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Abstract 

Background:  Non-coding RNA (ncRNA) and protein interactions play essential roles 
in various physiological and pathological processes. The experimental methods used 
for predicting ncRNA–protein interactions are time-consuming and labor-intensive. 
Therefore, there is an increasing demand for computational methods to accurately and 
efficiently predict ncRNA–protein interactions.

Results:  In this work, we presented an ensemble deep learning-based method, 
EDLMFC, to predict ncRNA–protein interactions using the combination of multi-scale 
features, including primary sequence features, secondary structure sequence features, 
and tertiary structure features. Conjoint k-mer was used to extract protein/ncRNA 
sequence features, integrating tertiary structure features, then fed into an ensemble 
deep learning model, which combined convolutional neural network (CNN) to learn 
dominating biological information with bi-directional long short-term memory net-
work (BLSTM) to capture long-range dependencies among the features identified by 
the CNN. Compared with other state-of-the-art methods under five-fold cross-valida-
tion, EDLMFC shows the best performance with accuracy of 93.8%, 89.7%, and 86.1% 
on RPI1807, NPInter v2.0, and RPI488 datasets, respectively. The results of the independ-
ent test demonstrated that EDLMFC can effectively predict potential ncRNA–protein 
interactions from different organisms. Furtherly, EDLMFC is also shown to predict 
hub ncRNAs and proteins presented in ncRNA–protein networks of Mus musculus 
successfully.

Conclusions:  In general, our proposed method EDLMFC improved the accuracy of 
ncRNA–protein interaction predictions and anticipated providing some helpful guid-
ance on ncRNA functions research. The source code of EDLMFC and the datasets used 
in this work are available at https://​github.​com/​Jingj​ingWa​ng-​87/​EDLMFC.
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Background
Genome sequencing in 2001 showed that only 2% of RNAs encode proteins, and 98% 
of RNAs do not code for proteins [1, 2], known as non-coding RNAs (ncRNAs). Stud-
ies have shown that ncRNAs are closely related to fundamental biological processes by 
interacting with RNA-binding proteins (RBPs) [3, 4], such as translation [5], splicing [6], 
chromatin remodeling [7], gene regulation [8], and many other life activities and func-
tions [9–12]. In addition, ncRNAs implicate in cancer and other complex diseases [13–
18]. Therefore, accurate prediction of ncRNA–protein interactions (ncRPIs) is crucial 
for understanding the regulatory function of ncRNAs and the pathogenesis of diseases.

High-throughput experimental techniques (RIP-Chip [19], HITS-CLIP [20], PAR-
CLIP [21], etc.) and other experimental techniques of resolving complex structures 
(X-ray crystal diffraction (X-ray) [22], nuclear magnetic resonance (NMR) [23], electron 
cryo-microscopy (cryo-EM) [24], etc.) have been developed for revealing ncRPIs. How-
ever, experimental methods are time-consuming and labor-intensive [25]. Thus, there is 
a growing demand for the development of computational methods to predict ncRPIs.

Based on the features they used, computational methods to predict ncRPIs can be 
divided into two categories: sequence features as inputs and structure features as inputs. 
For sequence features based methods, lots of studies used machine learning or deep 
learning methods to learn features for predicting ncRPIs only based on the primary 
sequence. For instance, Muppirala et al. proposed a model named RPISeq, in which only 
primary sequence features were used, random forest (RF), or support vector machine 
(SVM) was used as classifiers to make predictions [26]. Pan et  al. proposed a stacked 
ensemble model called IPMiner [27], learning primary sequence features from 3-mer 
and 4-mer frequency of protein and ncRNA, respectively. Then, Dai et  al. designed a 
novel method, CFRP [28], put forward to generate complex features generated by non-
linear transformations from the traditional k-mer features of ncRNA and protein pri-
mary sequences for characterizing ncRNA–protein interaction. RF was selected to 
reduce the dimensions of complex features and implement ncRNA–protein interaction 
(ncRPI) prediction tasks. Besides, Wang et al. utilized the deep convolutional neural net-
work (CNN) to learn high-level features from the RNA and protein sequences, further 
feeding them into an extreme learning machine (ELM) for classification [29]. Further-
more, our group designed DM-RPIs, a classifier that integrated SVM, RF, and CNN to 
classify ncRPIs by learning the discriminative features from 3-mer and 4-mer frequency 
of proteins and ncRNAs, respectively [30]. In addition, LightGBM, rpiCOOL, RPIFSE, 
RPI-SAN, and LPI-CNNCP also made ncRPI predictions based on primary sequence 
[31–35].

