range Y ∗∞−Y ∗0 because Y ∗∞<YT and Y ∗0 > 0. In
the same vein, the relationship between ΘY ∗ and ΘX∗ is most
sensitive to the ratio k6XT/k5XT when k3 = 0 and k4 = 0.

Fig. 2 illustrates the features of the dose–response curves
for the three mechanisms described above. For many signaling
pathways, it is reasonable to assume negligible signaling activity
in the absence of stimulus (Y ∗0 �YT ) and almost full activity
for high stimulus levels (Y ∗∞≈YT ). To meet these physiolog-
ical constraints requires k3� k4 + k6XT and k4� k3 + k5XT ,
respectively. Additionally, note that, for simplicity, we set basal
rates equal to zero where possible. Thus, we use the following
parameters for Fig. 2: k3 = 0 and k6 = 0 for activation; k4 = 0

A B C

Fig. 2. Dose–response curves for signaling mechanisms through molecular switches. The response is measured in terms of fraction of active switches Y∗/YT

as the stimulus level varies. The receptor-occupancy curve denotes the fraction of active receptors X∗/XT . The stimulus is normalized by its binding affinity
to the receptor (ΘX∗ ). (A) For the activation mechanism, the half-maximal stimulus (ΘY∗ ) of a dose–response curve is less than ΘX∗ . Each dose–response
curve (solid line) is for a fixed activation strength (act. str.) k5XT . Increasing k5XT , depicted by the solid arrow, causes an upward expansion and leftward
shift in dose–response. For these plots, the following values for parameters were used: k3 = 0, k4 = 1 and k6 = 0. The activation strength (k5XT ) was varied
to take values from (1, 10, 100). (B) For the derepression mechanism, the dose–response of the switch for a given repression strength (rep. str.) (k6XT ) has
half-maximal stimulus (ΘY ) greater than ΘX∗ . Increasing k6XT , shown by the solid arrow, leads to a downward expansion and rightward shift in the dose–
response curve. The repression strength k6XT takes values from (1, 10, 100). The rest of the parameters were set as k3 = 1, k4 = 0, and k5 = 0. (C) In the
case of concerted mechanism, ΘY∗ may be greater than, equal to, or less than ΘX∗ , depending upon the relative (rel.) values of the activation strength
and the derepression strength. Increasing the ratio k5/k6, depicted by the solid arrow, shifts the dose response (resp.) to the left. Dose–response alignment
(ΘY∗ = ΘX∗ ) occurs when k5 = k6. The parameters used for the plots are k3 = 0 and k4 = 0. The ratio k5/k6 was varied over (0.1, 1, 10).
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and k5 = 0 for derepression; and k3 = 0 and k4 = 0 for concerted.
As shown in Fig. 2A, activation makes the switch response more
sensitive to stimulus than the receptor occupancy (ΘY ∗ <ΘX∗).
Increasing the activation strength (k5XT ) increases Y ∗∞ and
decreases ΘY ∗ , increasing the dynamic range (vertical expan-
sion) and sensitivity (leftward shift) of the dose–response curve.
The derepression mechanism exhibits an opposite behavior with
ΘY ∗ >ΘX∗ . In this scenario, increasing the repression strength
increases the dynamic range by decreasing Y ∗0 and decreases
sensitivity by increasing ΘY ∗ (Fig. 2B).

Because we ignore the basal rates, changing activation and
derepression strengths only influence ΘY ∗ in the case of a con-
certed mechanism. As expected, the switch response is more
(less) sensitive than the receptor occupancy if activation (dere-
pression) dominates derepression (activation). There is a per-
fect alignment of the fractional receptor-occupancy curve with
the dose–response curve of the switch when k5 = k6 (Fig. 2C).
Another important property of the concerted model is that it
exhibits ratiometric signaling, in which the response of the switch
(Y ∗) is determined by the ratio of active receptors to the total
number of receptors (X ∗/XT ) (13, 14). The absolute value of
the total number of receptors (XT ) has no bearing on Y ∗. This
may be seen by setting k3 = 0 and k4 = 0 in the expression of Y ∗
in Eq. 2:

Y ∗=
SYT

S + k2k6
k1k5

. [5]

In reality, k3 and k4 are likely to be small, but nonzero.
Therefore, ratiometric signaling does not hold in a strict sense.

Our theoretical results above show how the dose–response
curves behave differently for activation, derepression, and con-
certed mechanisms. Are some of these behaviors observed in
biological systems? One example where the signaling response
becomes maximal when only a small fraction of receptors are
bound (ΘY ∗ <ΘX∗) is the EGFR–MAPK pathway, which elic-
its a full MAPK response at less than 5% receptor occupancy
(57). Our analysis explains this by an activation mechanism or
a concerted mechanism, in which the activation strength domi-
nates the repression strength. A contrasting behavior is seen in
the ethylene pathway of A. thaliana, in which a loss-of-function
mutation of one of the ethylene receptors, etr1, shows increased
sensitivity to etylene (58). This points to a derepression mecha-
nism in which the decreased amount of the receptor (XT ) lowers
the repression strength k6XT and shifts the dose–response curve
to the left in comparison to that of the wild-type system. A sug-
gested example of concerted mechanism is the yeast G-signaling
pathway, which exhibits both ratiometric signaling (13, 14) and
dose–response alignment (43).

