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Zinc finger (ZnF) proteins represent one of the largest families of
human proteins, although most remain uncharacterized. Given
that numerous ZnF proteins are able to interact with DNA and
poly(ADP ribose), there is growing interest in understanding their
mechanism of action in the maintenance of genome integrity. We
now report that the ZnF protein E4F transcription factor 1 (E4F1) is
an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP
ribose) polymerase (PARP)-dependent manner, to DNA breaks and
promotes ATR/CHK1 signaling, DNA-end resection, and subsequent
homologous recombination. Moreover, we identify E4F1 as a regula-
tor of the ATP-dependent chromatin remodeling SWI/SNF complex in
DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and
together with PARP-1 mediates its recruitment to DNA lesions. We
also report that a proportion of human breast cancers show amplifi-
cation and overexpression of E4F1 or BRG1 that are mutually exclu-
sive with BRCA1/2 alterations. Together, these results reveal a
function of E4F1 in the DNA damage response that orchestrates
proper signaling and repair of double-strand breaks and document
a molecular mechanism for its essential role in maintaining genome
integrity and cell survival.

E4F1 | double-strand break | PARP-1 | BRG1 | breast cancer

Cycling cells acquire numerous DNA lesions under physio-
logical conditions and thus require functional DNA damage

response (DDR) pathways to support proper DNA repair. Hun-
dreds of proteins orchestrate the DDR in time and space. The
repair process ranges from very early events such as the sensing of
DNA lesions by DNA-dependent poly(ADP ribose) polymerases
(PARPs) to late steps in chromatin restoration. In between, the
interactions of a plethora of proteins lead to the coordination of
signaling through multiple pathways that facilitate chromatin
remodeling and decondensation to promote access of key factors
to DNA lesions and the recruitment of DNA repair proteins.
E4F transcription factor 1 (E4F1) is a ubiquitously expressed

transcriptional regulator that plays a critical role in cell cycle
control and proliferation. In normal cell physiology, E4F1 is es-
sential for both embryonic development and adult tissue homeo-
stasis. Notably, p53 and pRB count among E4F1 direct interacting
partners to fulfill its cell cycle regulatory functions (1–3). Pheno-
typically, E4f1-deficient cells exhibit mitotic defects, chromosomal
missegregation, and increased apoptosis (4, 5). Our group also has
reported accumulation in S phase, reduction in replication fork
rate, and decreased BrdU incorporation in E4f1-null mouse em-
bryonic fibroblasts (MEFs), all indicative of ongoing replicative
stress (5).
Emerging roles of noncanonical repair proteins, such as

transcriptional regulators or zinc fingers (ZnFs), in DNA repair
are particularly intriguing. For example, the multifunctional
E2F1 protein, beyond its well-known role in transcription, also
promotes DNA repair with its pRB partner (6, 7). A growing
body of literature also describes the role of ZnF proteins in
maintaining genome integrity (8), including proteins acting as

activators or repressors of homologous recombination (HR) re-
pair. For example, ZPET/ZNF280C was recently described as a
repressor of HR through its binding to single-stranded DNA
(ssDNA) (9), ZNF830 facilitates HR by regulating CtIP re-
cruitment to DNA lesions (10), and ZMYM3 regulates BRCA1
recruitment to double-strand breaks (DSBs) (11).
Taking into consideration the impact of E4F1 on genome in-

tegrity and its interaction with CHK1 and p53, we hypothesized
that E4F1 may play a direct role in DDR. The results presented
herein indeed define E4F1 as a player in DSB repair that pro-
motes γH2AX clearance, transcriptional silencing, DNA-end
resection and HR. These findings provide a molecular explana-
tion for the essential role of E4F1 in DDR-associated cell cycle
arrest and survival.