For structure features based methods, besides sequence features, the often-used struc-
ture-derived features include secondary structure sequences, physicochemical prop-
erties, and others. Bellucci et al. proposed catRAPID [36, 37], which was based on the 
physiochemical properties of proteins and long non-coding RNAs (lncRNAs), including 
secondary structure, hydrogen bonding, and van der Waals propensities. Lu et al. pro-
posed lncPro [38], using the same input features as Bellucci’s and fisher linear discri-
minant approach to implementing lncRNAs and proteins interaction predictions. Then, 
Suresh et  al. proposed RPI-Pred [39], which combined the primary sequence and ter-
tiary structure information of ncRNAs and proteins to predict ncRPIs. Lately, Peng et al. 
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designed a hierarchical deep learning framework, RPITER [40], added more primary 
sequence information and sequence structure information by the improved conjoint 
triad feature coding method, which improved the classification performance of ncRPIs. 
Besides, Fan et al. considered pseudo nucleotide/amino acid composition and designed 
a novel computational method LPI-BLS by integrating logistic regression with five broad 
learning system classifiers [41], which performed a better classification performance 
than other state-of-the-art methods.

In the studies above, there are still few ones involving high-order 3D structural fea-
tures. Our group found that the structural features play important roles in RNA-binding 
sites prediction, these structural characteristics reflect the properties around the bind-
ing sites, the clustering properties of the conserved interfacial residues, and the binding 
tendency [42]. We think structural features can also be used to predict ncRPIs. Further-
more, overwhelming majority of these relied on shallow machine learning techniques to 
implement classification tasks, such as fisher linear discriminant, RF, SVM, and logis-
tic regression: lncPro employed fisher linear discriminant; RPI-seq employed RF and 
SVM; and LPI-BLS employed logistic regression. However, deep learning provides an 
approach to more effectively learn features from inputs and form high-level representa-
tions for more accurate prediction. One reason is that the increasing number of training 
samples can be derived from high-throughput sequencing techniques, which is highly 
beneficial for training deep learning models. The other is deep learning-based methods 
(especially CNN) that are powerful for analyzing spatial structure buried in data. And 
bi-directional long short-term memory network (BLSTM) is a widely used recurrent 
neural networks (RNN) with the memory cells, which can learn long dependency on the 
sequential data. Currently, CNN and BLSTM has been widely applied on computational 
biology and achieved superior performance in various biological sequence analysis prob-
lem [43], such as DNA function [44], RNA–protein binding sites [45] and protein–RNA 
binding preferences predictions [46].

Therefore, we proposed EDLMFC, a multi-scale features combination-based approach 
to predict ncRPIs through an ensemble deep learning model, which utilizes not only the 
primary sequence features of ncRNAs and proteins but also the structural features. These 
features are learned by layered networks, including CNN and BLSTM layers. Compared 
with the other three state-of-the-art methods, the comprehensive results demonstrate 
that EDLMFC has the best classification performance for ncRPI predictions.

Results
Performance comparison on EDLMFC with existing state‑of‑the‑art methods

To evaluate the performance of EDLMFC, we compared our method with the other three 
state-of-the-art methods. Since the work link of RPI-Pred was not available, and lncPro 
only provided the source code for the predictive model that has been trained on their 
dataset. Therefore, we chose RPITER, IPMiner, and CFRP to localize for comparation 
on RPI1807, NPInter v2.0, and RPI488 datasets under five-fold cross-validation (5CV), 
respectively. Seven performance metrics: accuracy (ACC), true positive rate (TPR), true 
negative rate (TNR), positive predictive value (PPV), F1-score (F1), Matthews correla-
tion coefficient (MCC), and area under the curve (AUC) of the receiver operation char-
acteristic (ROC), were employed to evaluate the above four methods comprehensively. 
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The experimental results on RPI1807, NPInter v2.0, and RPI488 datasets are shown in 
Fig. 1a–c, respectively. And the detailed results are all listed in Table 1.