Response Times
Our analysis thus far focused on the steady-state properties of
the activation, derepression, and concerted mechanisms. In this
section, we study these mechanisms in terms of their response
times; that is, the time it takes for a signaling output to reach its
steady state. We use the following definition of response time:

TR =

∫∞
0

t
∣∣R−R(t)

∣∣ dt∫∞
0

∣∣R−R(t)
∣∣ dt , [6]

where R(t) is the time-dependent response of the pathway com-
ponent under consideration and R represents its value at steady
state (59). For this definition, TR represents the “center of mass”
of the response R(t) and is well-defined when R(0) 6=R. We may
also think of 1/TR as the speed of the response in the sense
that if the response is determined by a single kinetic step, TR
is the reciprocal of the rate constant for that step. For exam-

ple, the response time for the receptor is given by (SI Appendix,
section S2):

TX∗ =
1

k1S + k2
. [7]

Thus, the response time decreases (i.e., response speeds up) if
k1S + k2 increases. Because the response time depends upon
the sum k1S + k2 and the steady-state receptor occupancy
depends upon the ratio k1S/k2, these quantities can be tuned
independently.

In the absence of stimulus, the response time of the switch
follows the same form as Eq. 7:

TY ∗ |S=0 =
1

k3 + k4 + k6XT
. [8]

When the stimulus is present, analytic solutions to the integrals
in Eq. 6 for the response time of Y ∗(t) do not exist, except for
a special case of the perfect concerted model k5 = k6. It is, how-
ever, possible to approximate TY ∗ by linearizing the ODE system
in Eq. 1 around its steady state:

TY ∗ ≈
1

k3 + k4 + k6XT + (k5− k6) k1SXT
k1S+k2︸ ︷︷ ︸

resp. time of Y ∗ when X∗ is in steady-state

+
1

k1S + k2︸ ︷︷ ︸
resp. time of X∗

×
k3 + k4 + k6XT + (k5− k6) k1SXT

k1S+k2

k1S + k2 + k3 + k4 + k6XT + (k5− k6) k1SXT
k1S+k2︸ ︷︷ ︸

time-averaging

. [9]

This equation is exact for the special case when k5 = k6 (SI
Appendix, section S3C). The first term in Eq. 9 can be inter-
preted as the response time of the switch when the receptors
are at steady state, because in that case, the switch would be
turned on at a rate k3 + k5

k1SXT
k1S+k2

and turned off at a rate
k4 + k6XT − k6

k1SXT
k1S+k2

; so, the inverse of their sum would give
the response time. The second term represents the response
time of the receptor (TX∗) multiplied by a time-averaging fac-
tor, which computes the ratio of TX∗ to the sum of TX∗ and the
response time of the switch when X ∗=X ∗. The time-averaging
term lies between zero and one; its value approaches zero if the
receptor response is much faster than the switch response when
X ∗=X ∗ and approaches one if the receptor response is much
slower than that of the switch.

If the receptor response is much faster than that of the switch,
we expect that the latter does not depend upon the former (time-
averaging term→ 0). Indeed, in this limit, Eq. 9 gives

TY ∗ ≈
1

k3 + k4 + k6XT + (k5− k6) k1SXT
k1S+k2

. [10]

Comparing Eq. 10 with the basal response time in Eq. 8 shows
that for a given stimulus level, activation speeds up the response
in comparison with the basal response. In contrast, derepression
slows down the response, and a perfect concerted mechanism
does not affect the response time (Fig. 3A). In the other limit-
ing case, when the receptor timescale is much slower than that
of the switch, we expect the receptor dynamics to dictate the
response time (time-averaging term → 1). Indeed, in this case,
Eq. 9 reduces to TY ∗ ≈TX∗ , such that choice of the mechanism
to control the switch has little effect on the response time. Our
analytical as well as numerical calculations confirm this behavior
(Fig. 3A).

An intuitive explanation for why activation is faster than dere-
pression is as follows. Activation shortens the average lifetime
of the off state, without affecting the average lifetime of the
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A B C