Results
Human E4F1-Deficient Cells Display Impaired Survival, Replicative
Stress, and Defects in DNA Repair. To investigate E4F1 cellular
functions, we first used the human osteosarcoma U2OS cell line
in which E4F1 expression is abolished by doxycycline-inducible
CRISPR-Cas9 (Fig. 1A). In line with its essential role in prolif-
erating cells, loss of E4F1 produced a marked impairment in cell
proliferation and cell cycle mostly characterized by G2 accu-
mulation, reduced EdU incorporation, and delayed S phase
progression (Fig. 1 B and C and SI Appendix, Fig. S1A). Increased
phosphorylation of p53 at serine 15 was also indicative of important
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Fig. 1. Human E4F1-deficient cells display impaired survival, replicative stress, and defects in DNA repair. (A) Immunoblot of total E4F1, CHK1, and phospho-
p53 (ser15) proteins in U2OS cells after doxycycline-induced Cas9 expression. Cells constitutively expressed the indicated sgRNA. α-tubulin served as a loading
control. (B) U2OS cells expressing the indicated sgRNA were monitored for cell proliferation after doxycycline-mediated Cas9 expression. Cells were seeded in
12-well plates and counted at the indicated time. n = 3. Error bars represent mean ± SD. (C) At 72 h after Cas9 induction, U2OS cells expressing the indicated
sgRNAs were fixed and analyzed by flow cytometry for cell cycle distribution and phospho-(ser10) H3 positivity (mitosis vs. G2). (D) List of transcriptomic
signatures associated with E4F1 loss in U2OS cells and determined by GSEA. (E) GSEA plot comparing U2OS cells expressing control or E4F1 shRNAs. NES,
normalized enrichment score; FDR, false discovery rate. (F) At 24 h after Cas9 induction, U2OS cells expressing sgRNA ctrl or E4F1 were stained with γH2AX
(red). Representative images (Left) and quantification (Right) are depicted. n = 2. Median in red, Mann–Whitney U test. Nuclei are counterstained with DAPI
(blue). (G) Dot plot and median (red) of the quantification of spontaneous γH2AX foci number in U2OS nuclei at 72 h after infection with control or E4F1
shRNAs. n = 3, Mann–Whitney U test. (H) Dot plot and median (red) of γH2AX foci number in U2OS nuclei not treated (NT) or exposed to CPT (1 μM, 20 min)
with a 1- to 8-h recovery period. Cells were infected with control or E4F1 shRNAs at 72 h before the experiment, n = 2, Mann–Whitney U test. (I) Dot plot and
median (red) of γH2AX foci number in U2OS nuclei not treated (NT) or exposed to 10 Gy γ-irradiation with a 1- to 8-h recovery period. Cells were infected with
control or E4F1 shRNAs at 72 h before the experiment. n = 2, Mann–Whitney U test.
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cellular stress (Fig. 1A). Due to the critical function of E4F1,
shRNAs were preferentially used over sgRNA/Cas9 for further
investigations. Indeed, the effects on proliferation and cell cycle
progression were more modest (SI Appendix, Fig. S1 B–E), par-
ticularly at early time points (within 96 h), which allowed investigation
of DDR-associated phenotypes when apoptosis/necrosis was not yet
detected. Under these conditions, RNA-sequencing analyses of
E4F1-depleted U2OS cells revealed strong up-regulation of E2F
targets and G2/M checkpoint genes in accordance with known cell
cycle-related functions of E4F1 (Fig. 1 D and E and SI Appendix, Fig.
S2A and Table S1). Gene Set Enrichment Analysis (GSEA) also
pointed to the up-regulation of DNA replication and DNA repair-
related pathways (Fanconi, ATR response to replicative stress, and
DSB) after E4F1 down-regulation. Importantly, we observed an in-
creased number of spontaneous γH2AX foci in E4F1-depleted cells,
whether using CRISPR-Cas9 methodology (Fig. 1F) or, less impor-
tantly but still significantly, with shRNAs (Fig. 1G). Phospho-ATM,
which more specifically marks DSBs, was also increased in E4F1-
depleted cells (SI Appendix, Fig. S2B). In addition, delayed γH2AX
foci clearance was observed in E4F1 down-regulated cells after ex-
posure to camptothecin (CPT) or γ-irradiation (Fig. 1 H and I).
These results are indicative of a DNA repair defect in E4F1-
depleted cells.
Our group and others previously reported that E4F1 loss