From the Fig. 1a, EDLMFC achieves the highest ACC, TNR, PPV, F1, and MCC. As 
shown in Table 1, we can see that EDLMFC yielded an ACC of 93.8%, which is 0.3%, 
0.3%, and 1.0% higher than that of RPITER, IPMiner, and CFRP, respectively. The 
standard deviation of ACC under 5CV is smaller than RPITER and CFRP. The TNR of 
EDLMFC is 84.5%, which is 1.8%, 7.7%, and 7.1% higher than that of RPITER, IPMiner, 
and CFRP, respectively. The PPV of EDLMFC is 94.9%, which is 0.6%, 2.2%, and 2.2% 
higher than that of RPITER, IPMiner, and CFRP, respectively. F1 of EDLMFC is 95.9%, 
which is 0.2%, 0.1% and 0.7% higher than that of RPITER, IPMiner and CFRP, respec-
tively. MCC of EDLMFC is 83.3%, which is 0.9%, 0.7%, and 3.6% higher than that of RPI-
TER, IPMiner, and CFRP, respectively. Although the TPR of EDLMFC is 2.3% lower than 
the IPMinter, the AUC is 1.0% lower than RPITER, EDLMFC method performs bet-
ter than the two methods in general. Therefore, compared with the above three meth-
ods, our method EDLMFC has superior performance in predicting ncRPIs on RPI1807 
dataset.

From the Fig. 1b, EDLMFC is superior to all the methods on seven performance met-
rics on NPInter v2.0 dataset. From the Fig.  1c, EDLMFC achieves the highest ACC, 
TNR, PPV, F1, MCC, and AUC on RPI488 dataset. It suggests that the method relied 
on integrated deep learning with a combination of multi-scale features presented in this 
work is an effective and efficient way to predict ncRPIs.

Performance of EDLMFC in independent test

To further validate the ability of EDLMFC in distinguishing whether ncRNAs interact 
with proteins or not. We used the RPI1807 dataset to train our model and verified it on 
NPInter v2.0 dataset. There is no overlap between the two processed datasets. The pro-
cessed NPInter v2.0 dataset contains 1943 interaction pairs, which can be divided into 
6 organisms: Homo sapiens, Mus musculus, Saccharomyces cerevisiae, Caenorhabditis 
elegans, Drosophila melanogaster, and Escherichia coli with the number of interaction 
pairs of 740, 229, 693, 33, 46, and 202, respectively, which were tested by EDLMFC sepa-
rately. As shown in Table 2, EDLMFC predicted the correct number of interacted pairs 
on the 6 organisms for 631, 217, 632, 31, 41, and 188, with ACC rates of 85%, 95%, 91%, 
94%, 89%, and 93%, respectively. On the independent NPInter v2.0 dataset, we finally 
predicted the correct number of ncRNA–protein pairs to be 1740, with an overall ACC 
of 90%.

Analyses of different feature combination strategies

We adopted three kinds of feature of ncRNAs and proteins to construct EDLMFC 
model, including sequence features, secondary structure features, and tertiary structure 
features. To analyse the contributions of the three kinds of feature, seven different fea-
ture combinations: sequence, secondary structure, tertiary structure, sequence together 
with secondary structure, sequence together with tertiary structure, secondary struc-
ture together with tertiary structure, and all features were used as inputs to experiment 
the classification performance of the model. The ROC curves of seven different feature 
combinations as inputs tested on RPI1807 and NPInter v2.0 were shown in Fig. 2a and 
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Fig. 1  Performance comparison among different ncRPI prediction methods. a Performance comparison on 
RPI1807 dataset. b Performance comparison on NPInter v2.0 dataset. c Performance comparison on RPI488 
dataset
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Table 1  Performance comparison between EDLMFC and other ncRPI prediction methods on 
RPI1807, NPInter v2.0, and RPI488