Fig. 3. Response times of molecular switches governed by activation, derepression, and concerted mechanisms. (A) The response (resp.) time of the switch
increases as the response time of the receptor increases. Differences in the signaling mechanisms are more prominent when the receptor response is fast (i.e.,
the relative [rel.] response time of the receptor goes to zero). In this limit, activation decrease the response time, derepression increases the response time,
and the concerted mechanism leaves it unchanged in comparison to the basal response time. For each signaling mechanism, the response time is computed by
using the analytical result in Eq. 9 (solid lines) and numerically validated by using Eq. 6 (dashed lines). To ensure the same basal response and basal response
time of the switches across signaling mechanisms, we chose the parameters as k3 = 1/9, k4 = 1, k6 = 0, and k5XT = 10 for activation; k3 = 1/9, k4 = 0, k5 = 0,
and k6XT = 1 for derepression; and k3 = 1/9, k4 = 0, and k5XT = k6XT = 1 for concerted. The receptor response time was k1S + k2 varied through k2, while
maintaining k1S/k2 = 1. (B) With increase in the stimulus level, response time decreases for activation, increases for derepression, and does not change for
the concerted mechanism. The comparison is controlled by setting same response time at half-maximal (half-max.) stimulus ΘY∗ . The following parameters
were chosen to have same basal response, but different basal response times: k3 = 1, k4 = 9, k5XT = 90, and k6 = 0 for activation; k3 = 10, k4 = 0, k5 = 0,
and k6XT = 90 for derepression; and k3 = 10, k4 = 0, and k5XT = k6XT = 90 for concerted. The receptor occupancy was varied by changing k1S/k2 while
maintaining the receptor response time 1/(k1S + k2), which was chosen to be 100 times faster than the response time of the switches at their respective
half-maximal stimulus levels. (C) Comparing the system’s response to a pulse of stimulus provides a method for distinguishing mechanisms. The response
time for activation (derepression) following exposure to stimulus is shorter (longer) than following removal of stimulus. The time series for each mechanism
is normalized to its steady state in the presence of stimulus. We used parameters such that each mechanism has the same response time of the switch in
the absence of the stimulus and the stimulus strength produced a half-maximal response. Specific values of parameters are: k1 = 1, k2 = 1, XT = 100, and
YT = 100 for both mechanisms; k3 = 1/9, k4 = 1, k5 = 0.1, and S = 0.1 for activation; and k3 = 1/9, k4 = 0, k6 = 0.01, and S = 10 for derepression.

on state. Derepression operates differently; it does not affect
the average lifetime of the off state, but increases the lifetime
of the on state. Thus, activation responds faster than derepres-
sion. The concerted mechanism simultaneously decreases the
lifetime of the off state and increases the lifetime of the on state.
Therefore, its response time lies between those of activation and
derepression.

Next, we examine how the response time varies with stimu-
lus level (S ). Because changing the stimulus affects the response
time of the receptor, which, in turn, affects the response time of
the switch, we control for this effect by keeping k1S + k2 con-
stant. We find that activation shortens the response time (speeds
up the response) with increasing stimulus levels, whereas dere-
pression increases the response time (slows down the response)
(Fig. 3B). Importantly, the response time of the concerted mech-
anism is independent of the stimulus strength and, therefore,
able to respond rapidly over the whole range of stimulus lev-
els. To better understand this behavior, consider the response
time for the limiting case of fast receptor dynamics. Eq. 10 can
be rewritten as

TY ∗ ≈
1

k3+k4+k6XT
ΘY ∗ + 1

k3+k4+k5XT
S

S + ΘY ∗
, [11]

which changes from 1
k3+k4+k6XT

at S = 0 to 1
k3+k4+k5XT

as S→
∞. The half-maximal stimulus ΘY ∗ is the same as defined in
Eq. 4. For the activation mechanism, 1

k3+k4+k6XT
> 1

k3+k4+k5XT
,

so the response time decreases with stimulus. Moreover,
1

k3+k4+k6XT
< 1

k3+k4+k5XT
for the derepression mechanism and

1
k3+k4+k6XT

= 1
k3+k4+k5XT

for the perfect concerted mechanism.
Therefore, the response time increases with the stimulus for the

derepression mechanism and is independent of the stimulus for
the concerted case. It is also worth pointing out that activation
is faster than derepression only if the basal response times are
equal. Therefore, to construct a switch that responds rapidly
using derepression, it is necessary for the switch to undergo fast
basal cycling (Fig. 3B).

Our analysis of dose–response properties for ratiometric sig-
naling given in Eq. 5 reveals that this mechanism is independent
of the total number of receptors XT when the basal rates of the
switch are zero (k3 = 0 and k4 = 0). Using these values in the
expression for the response time in Eq. 9 demonstrates that this
property does not hold for the response time. Specifically, the
response time decreases with an increase in XT (SI Appendix,
section S3E).

Up to this point, we have assumed that the input signal is
constant in time. However, cells are often faced with environ-
mental conditions that change in time, and challenging signaling
pathways with time-dependent inputs is a powerful experimen-
tal technique for revealing the network motifs that regulate
these systems (60, 61). To investigate how molecular switches
respond to dynamic inputs, we first considered how each mech-
anism responds to a single pulse of stimulus in the form of a
square wave. Using a time-dependent signal of this form provides
a technique for distinguishing the activation and derepression
mechanisms (Fig. 3C). If the response time following exposure
to the stimulus is shorter (longer) than the time for the system
to relax once the stimulus is removed, then the switch is pri-
marily controlled by activation (derepression). We also consider
the responses of receptor as well as switch governed by either
of the three mechanisms to periodic input signals consisting of
sequences of square wave pulses with varying frequency. We find
that these architectures filter high-frequency inputs (SI Appendix,
section S5).
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Table 1. Transitions and associated rates for the stochastic
model