strongly reduced CHK1 protein levels in murine cells (5, 12).
However, E4F1 depletion by shRNA or CRISPR-Cas9 ap-
proaches in the U2OS cell line is concomitant with a modest
reduction of CHK1 protein and mRNA levels (Fig. 1A and SI
Appendix, Figs. S1B and S2C). As expected, CHK1 loss impaired
cell survival and proliferation of U2OS cells (Fig. 1B) but with a
distinct phenotype compared with that found in E4F1-deleted
cells. Indeed, Chek1-deficient cells accumulate in mitosis; in
contrast, E4F1-null cells arrest in G2 phase (Fig. 1C). In addi-
tion, ectopic expression of CHK1 in E4F1-depleted cells was not
able to rescue those cells (SI Appendix, Fig. S2 D and E), indi-
cating that the observed E4F1 phenotypes in human cells are not
fully related to the alteration in CHK1 protein level.

E4F1 Is Rapidly Recruited to DNA Lesions. Immunofluorescence
experiments showed a partial colocalization of E4F1 with γH2AX
as well as phospho-ATM foci, both in nontreated cells and in cells
subjected to genotoxic insults following exposure to CPT or
γ-irradiation (Fig. 2A and SI Appendix, Fig. S3 A and B). E4F1-
null cells were used to validate the specific foci staining of the
antibody (SI Appendix, Fig. S2B). A laser microirradiation re-
cruitment assay also showed relocation of E4F1 concomitant
with γH2AX at the site of DNA damage (Fig. 2B). In addition, a
proximity ligation assay (PLA) revealed a close proximity be-
tween endogenous E4F1 and ATR in nontreated cells that is
further enhanced after exposure to the DNA replication inhibi-
tor hydroxyurea (HU) (Fig. 2C and SI Appendix, Fig. S3C). To
further confirm these observations, we generated a functional
GFP-E4F1 fusion protein (SI Appendix, Fig. S3 D and E) that
also showed partial colocalization with phospho-ATM foci in
nontreated, γ-irradiated, or CPT-treated U2OS cells (Fig. 2D).
Microirradiation experiments showed that this GFP-E4F1 is
actively recruited within minutes to laser-induced DNA lesions
(Fig. 2E). Using the Cdt1-RFP cell cycle reporter (13), we also
determined that GFP-E4F1 recruitment is independent of cell
cycle phase (SI Appendix, Fig. S3F).

E4F1 Is Recruited to DNA Lesions through PARP-1 Activity. We then
used chemical inhibitors of major DDR effectors to assess the
mechanisms involved in E4F1 recruitment to DNA lesions. ATM,
ATR, or dual ATM/ATR inhibitors had no impact on the kinetics
of GFP-E4F1 recruitment at laser-induced DNA damage sites (SI
Appendix, Fig. S4A). Strikingly, inhibition of poly(ADP ribose) po-
lymerase 1 (PARP-1) using four different compounds completely

abrogated GFP-E4F1 recruitment (Fig. 3A; ratio of fluorescence
between the damaged region and control region remains at 1).
This was further confirmed using PARP-1–deficient HEK
293T cells (Fig. 3B) in which GFP-E4F1 could not preferentially
accumulate to induce DNA lesions.
E4F1 coimmunoprecipitation (co-IP) experiments showed in-