The values in bold indicate this performance metric is the best among the four methods

The mathematical notation (±) represents standard deviation

Dataset Method ACC (%) TPR (%) TNR (%) PPV (%) F1 (%) MCC (%) AUC (%)

RPI1807 EDLMC 93.8 ± 0.3 96.9 ± 0.3 84.5 ± 0.9 94.9 ± 0.3 95.9 ± 0.2 83.3 ± 0.8 96.7 ± 0.3

RPITER 93.5 ± 0.4 97.1 ± 0.4 82.7 ± 1.1 94.3 ± 0.3 95.7 ± 0.2 82.4 ± 1.0 97.7 ± 0.3
IPMinter 93.5 ± 0.3 99.2 ± 0.4 76.8 ± 2.4 92.7 ± 0.7 95.8 ± 0.2 82.6 ± 0.9 88.0 ± 1.0

CFRP 92.8 ± 0.4 97.6 ± 0.4 77.4 ± 0.6 92.7 ± 0.3 95.2 ± 0.3 79.7 ± 0.9 96.4 ± 0.1

NPInter v2.0 EDLMFC 89.7 ± 0.2 91.7 ± 0.4 87.7 ± 0.4 88.2 ± 0.3 89.9 ± 0.2 79.5 ± 0.4 95.9 ± 0.2
RPITER 89.0 ± 0.6 91.6 ± 0.6 86.2 ± 0.1 87.0 ± 0.8 89.3 ± 0.6 78.1 ± 1.2 95.7 ± 0.4

IPMinter 82.8 ± 1.0 84.3 ± 0.9 81.3 ± 2.6 81.3 ± 1.3 83.2 ± 0.9 65.6 ± 2.0 82.7 ± 1.0

CFRP 82.1 ± 0.3 77.2 ± 0.5 86.9 ± 0.3 85.5 ± 0.3 81.1 ± 0.3 64.4 ± 0.5 88.4 ± 0.2

RPI488 EDLMC 86.1 ± 0.5 74.5 ± 0.8 96.7 ± 0.5 96.1 ± 0.4 82.9 ± 0.6 74.2 ± 0.9 89.9 ± 0.3
RPITER 86.0 ± 1.0 75.1 ± 1.1 95.6 ± 1.9 95.3 ± 1.8 82.9 ± 1.1 74.0 ± 1.9 88.5 ± 0.7

IPMinter 79.9 ± 0.8 84.6 ± 0.9 78.6 ± 1.9 79.4 ± 1.3 79.5 ± 0.9 63.7 ± 1.6 81.6 ± 0.9

CFRP 79.9 ± 2.0 75.3 ± 1.5 85.3 ± 2.7 82.2 ± 2.8 77.1 ± 2.3 60.8 ± 4.3 86.0 ± 1.8

Table 2  Independent testing results of EDLMFC on six organisms from NPInter v2.0

Organism Total ncRNA–protein pairs in NPInter 
v2.0

EDLMFC performance

Homo sapiens 740 631 (85%)

Mus musculus 229 217 (95%)

Saccharomyces cerevisiae 693 632 (91%)

Caenorhabditis elegans 33 31 (94%)

Drosophila melanogaster 46 41 (89%)

Escherichia coli 202 188 (93%)

Total 1943 1742 (90%)

Fig. 2  AUC comparison among different feature combination strategies. a AUC comparison on RPI1807 
dataset. b AUC comparison on NPInter v2.0 dataset. The ROC curves of all feature, sequence together with 
secondary structure, sequence together with tertiary structure, only sequence, secondary structure together 
with tertiary structure, only secondary structure, and only tertiary structure as inputs were expressed in 
red, blue, green, magenta, orange, purple and black, respectively. The maximum AUC represents the best 
performance of the model
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Fig. 2b, respectively. The results of seven performance metrics under 5CV are all listed 
in Table 3.