Reaction Population update Transition rate

X→X∗ X∗ 7→X∗ + 1 k1S(XT −X∗)
X∗→X X∗ 7→X∗− 1 k2X∗

Y→Y∗ Y∗ 7→Y∗ + 1 (k3 + k5X∗)(YT −Y∗)
Y∗→Y Y∗ 7→Y∗− 1 (k4 + k6(XT −X∗))Y∗

Processing Upstream Fluctuations
The deterministic models used to compare the signaling mech-
anisms thus far ignore the stochastic nature of biochemical
reactions, which becomes relevant when the abundance of recep-
tor and switch proteins are small (51–56, 62, 63). Therefore, we
formulate a stochastic model of the concerted mechanism and
analyze the other two mechanisms as its special cases. Our model
consists of four reactions: activation of receptor upon recogniz-
ing the stimulus, deactivation of receptor, on-to-off transition of
the molecular switch, and off -to-on transition of the molecular
switch. The stochastic model is characterized by the probabilis-
tic nature of each reaction, and the discreteness of changes in
population counts upon occurrence of a reaction, as tabulated in
Table 1.

Our goal is to analyze the noise properties of activation, dere-
pression, and concerted mechanisms. We quantify noise using
coefficient of variation squared (CV 2), which is computed by
normalizing the variance by mean2 and is a dimensionless quan-
tity. To this end, we use the ODEs that describe the time
evolution of the first- and second-order moments and solve them
in steady state to obtain the stationary moments (64–66) (SI
Appendix, section S4A). In particular, moments for the number
of active receptors (X ∗) are given by

〈X ∗〉= k1SXT

k1S + k2
, CV 2

X∗ =

〈
X ∗2

〉
−〈X ∗〉2

〈X ∗〉2
=

1

XT

k2
k1S

.

[12]

Here, 〈.〉 denotes the expected value (average) of its argu-
ment. These moments correspond to a binomial distribution with
parameters XT and k1S

k1S+k2
(SI Appendix, section S4A). The

stochastic mean 〈X ∗〉 is same as the steady-state value for X ∗

in the deterministic model in Eq. 1. The coefficient of variation
squared increases as the number of receptors (XT ) decreases.
Therefore, the noise analysis is important when XT is small. In
addition, the noise decreases with the ratio k1S/k2. Recall that
k1S/k2 is the stimulus level relative to the binding affinity. Thus,
the noise diminishes when the stimulus level is much higher than
the binding affinity.

Closed-form expressions for the moments are not available for
Y ∗, owing to the nonlinear term X ∗Y ∗ in reaction rates, except
for the special case of a perfect concerted model (k5 = k6). We
approximate the mean response and the noise by considering a
linearized system around the steady state

〈Y ∗〉≈
k3 + k5

k1S
k1S+k2

XT

k3 + k4 + k6
k2

k1S+k2
XT

YT , [13a]

CV 2
Y ∗ ≈

1

YT

k4 + k6XT
k2

k1S+k2

k3 + k5XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y ∗

+

CV 2
X∗ ×

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

k1S + k2 + k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2︸ ︷︷ ︸
time-averaging

×

(
k1S

k1S+k2

)
2 (k4k5XT + k6XT (k3 + k5XT ))2(

k3 + k5
k1SXT
k1S+k2

)
2
(
k3 + k4 + k5

k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

)
2︸ ︷︷ ︸

coupling

.

[13b]

We validate these approximations using exact semianalytical
approach based on ref. 67 (SI Appendix, section S4D). The for-
mula for CV 2

Y ∗ above is written in terms of various sources of
noise, as previously done for gene-regulation models (68–70).
Specifically, the noise in the signaling activity of the switch arises
from two sources: activation/deactivation reactions of the switch,
and noise in the number of active receptors (CV 2

X∗). The contri-
bution from activation/deactivation of the switch in Eq. 13 has
a similar form as CV 2

X∗ in Eq. 12. Accordingly, the contribu-
tion of this term decreases with an increase in YT or increase
in the ratio of the total activation rate

(
k3 + k5XT

k1S
k1S+k2

)
with

total deactivation rate
(
k4 + k6XT

k2
k1S+k2

)
. This ratio increases

if the activation strength increases or the repression strength
decreases. The contribution of CV 2

X to CV 2
Y ∗ is scaled by time-

averaging and coupling terms. The time-averaging term is the
same as that in Eq. 9; it varies between zero and one, depend-
ing upon the relative timescales of the receptor and the switch.
Thus, in the limiting case where receptor dynamics is very fast,
the contribution from CV 2

X∗ to CV 2
Y ∗ becomes negligible due to

efficient time-averaging of fluctuations in X ∗. The coupling term
in Eq. 13 determines how strongly X ∗ affects Y ∗. For example,
this term is zero when the stimulus is absent (S = 0) or when both
k5 and k6 are zero. In both these cases, the switch is decoupled
from the receptor.