teractions with PARP-1 and the poly(ADP ribose) (PAR) poly-
mer, whose synthesis is severely reduced in PARP-1–deficient
HEK 293T cells (Fig. 3C). However, no interaction could be de-
tected in vitro between E4F1 and PARP-1 recombinant proteins
(Fig. 3D), suggesting an indirect physical interaction between the
two proteins. We thus asked whether PAR could bridge the in-
teraction between E4F1 and PARP-1, given that PAR acts as a
loading platform for the recruitment of numerous DDR proteins,
including ZnFs. Purified recombinant E4F1 was slot-blotted onto
a nitrocellulose membrane and tested for its ability to bind
32P-labeled PAR (Fig. 3E). Indeed, E4F1 showed a strong affinity
for PAR polymer in vitro.
The addition of PAR chains along the chromatin as a conse-

quence of PARP-1 activation also constitutes a strong driving
force in chromatin decondensation. In 2019, Huet et al. (14)
showed that proteins containing DNA-binding domains could be
recruited to DNA lesions after PAR-dependent chromatin open-
ing. In line with this, we observed that mutational disruption of the
two first ZnF domains of E4F1 that impaired chromatin binding
(Fig. 3F) also reduced its recruitment to laser tracks (Fig. 3G). As
a control, we did not observe a difference in the association with
DNA for a GFP-E4F1 variant lacking the E3 ligase domain. In
addition, HPF1 depletion, which regulates PARP-1 ADP ribosy-
lation activity (15), impaired GFP-E4F1 recruitment and retention
to laser-induced DNA damage sites (SI Appendix, Fig. S4B).
Our results thus suggest that both PAR-binding and ZnF

DNA-binding domains of E4F1 could be at play in its recruit-
ment to DNA damage sites.

E4F1 Promotes DNA-End Resection and HR. Since E4F1 is recruited
to DNA breaks, and knowing its interplay with CHK1 protein,
we monitored DDR signaling in response to genotoxic insults.
After γ-irradiation exposure, we observed delayed phosphoryla-
tion of CHK1 and CHK2 signaling proteins in E4F1-depleted
cells (Fig. 4A and SI Appendix, Fig. S5A). CHK1 phosphoryla-
tion at Ser345 was also attenuated and delayed following CPT-
or HU-induced replication stress (Fig. 4 B and C). This can result
from down-regulation of the global CHK1 protein levels observed
in E4F1-depleted cells and/or a lack of proper ATR activation on
DNA damage. ATR activation is triggered by RPA-coated ssDNA
regions generated through DNA-end resection and is predominant
during S phase.
To determine whether E4F1 acts on DNA-end resection, we

monitored ssDNA generation following CPT treatment by a BrdU
incorporation assay. We observed significant decreases in the
number and intensity of BrdU foci in S phase E4F1-depleted
cells (Fig. 4D and SI Appendix, Fig. S5B), indicative of a defect
in DNA-end resection. In addition, we monitored the accumu-
lation of RPA that binds to ssDNA to promote HR. Our results
show that E4F1 depletion reduces the accumulation of phospho-
RPA in CPT-treated cells, while total RPA protein level was not
affected (Fig. 4C). Accordingly, the number of foci and intensity
of phospho-RPA staining were reduced in E4F1-depleted cells in
response to replicative stress (Fig. 4E and SI Appendix, Fig. S5C).
Loading of downstream effector RAD51 was also impaired in
the absence of E4F1 (SI Appendix, Fig. S5D). Since DNA-end
resection is critical for DNA repair by HR, we used the DR-GFP
HR reporter system to monitor whether the absence of E4F1
results in a defective HR repair pathway. E4F1 down-regulation,
using two different shRNAs, showed an ∼50% reduction in HR
efficiency (Fig. 4F). Of note, levels of I-SceI nuclease were
similar in all conditions, and experiments were performed at a
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Fig. 3. E4F1 recruitment to DNA damage is PARP-1–dependent. (A) Quantification (Right; Mann–Whitney U test) of live GFP-E4F1 fusion protein recruitment
to laser-induced DNA lesions in nontreated (NT) U2OS cells or after exposure to PARP inhibitors. (Left) Representative pictures taken before and 3 min after
microirradiation. (B) Quantification (Right; Mann–Whitney U test) of live GFP-E4F1 fusion protein recruitment to laser-induced DNA lesions in HEK 293T WT
and PARP-1–deficient cells. (Left) Representative pictures taken before and 3 min after microirradiation. (C) E4F1 co-IP experiment performed on total cell
extracts from HEK 293T WT and PARP-1–deficient cells. Normal mouse IgG served as a negative control. (D) Result of in vitro co-IP assay using purified
Flag-His-E4F1 and His-PARP-1 proteins. (E) PAR-binding assay measuring binding of 32P-labeled PAR polymer to increasing amounts of purified E4F1 protein
(Right). Bovine serum albumin (BSA) and purified histones served as negative and positive controls, respectively. SYPRO protein blot stain served as a loading
control (Left). (F) HEK293 cells were infected to express control GFP, WT GFP-E4F1, and GFP-E4F1 carrying mutations in its two first ZnFs or GFP-E4F1 depleted
for its E3 ligase domain. Chromatin-bound and cytonucleoplasm protein fractions were isolated and loaded for immunoblotting against E4F1. Nucleolin and
α-tubulin served as loading controls. (G) Quantification of live WT and mutated GFP-E4F1 fusion protein recruitment to laser-induced DNA lesions in U2OS
cells (Right) and representative pictures taken before and at 3 min after microirradiation (Left). In A, B, and G, error bars represent mean ± SD.
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time when no major differences in cell cycle profiles were ob-
served (Fig. 4G). Protein levels of DNA-end resection and HR
repair factors, such as RPA, RAD51, BRCA2, and FANCD2,
were not reduced after E4F1 depletion (SI Appendix, Fig. S5E).