From the Fig. 2, on RPI1807 and NPInter v2.0 datasets, only secondary structure as 
input have a slightly lower AUC than only sequence as input and notably higher AUC 
than only tertiary structure as input. Thus, the sequence is the most important feature 
in ncRPIs; the following is the predicted secondary structure, and then is the tertiary 
structure. When any combination of two features was sent into the model, we find that 
its AUC value is higher than that of one of the two features. Moreover, the AUC value of 
the model is the highest when all features were entered. Therefore, we can conclude that 
all the features contain useful information, and at the same time, as inputs, they comple-
ment each other to give the model a better predictive performance.

Application of EDLMFC for ncRNA–protein network construction

To visualize how many interactions have been correctly predicted, we further used the 
independent test results of EDLMFC to construct the ncRNA–protein networks. Here, 
we adopted a software named Cytoscape [47–49] for Mus musculus networks cluster-
ing. For Mus musculus in the NPInter v2.0 dataset, we correctly predicted the 217 of 
229 interactions, the ACC up to 95%. As is shown in Fig. 3, we found that the ncRPIs of 
Mus musculus contain both hub proteins (a protein interacts with multiple RNAs) and 
hub ncRNAs (an RNA interacts with multiple proteins) [50]. P84104 and Q8VE97 hub 

Table 3  Results under 5CV of different feature combinations considered on RPI1807 and NPInter 
v2.0

The values in bold indicate this performance metric is the best among the three methods

The mathematical notation (±) represents standard deviation

Dataset Combinations of 
features

ACC (%) TPR (%) TNR (%) PPV (%) F1 (%) MCC (%) AUC (%)

RPI1807 Sequence 92.1 ± 1.3 94.5 ± 2.7 85.1 ± 2.9 94.9 ± 0.8 94.7 ± 0.9 79.5 ± 2.9 96.2 ± 0.8

Secondary 
structure

92.8 ± 1.2 96.6 ± 1.9 81.5 ± 6.6 94.0 ± 2.1 95.2 ± 0.7 80.7 ± 3.5 96.1 ± 1.1

Tertiary structure 72.9 ± 9.6 85.7 ± 21.7 28.7 ± 28.7 82.9 ± 6.9 79.7 ± 12.7 26.9 ± 21.5 81.6 ± 8.7

Sequence + sec-
ondary structure

93.8 ± 0.6 96.6 ± 1.2 85.5 ± 2.5 95.2 ± 0.8 95.9 ± 0.4 83.5 ± 1.5 96.5 ± 0.8

Sequence + ter-
tiary structure

92.6 ± 1.6 95.1 ± 2.2 85.1 ± 2.9 95.0 ± 0.9 95.0 ± 1.1 80.5 ± 3.9 96.3 ± 0.8

Secondary struc-
ture + tertiary 
structure

92.4 ± 0.4 96.5 ± 1.5 80.6 ± 5.6 93.7 ± 1.6 95.0 ± 0.2 79.7 ± 1.3 96.2 ± 0.9

All features 94.3 ± 0.2 97.4 ± 1.0 85.1 ± 1.9 95.1 ± 0.6 96.2 ± 0.2 84.7 ± 0.7 96.7 ± 0.8

NPInter v2.0 Sequence 87.7 ± 0.8 89.7 ± 1.1 85.7 ± 2.4 86.3 ± 1.9 87.9 ± 0.7 75.5 ± 1.6 94.6 ± 0.3

Secondary 
structure

78.8 ± 1.4 87.5 ± 1.4 70.1 ± 2.4 74.6 ± 1.6 80.5 ± 1.2 58.5 ± 2.7 88.1 ± 1.0

Tertiary structure 54.7 ± 3.8 68.1 ± 27.0 41.4 ± 33.6 58.7 ± 8.7 56.3 ± 10.6 10.9 ± 8.7 59.9 ± 2.7