Next, we compare the noise properties of activation, derepres-
sion, and concerted mechanisms. To mathematically control the
comparison, we assume that the receptor dynamics is same across
the three strategies. In addition, we maintain the same aver-
age rate at which the switch turns on from the off state—i.e.,
k3 + k5

k1SXT
k1S+k2

—and the same average rate at which the switch
turns off from the on state—i.e., k4 + k6

k2XT
k1S+k2

. These assump-
tions ensure that differences in the noise properties, if any, are
solely due to the architecture of the molecular switch, and not
dependent on the parameters. With this setup, we examine the
effect of relative timescales (response times) of the receptor
and the switch. We observe that in Eq. 13, varying k1S + k2
while maintaining k1S/k2 only affects the time-averaging term;
all other terms are not affected. As shown in Fig. 4A, the noise
properties of these signaling mechanisms are similar when the
receptor timescale is fast. This is expected because the domi-
nant contribution in CV 2

Y ∗ comes from its own activation and
deactivation. However, when the receptor timescale is slower
than that of the switch, the overall noise increases, regard-
less of the signaling mechanism, and the noise performance of
the concerted mechanism becomes worse than the other two
mechanisms.

The observation that activation and derepression both have
similar noise and their concerted action has higher noise
is surprising in light of our analyses of dose–response and
response time. In terms of these properties, activation and dere-
pression counteract to enable intermediate response for the
concerted mechanism. Intuitively, the increase in fluctuations
occurs because in the concerted mechanism, fluctuations in the
upstream component affect both transitions Y →Y ∗ and Y ∗→
Y . In the case of activation and derepression, however, only one
of these transitions is coupled with the upstream component. As
a result, the concerted mechanism performs worse in terms of
noise. We further highlight this observation by varying the rela-
tive strengths of activation (k5XT ) and derepression (k6XT ) in
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A B

Fig. 4. Noise in the number of active switch molecules. Noise is quantified by using coefficient of variation squared (CV2
Y∗ ) as in Eq. 13. The overall CV2

Y∗
is shown relative to the contribution from activation/deactivation (act./deact.) of Y∗. The analytical result is computed by using Eq. 13, which is validated
numerically. (A) Noise with change in response time of the receptor. The noise increases as receptor response time increases, i.e., as the receptor slows
down in comparison with the switch response time. The concerted model has a higher noise than activation and derepression, which perform similarly.
The difference is negligible when receptor dynamics is fast and is more prominent when receptor is slow. The receptor response time (k1S + k2) is varied
by changing k2, while keeping the same receptor occupancy through the ratio k1S/k2, so as to keep the same number of switches. The differences across

signaling mechanisms are controlled by ensuring the same total activation rate of the switch k3 + k5
k1SXT

k1S+k2
and same total deactivation rate k4 + k6

k2SXT
k1S+k2

.

We used the following parameters: k3 = 0, k4 = 1, k5 = 0.02, and k6 = 0 for activation; k3 = 1, k4 = 0, k5 = 0, and k6 = 0.02 for derepression; and k3 = 0,
k4 = 0, and k5 = k6 = 0.02 for concerted. In addition, XT and YT were taken to be 100 each. The receptor occupancy was maintained by k1S/k2 = 1. (B) Noise
strength as a function of the relative (rel.) strengths of activation and derepression for a concerted mechanism. The noise is highest when the activation and
derepression strengths match (perfect concerted mechanism). Deviating from the perfect concerted mechanism toward either stronger activation (shaded
green region) or stronger derepression (shaded orange region) leads to smaller noise. Parameters were chosen such that total activation and the total
deactivation rates were the same across signaling mechanisms. For derepression, the activation (act.) strength was kept constant, and the repression (rep.)
strength k6XT was varied with a commensurate change in the basal deactivation rate k4. For activation, the repression strength was kept constant, and the
activation strength k5XT was increased with appropriate change in the basal activation rate k3. We used the following parameters: k1 = 1, S = 1, k2 = 1,

k3 + k5
k1SXT

k1S+k2
= 1, k4 + k6

k2XT
k1S+k2

= 1, XT = 100, and YT = 100.

Fig. 4B. The noise is greatest for the concerted mechanism when
k5XT = k6XT .

We also analyze the special case of ratiometric signaling.
Our deterministic analysis shows that for a concerted mecha-
nism without basal rates (k3 = 0 and k4 = 0), the steady-state
response (Y ∗) does not depend upon the total number of recep-
tors (XT ). However, similar to the response time, the CV 2

Y ∗

also depends upon XT through the time-averaging term and
CV 2

X∗ , both of which decrease with increases in XT (SI Appendix,
section S4B). To summarize, ratiometric signaling only holds
for the steady-state response. A cell that has higher XT would
respond faster as well as with less noise than a cell with a
smaller XT .

Model Generalizations
The two-tier models of signaling systems shown in Fig. 1 are
purposely simplified for analytical tractability. In practice, sig-
naling pathways comprise multiple tiers and frequently employ
feedback regulation. Furthermore, one or more of the assump-
tions used to simplify the model equations are likely not
to hold for any given pathway. Therefore, in this section,
we examine how the models perform in more complicated
situations.

Receptor Removal. The models shown in Fig. 1 assume conser-
vation of receptor molecules (XT ) and switch molecules (YT ).
However, in many cases, ligated receptors are removed from
the cell surface and subsequently degraded (42, 71–73). To
account for this effect, we reformulated the models in Fig. 1
to include receptor production at a rate kp , removal of inac-
tive receptors with rate kd , and removal of active receptors
with rate k∗d .