E4F1 Is Required for Transcriptional Silencing at DSBs. To further
dissect the role of E4F1 at DSBs, we used the U2OS-FokI reporter
system that enables visualization of DSB repair protein recruitment
as well as transcription in cis (16). As was observed for γH2AX and
pCHK1, we showed that E4F1 colocalized with mCherry-FokI en-
donuclease at the site of DSBs (Fig. 5 A and B). PLA also revealed
a specific interaction, or very close proximity, between E4F1 and
activated phospho-ATM at DSB sites (Fig. 5C). On the other hand,
nuclease-deficient D450A FokI failed to recruit E4F1 and to induce
a PLA signal between E4F1 and activated pATM (Fig. 5 A–C),
demonstrating that E4F1 is specifically recruited to injured DNA in
this reporter system. In addition, and due to transcriptional silenc-
ing following DNA damage, the active phospho-Ser2 RNA poly-
merase is excluded from FokI foci while still present in control cells
expressing the nuclease-deficient D450A FokI (Fig. 5 A and B). In
this reporter system, a YFP-MS2 RNA is transcribed on the addi-
tion of doxycycline and allows monitoring of transcription at the site
of FokI-induced DSBs. The loss of YFP-MS2 signal at FokI foci
reflects the ongoing transcriptional silencing compared to its accu-
mulation when DNA is not altered by the FokI mutant. Impor-
tantly, loss of E4F1 in these cells efficiently abolished the
transcriptional silencing at FokI-induced DSBs (Fig. 5D). ATM
inhibition, which is known to abrogate transcriptional shutdown at
injured DNA, was used as a positive control. Together, these results
demonstrate steady E4F1 recruitment at induced DSBs and its role
in subsequent transcriptional silencing.

E4F1 Recruits BRG1 to DNA Lesions. Our findings involving E4F1 in
DNA damage-associated transcriptional silencing is reminiscent
of the chromatin remodeling that occurs in the first steps of
DNA repair (17). We thus tested the recruitment of several
chromatin remodeling factors in E4F1-depleted cells and found
that E4F1 is required for the proper recruitment of GFP-BRG1
(Fig. 6A). Immunoblotting of chromatin-bound fraction also
showed an E4F1-dependent BRG1 enrichment at chromatin after
CPT exposure (Fig. 6B). BRG1 physically interacts with PARP-1
(18) and acts as the ATPase subunit of the mammalian SWI/SNF
chromatin remodeling complex and has been involved in DNA
repair (17, 19, 20). Similar to E4F1, we showed that BRG1 re-
cruitment to DNA lesions is PARP-1–dependent as talazoparib
treatment completely abolished GFP-BRG1 enrichment at laser
tracks (Fig. 6C). On the other hand, BRG1 depletion did not
impact GFP-E4F1 recruitment (SI Appendix, Fig. S6A), indicating
that E4F1 is recruited independently of BRG1.
Interestingly, in vitro pull-down assays with the two recombi-

nant proteins indicated that E4F1 and BRG1 could interact di-
rectly (Fig. 6D). Co-IP in cellular extracts, either nontreated or
exposed to genotoxic agents, revealed an interaction between
E4F1 and BRG1 (Fig. 6E). We noticed that co-IP was increased
after CPT treatment compared to nontreated or irradiated cells.
This could indicate that the E4F1–BRG1 interaction is promoted
depending on the type of DNA lesions, which is concomitant with
the observation that BRG1 is more efficiently recruited to chro-
matin after CPT treatment than after γ-irradiation (Fig. 6F).
BAF60a, another member of the mammalian SWI/SNF complex,
follows a similar pattern as that of BRG1 in its interaction
with E4F1.
As reported previously (20), BRG1 knockdown decreases HR

efficiency in the DR-GFP HR reporter system (SI Appendix, Fig.
S6 B and C). Interestingly, codepletion of E4F1 and BRG1 did
not result in further reductions in HR efficiency compared to
E4F1-only depletion (Fig. 6G), supporting a model in which
these proteins work within the same DNA repair pathway. Of

note, levels of I-SceI nuclease were similar in all conditions
(Fig. 6H), and experiments were performed at a timepoint when
no major differences in cell cycle profiles could be observed (SI
Appendix, Fig. S6D). Importantly, E4F1 depletion did not cause
any significant changes in the total BRG1 mRNA and protein
levels (SI Appendix, Fig. S6 E and F). Together, these data
suggest that E4F1 is involved in the PAR-assisted recruitment of
a specific SWI/SNF subcomplex, including BRG1, at damaged
chromatin.

E4F1 Is Amplified and Overexpressed in a Subset of Human Breast
Cancer. In the light of these results, we investigated E4F1 ex-
pression levels in the DepMap human cancer collection and
found that while E4F1 is ubiquitously expressed, breast cancers
are among the highest expressors (SI Appendix, Fig. S7A). In The
Cancer Genome Atlas (TCGA) database (21, 22), we also noted
that an unappreciated proportion of breast cancers includes
E4F1 alterations, predominantly gene amplifications or missense
mutations (Fig. 7A). Indeed, breast cancers and invasive breast
carcinomas from two different cohorts (METABRIC and TCGA)
showed the greatest number of alterations, with 160 (7.36%) and
45 (4.15%) cases of E4F1 gene amplification reported, respec-
tively. Importantly, gene amplification was associated with higher
E4F1 mRNA levels (Fig. 7B and SI Appendix, Fig. S7B). These
tumors were mostly estrogen receptor (ER)-positive and HER2-
negative and presented mostly as grade 2 tumors (SI Appendix,
Fig. S7C). Most intriguingly, E4F1 amplification, which is at least
as frequent as BRCA1 and BRCA2 alterations, appeared to be
mostly mutually exclusive of these anomalies (Fig. 7C). While
E4F1 expression showed no impact on the survival of low-grade
breast cancer patients, Kaplan–Meier plot analysis (23) revealed
that grade 3 breast cancer patients with higher E4F1 expression
had significantly worse survival probability compared with patients
with lower E4F1 levels (P = 0.0018) (SI Appendix, Fig. S7D). As
seen with E4F1, BRG1 (SMARCA4) is also amplified and over-
expressed in a small proportion of human breast cancers and
appears to be mutually exclusive of E4F1 and BRCA1/2 alterations
(SI Appendix, Fig. S7E).