Inclusion of receptor removal results in the following modifi-
cation of the ODE system in Eq. 1:

dX

dt
= kp − kdX − k1SX + k2X

∗, [14a]

dX ∗

dt
= k1SX − k2X

∗− k∗dX
∗, [14b]

dY ∗

dt
= (k3 + k5X

∗)(YT −Y ∗)− (k4 + k6X )Y ∗. [14c]

The initial conditions are: X (0) =
kp
kd

, X ∗(0) = 0, and Y ∗(0) =
k3YT

k3+k4+k6kp/kd
. As before, setting k6 = 0 and k5 = 0, respectively,

results in ODEs for the activation and derepression mecha-
nisms. When receptor production and removal are included in
the model, the key qualitative differences between the activation
and derepression mechanisms remain unchanged. For example,
the functional forms of the dose–response curves are similar to
those of Eq. 2 (SI Appendix, section S6). Some key features of
the dose–response curves are:

1. The total number of receptors at steady-state X +X ∗ remains
kp/kd (prestimulus level) if kd = k∗d , becomes greater than
kp/kd if kd > k∗d , and becomes less than kp/kd if kd < k∗d .

2. The half-maximal stimulus for the receptor response is ΘX =

ΘX∗ =
k2+k∗d

k1

kd
k∗
d

, which now differs from the binding affinity
of the receptor k2/k1.

3. The half-maximal stimulus for the switch response ΘY ∗

equals ΘX∗ if k6 = k5kd/k
∗
d . Moreover, ΘY ∗ >ΘX∗ if k6>

k5kd/k
∗
d , and ΘY ∗ <ΘX∗ if k6< k5kd/k

∗
d .

In terms of the response time, when the removal rates of inac-
tive and active receptors are the same kd = k∗d , the response
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A B

Fig. 5. Effect of receptor removal on responses of activation and derepression mechanisms. The response is measured in terms of fraction of active switch
molecules (Y∗/YT ) over time which is normalized to the slow timescale of the receptor (SI Appendix, section S6). (A) For an activation mechanism, the switch
response adapts, i.e., returns toward basal response after a transient, if the rate of removal of active receptors (k∗d ) is higher than that of inactive receptors
(kd). In contrast, if inactive receptors are removed at a faster rate, then the response sustains. For the adaptive response, we chose kp = 0.11, kd = 0.0011, and
k∗d = 0.11. For the sustained response, we set kp = 101, kd = 1.01, and k∗d = 0.01. The remaining parameters were selected as k1 = 1, k2 = 1, k3 = 0, k4 = 10,
k5 = 1, k6 = 0, S = 1, and YT = 100. (B) For the derepression mechanism, preferential removal of X results in adaptation, whereas preferential removal of X∗

causes sustained response. For the adaptive response, we used kp = 101, kd = 1.01, and k∗d = 0.01. For the sustained response, we chose kp = 1, kd = 0.01,
and k∗d = 1. The remaining parameters were taken as k1 = 1, k2 = 1, k3 = 10, k4 = 0, k5 = 0, k6 = 1, S = 100, and YT = 100. Rel., relative.

time of Y ∗ is similar to that in Eq. 9. As expected, activa-
tion speeds up the response, and derepression slows it down.
However, when the receptor removal rates differ (kd 6= k∗d ), then
the expressions for response time become quite complicated (SI
Appendix, section S6). In this case, a further assumption of fast
receptor dynamics leads to the same conclusions for the three
signaling mechanisms. As we discuss next, when the timescales
of the receptor and switch are similar, more interesting behavior
is possible.

Receptor removal has been shown to generate adaptive behav-
ior in response to sustained stimulus. That is, the response is
transient, eventually returning to near basal levels (74, 75). Our
analysis revealed that if kd = k∗d , then both inactive receptors,
X (t), and active receptors, X ∗(t), monotonically approach their
respective steady states. However, if kd 6= k∗d , then it is possible
for X (t) to transiently undershoot and for X ∗(t) to transiently
overshoot steady state, producing an adaptive response. In par-
ticular, adaptation by X ∗(t) occurs when k∗d > kd , i.e., active
receptors are removed at a faster rate than inactive receptors. In
contrast, adaptation by X (t) occurs when k∗d < kd (SI Appendix,
section S6C). If the kinetics of the switch is fast as compared to
those of the receptor, the switch follows the transient changes in
X (t) and X ∗(t). Thus, for the activation mechanism to exhibit
adaptive behavior requires that the active form of the receptor be
preferentially removed (kd < k∗d ) (Fig. 5A). Alternatively, for the
derepression mechanism to exhibit an adaptive response requires
the inactive form of the receptor to be preferentially removed
(kd > k∗d ) (Fig. 5B). For completeness, we examine the scenar-
ios where the inactive receptors are preferentially removed for
an activation mechanism and active receptors are preferentially
removed for a derepression mechanism. Interestingly, in both
these cases, the responses are sustained and do not adapt. These
results thus provide another set of differences between activation
and derepression mechanisms.

Kinetic Proofreading. Another simplification of the models shown
in Fig. 1 is that the receptor kinetics is considered to be a single-
step process. Recent work suggests that receptor kinetics is often
more complex and may involve kinetic proofreading, in which

a ligated receptor undergoes a series of transformations before
becoming signaling competent (76–78). To study the effects of
kinetic proofreading, we extend the model equations as follows:

dX ∗1
dt

= k1S

(
XT −

n∑
i=1

X ∗i

)
− (k2 + kf )X ∗1 , [15a]

dX ∗i
dt

= kfX
∗
i−1− (k2 + kf )X ∗i , i = 2, 3, . . . ,N − 1, [15b]

dX ∗N
dt

= kfX
∗
N−1− k2X

∗
N , [15c]

dY ∗

dt
= (k3 + k5X

∗
n )(YT −Y ∗)− (k4 + k6 (XT −X ∗n ))Y ∗.

[15d]

Here, n ≥ 2 is the total number of configurations for a ligated
receptor, and kf is the rate at which a ligated receptor tran-
sitions to the next configuration. We assume that all receptor
states are capable of repressing the downstream switch, except
X ∗n , which is the only competent state for activating the down-
stream switch (SI Appendix, section S7). Moreover, all receptors
are assumed to be unligated before the arrival of the stimulus.
Therefore, the initial conditions are X ∗i = 0 ∀i ∈{1, 2, . . . ,n}
and Y ∗= k3YT

k3+k4+k6XT
.

Including multiple states for the receptor does not change the
qualitative behavior of dose–response curves of the three sig-
naling mechanisms. However, now, only a fraction of the total
ligated receptors are signaling competent. This fraction is given
by ( k2

k2+kf
)n−1 and depends on the rate at which a ligated recep-

tor transitions toward the signaling-competent state, kf , the rate
of ligand release, k2, and the number of configurations of the lig-
ated receptors, n . The response time at the receptor level differs
from that for the model in Fig. 1 and is given by

TX∗n =
1

k1S + k2
+

1

kf + k2

(n − 1)(k1S + k2)

kf + k2 + (n − 1)(k1S + k2)
. [16]
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Yet, the response time of the switch still has a similar
decomposition as that in Eq. 9 (SI Appendix, section S7).

Cascades. Given that activation and derepression shift dose–
response in opposite directions, a natural question to ask is
whether dose–response alignment can occur in a signaling cas-
cade where activation and derepression operate sequentially? To
explore this possibility, we constructed a three-tier model where
the response Y ∗ in Fig. 1A leads to derepression of a down-
stream component. Our analysis shows that, indeed, the dose
response of the downstream component is better aligned with the
receptor occupancy than the dose response of Y ∗ (SI Appendix,
section S8). An alternate mechanism where derepression is fol-
lowed by activation by modifying Fig. 1B also exhibits a similar
behavior. For each of these cascades, as expected, the response
time of the downstream component depends less strongly on the
stimulus than that of Y ∗ (SI Appendix, section S8). It is worth
noting that nonlinear regulation, such as feedback and feed-
forward loops, can also be used to compensate for undesirable
characteristics of a given signaling mechanism. For example, neg-
ative feedback can align the dose–response curve with receptor
occupancy for signaling pathways that operate through activation
(43, 79, 80).

Having studied dose–response and response time of model
generalizations, we next investigate the wider applicability of the
results on the switch architectures’ abilities to process upstream
fluctuations. Instead of looking at specific generalizations, we
assume that the inactive receptors X (t) and the active recep-
tors X ∗(t) are unspecified stochastic processes that are corre-
lated with the number of active switches Y ∗(t). Specifically, we
assume a positive correlation between X ∗(t) and Y ∗(t), and a
negative correlation between X (t) and Y ∗(t). This assumption
is consistent with the models in Fig. 1 as well as models consist-
ing of receptor removal and kinetic proofreading. We show that
in such a setup, the steady-state noise in Y ∗ is highest for the
concerted mechanism (SI Appendix, section S9). Thus, our find-
ings on processing of upstream fluctuations by different signaling
mechanisms are generalizable.

Discussion
Molecular switches are important components of most signal-
ing pathways. Typically, these switches can exist in two states,
on and off, and the presence of an external stimulus biases the
switch toward the on state. This transition can occur either by
increasing the off -to-on rate (activation), decreasing the on-to-
off rate (derepression), or both (concerted). We characterized
these three mechanisms in terms of their dose–response curves,
response times, and abilities to process upstream fluctuations.
We further examined how these three mechanisms were affected
by some generalizations of the receptor dynamics. The following
list summarizes key differences in the performance of switches
based on activation, derepression, and concerted mechanisms:

• Both activation and derepression cannot align signaling activ-
ity with receptor occupancy. In particular, activation reduces
the stimulus level required for half-maximal signaling as com-
pared to 50% receptor occupancy (ΘY ∗ <ΘX∗), whereas
derepression produces a rightward shift of the dose–response
curve (ΘY ∗ >ΘX∗). The dose–response curve aligns with
the receptor-occupancy curve (ΘY ∗ = ΘX∗) for a perfect
concerted mechanism (Fig. 2).
• A concerted mechanism is capable of ratiometric signaling,

where the steady-state signaling output only depends upon
fractional receptor occupancy, and not on the total number of
receptors.
• The response time for the activation mechanism decreases

with signal strength, whereas it increases for the derepres-
sion mechanism. Importantly, the response time for a per-

fect concerted mechanism is independent of signal strength
(Fig. 3).
• Activation and derepression mechanisms respond similarly to

upstream fluctuations, whereas the concerted mechanism is
more susceptible to fluctuations (Fig. 4). Unlike the mean
steady-state response, fluctuations in the output signal for
the ratiometric signaling do depend on the total number of
receptors.
• These results generalize to models that include more com-

plex receptor dynamics, e.g., receptor removal and kinetic
proofreading.
• Preferential removal of active (inactive) receptors leads

to an adaptive response for the activation (derepression)
mechanism and a sustained response for the derepression
(activation) mechanism (Fig. 5).