Discussion
In this report, we describe a molecular mechanism that estab-
lishes E4F1 as a DNA damage protein involved in DSB repair.
Looking at endogenous and GFP-tagged E4F1 protein, we de-
termined that E4F1 is rapidly recruited to DNA lesions through
PARP-1 activity. Moreover, we documented that E4F1 promotes
DNA-end resection and HR and is required for transcriptional
silencing at DSB, likely through its interaction with BRG1.
Chromatin remodeling is one of the first events occurring in

the DNA repair process that overcomes the barrier of condensed
chromatin and ensures accessibility to DNA repair factors (24–27).
In particular, the mammalian ATP-dependent complex SWI/SNF
participates in DSB repair by promoting H2AX phosphorylation at
Ser-139 (γH2AX) (28, 29), activating the ATR/CHK1 pathway (30),
loading of RAD51 (20, 31), and ensuring proper transcriptional
silencing (32). Interestingly, these features are reminiscent of what
we have linked to E4F1 function. Notably, we have shown that
E4F1 interacts with BRG1 and is required for its recruitment to
laser-induced DNA lesions. This suggests that at least some of the
phenotypes associated with E4F1 loss are related to defective
BRG1 engagement to DNA repair. As for E4F1, we reported that
BRG1 recruitment requires PARP-1 activity. Accordingly, BRG1
and other SWI/SNF members have been previously identified as
PAR-associated proteins by systematic proteomic studies (33, 34).
Taken together, these results suggest that PARP-1, E4F1, and
BRG1 cooperate in DNA repair.
Within seconds following DNA damage, a massive amount of

PAR is synthesized, mainly by PARP-1, and acts as a recruitment
platform for DDR proteins (35, 36). Importantly, local accumulation
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Fig. 6. E4F1 interacts and recruits BRG1 to DNA lesions. (A) Quantification (Right; Mann–Whitney U test) of live GFP-BRG1 fusion protein recruitment to laser-
induced DNA lesions in U2OS cells infected with shRNA control or targeting E4F1. Representative pictures taken before and 3 min after microirradiation are
shown (Left). Error bars represent mean with SD. (B) Chromatin-bound protein extraction was performed on HEK293 cells infected with corresponding
shRNAs and left untreated (NT) or exposed for 1 h to CPT (1 μM). Immunoblots were performed using indicated antibodies, and nucleolin served as a loading
control. (C) Quantification (Right; Mann–Whitney U test) of live GFP-BRG1 fusion protein recruitment to laser-induced DNA lesions in U2OS cells treated with
PARP inhibitor (talazoparib) or left untreated (NT). Representative pictures taken before and 3 min after microirradiation are depicted (Left). Error bars
represent mean with SD. (D) Result of in vitro co-IP assay using purified Flag-His-E4F1 and His-BRG1 proteins. (E) E4F1 co-IP experiment performed on total cell
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negative control. (F) Chromatin-bound protein extraction was performed on NT HEK293 cells or following exposure to γ-irradiation (5 Gy; 1 h release) or CPT
(1 μM; 1 h). Immunoblots were performed using indicated antibodies, and H3 served as a loading control. (G) HR efficiency was assessed by quantification of
U2OS GFP-positive cells at 48 h after transfection with the DR-GFP plasmids. Cells were previously coinfected with the indicated shRNAs for 72 h. Results were
normalized as efficiency in shRNA control is equal to 100%. n = 2, t test. (H) Immunoblot of total E4F1, BRG1, Geminin, and HA-SceI proteins in U2OS cells used
to monitor HR efficiency from G. α-tubulin served as a loading control.
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of PAR at DNA lesions also constitutes a driving force of chromatin
decondensation. By virtue of their long-chain nature, polymers of
ADP ribose alter the electrostatic charge density of lysine-rich histone
proteins, which weakens histone–DNA interactions and promotes
chromatin remodeling. PAR-dependent chromatin opening has been
shown to be sufficient to recruit DNA-binding proteins at DNA le-
sions (14). The dual action of PARylation makes it particularly dif-
ficult to discriminate between the dependence of a factor’s affinity for
PAR chains and increased local accessibility to chromatin for its ac-
cumulation at DNA damage sites. No consensus sequences for PAR
binding have been identified in E4F1; however, E4F1 contains several
C2H2-type ZnFs known to have both DNA-binding and PAR-
binding properties (37, 38). Thus, our experiments show that E4F1
binds in vitro to PAR polymer, and that DNA binding contributes to
its dynamics at DNA lesions.
Interestingly, the E2F1-pRB complex also has been involved