These results suggest performance trade-offs in the operating
characteristics for each mechanism. The activation mechanism
can increase the sensitivity of the pathway and generate response
times that decrease with signal strength, but at the cost of
dose–response curves that do not align with receptor occupancy,
potentially limiting the pathway’s ability to transfer informa-
tion (79). In this sense, the activation mechanism operates as
an “eager” system that is sensitive to small receptor occupancy
and accelerates the response for stronger signals. Therefore, acti-
vation seems appropriate for situations in which the cost of a
false negative is greater than a false positive. For example, the
adrenaline response to imminent danger should be sensitive and
fast because cost of a false positive is small, but a false negative
can be deadly.

Similar to the activation mechanism, derepression leads to
misalignment of the dose–response curve and receptor occu-
pancy. However, for derepression, the dose–response curve is
shifted to the right. Another difference between these mech-
anisms is that for derepression, the response time increases
with signal strength. Therefore, derepression acts as a “mea-
sured” system that does not respond to low receptor occupancy,
waiting for a strong signal before committing to a response.
Derepression seems appropriate for scenarios where the cost
of a false positive is greater than a false negative. Interestingly,
derepression-based signaling is found in many plants’ pathways.
We speculate that it happens because plants have to continually
allocate their limited resources between growth in competition
with their neighbors and immunity to survive pathogen attack
(81, 82). For example, plants would perhaps ignore growth of
a low level of pathogenic bacteria before allocating resources
to fight them. Other possible scenarios where derepression may
be used include irreversible cell-fate decisions such as the WNT
pathway for embryo development (83) and fail-safe mecha-
nisms such as the hypoxia-inducible factor in face of oxygen
deprivation (84).

The concerted mechanism is better able to align with the
receptor-occupancy curve than either the activation or derepres-
sion mechanisms. Therefore, it has better information fidelity
(79). The concerted mechanism also can generate response times
that are independent of the strength of the input signal. How-
ever, these features come at the cost of higher susceptibility to
upstream fluctuations. We note that in a recent study, it was
shown that ratiometric (concerted) signaling provided an advan-
tage for gradient sensing, because it could compensate for spatial
variations in the receptor concentration (14). The system under
consideration in that study was the mating response of yeast. For
this case, the spatial fluctuations in the receptor concentration
were larger than downstream fluctuations in signaling, allow-
ing the concerted mechanism to outperform an activation-based
mechanism.

While misalignment of the dose–response curve with recep-
tor occupancy can cause loss of information, it may also offer
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some advantages. Consider a scenario where active receptors
are preferentially removed, resulting in adaptation of the sig-
naling response (Fig. 5). Recent work has shown that it is
possible to exploit this feature to perform relative sensing (fold-
change detection) if the receptor removal is a multistep process
(42). Alternatively, a negative feedback may also result in an
adaptive response and thereby a fold-change detection (59).
A key feature of fold-change detection is that the sensitivity
of the system decreases each time the system adapts (59, 85).
Our results suggest that a relative sensing mechanism may be
implemented with a derepression if the receptor removal oper-
ates on inactive receptors. We speculate that a negative feed-
back operating on inactive receptors would also yield the same
effect.

Understanding the evolutionary constraints that favor either
activation or derepression in the context of gene regulation
is a long-standing question that has been addressed (48–
50). Under the assumption that both mechanisms are func-
tionally equivalent, these investigations theorized that activa-
tion is selected when demand for the gene product is high,
whereas derepression is favored when demand is low. Our
results reveal that these mechanisms have different operat-
ing characteristics. In particular, our analysis demonstrates
that activation operates as an eager system and derepres-
sion as a measured system, thus providing a functional per-

spective when considering evolutionary advantages of each
mechanism.

A limitation of our investigations is that the models we con-
sidered assumed mass-action kinetics for enzymatically driven
reactions, and therefore do not capture saturation effects. While
we do not anticipate that the qualitative features of our main
results will change when this assumption is relaxed, it is possible
that including saturation effects will produce behavior not cap-
tured by the current model. Therefore, extending our model to
include saturation effects will be the subject of future investiga-
tions. Another future direction is to analyze the performance of
the three switches when they are subjected to feedback and feed-
forward regulation. We end by noting that while we focused our
investigations on signaling pathways, our results are likely to be
relevant for understanding other intracellular systems, such as
gene-regulatory networks and metabolic pathways.

Data Availability. Data have been deposited in GitHub (https://
github.com/elstonlab/2021PNAS SwitchComparison).
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