in BRG1 recruitment to DSBs (6), and pRB is a known direct
interactor with E4F1 (2). We believe that both pRB-E2F1 and
E4F1 may be involved in BRG1 recruitment, but this process may
depend on the cell cycle context, chromatin state, or DNA lesion
characteristics. Interestingly, E2F1 and E4F1 share striking simi-
larities: they both interact with a large variety of proteins, and be-
yond their well-known role in cell cycle regulation, they also control
some cellular metabolic functions and participate in DNA repair. It
is remarkable how multifunctional these proteins are. These are not
isolated cases, and other transcription factors involved in DNA
repair have been reported (39). Noncanonical repair proteins, such as

ZnF proteins, are also increasingly described as DNA repair actors,
particularly in the context of DSBs (8–11). One of the emerging
features is that DNA-binding proteins may be largely involved in
chromatin remodeling at DNA lesions to ensure DNA accessibility.
The pRB-E2F1 complex has been reported to recruit GCN5 (40) or
p300/CBP (41) to induce histone acetylation and chromatin relaxa-
tion depending on the type of DNA damage. ZnF ZMYND8 pro-
tein, which also contains a bromodomain, was reported to promote
transcriptional repression and HR repair by recruiting the chromatin
remodeling NuRD complex to DNA lesions (42).
Our hypothesis, therefore, is that E4F1 is one of these mul-

tifunctional proteins involved in DNA repair. Its possible rele-
vance to breast cancer tumorigenesis is intriguing, as we have
shown that the E4F1 gene is amplified in a significant proportion
of human breast cancers, mostly in a BRCA1/2 wild-type context.
In summary, our data suggest a PARP1-dependent function for
E4F1 in DSB repair that, along with its key role in regulating p53
and CHK1 function, positions this gene as a central orchestrator
of genotoxic stress response.

Materials and Methods
Detailed descriptions of the cell models, cell proliferation assay, chemicals and
treatments, knockdown experiments, laser microirradiation, co-IP, pull-down
with recombinant proteins, Western blot, flow cytometry, the DR-GFP sys-
tem, immunofluorescence, PAR-binding assay, the U2OS-LacI-FokI-mCherry
DSB reporter system, PLA, BrdU assay, image capture and analysis, statistical
analysis, and RNA sequencing are provided in SI Appendix, Materials
and Methods.
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Fig. 7. E4F1 is amplified in breast cancers and is mutually exclusive with BRCA1/2 alterations. (A) Bar plot reporting the frequency of E4F1 alterations (gene
amplification, mutation, deletion, or fusion) in a wide range of human cancers (source: cBioPortal). (B) Dot plot of E4F1 mRNA expression in the METABRIC
(breast cancer) cohort bearing or not bearing E4F1 gene amplification. The reference population represents all samples that are diploid for the gene of
interest. Median in red, t test. (C) Representation of E4F1, BRCA1, and BRCA2 alterations in the METABRIC and TCGA breast cancer cohorts (source:
cBioPortal). Each vertical line represents a patient sample. The frequency of total alterations is indicated.
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Data Availability. RNA sequencing data have been deposited in the Gene
Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo
(accession no. GSE144958).
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