Sequence + sec-
ondary structure

89.1 ± 0.9 91.2 ± 1.1 86.9 ± 1.5 87.5 ± 1.3 89.3 ± 0.8 78.3 ± 1.7 95.4 ± 0.3

Sequence + ter-
tiary structure

88.9 ± 0.8 91.1 ± 1.1 86.8 ± 1.3 87.3 ± 1.1 89.2 ± 0.7 77.9 ± 1.5 95.2 ± 0.5

Secondary struc-
ture + tertiary 
structure

83.5 ± 1.0 88.6 ± 1.5 78.5 ± 2.6 80.5 ± 1.8 84.3 ± 0.7 67.5 ± 1.9 92.0 ± 0.4

All features 90.0 ± 0.7 92.2 ± 1.1 87.6 ± 0.9 88.2 ± 0.8 90.2 ± 0.7 80.0 ± 1.4 96.2 ± 0.3
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proteins have the largest number of interactions and are both considered to be serine or 
arginine with rich splicing factor 3 [51]. Especially, P84104 hub protein is the splicing 
factor that specifically promotes exon-inclusion during alternative splicing. Interaction 
with YTHDC1, an RNA-binding protein that recognizes and binds N6-methyladeno-
sine (m6A)-containing RNAs, promotes recruitment of SRSF3 to its mRNA-binding 
elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing 
[52, 53]. Q8VE97 hub protein plays a role in alternative splice site selection during pre-
mRNA splicing. Repressing the splicing of MAPT/Tau exon 10 as well [54]. Therefore, 
constructing ncRNA–protein networks help identify the important functions and path-
ways of key proteins and ncRNAs, which will facilitate various medical and pharmaceu-
tical studies [55].

Discussion
In this work, we proposed a multi-scale features combination-based computational 
method, EDLMFC, to predict ncRPIs through an ensemble deep learning combined 
CNN and BLSTM. Compared with the other three state-of-the-art methods on RPI1807, 
NPInter v2.0, and RPI488 datasets, comprehensive experimental results indicate our 
method EDLMFC has the best classification performance for ncRPI predictions. This is 
mainly because of the following reasons:

Fig. 3  The Mus musculus networks constructed based on interaction pairs predicted by the EDLMFC. The 
oval nodes with green and blue represent the ncRNA and proteins, respectively. The gray and red edges 
indicate correctly and wrongly predicted ncRPIs, respectively
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1.	 The multi-scale features were used, which includes not only sequence features infor-
mation but also structural information. The results of different feature combinations 
show that sequence features are the most important, followed by secondary structure 
features and tertiary structure features. All features contain useful information, so 
the classification performance of the model was best when all features were used as 
input for prediction.

2.	 Using conjoint k-mer method to encode sequence features of ncRNAs and proteins, 
a variety of k-mer features are considered so that proteins and ncRNAs can be repre-
sented more accurately and comprehensively.

3.	 CNN was used to dig the hidden abstract high-level features of proteins and ncR-
NAs, then feeding into BLSTM to capture their long-range dependencies, and a 
three-layer fully-connected layer was employed to predict the ncRPIs.

Although EDLMFC achieves a better performance in ncRPI predictions, there are still 
some limits that need to be noticed. Like other deep learning-based approaches, it’s like 
a black box that automatically learns the features of proteins and ncRNAs and makes 
predictions that we can’t understand biologically. Besides, the method of ncRNA sec-
ondary structure prediction, SPOT-RNA, can only predict RNAs with a length of no 
more than 500 nucleotides. Therefore, our work mainly predicts the interaction between 
ncRNAs with a length of fewer than 500 nucleotides and proteins. In future work, we will 
consider designing more advanced neural network models to learn high-level abstract 
features with biological insights and choosing a more accurate prediction method of sec-
ondary structure to predict ncRPIs more accurately and efficiently.

Conclusions
The prediction of ncRPIs contributes to understand the molecular mechanism within 
various fundamental biological processes and diseases. Many computational methods 
have been proposed for ncRPI predictions. However, only a small number of previous 
studies considered high-order structural features of ncRNAs and proteins, and over-
whelming majority of them only used shallow machine learning to build classifiers for 
prediction. In this work, we presented a computational method based on CNN and 
BLSTM to predict ncRPIs through learning high-level abstract features from multi-scale 
features. To gain as much information of proteins and ncRNAs as possible, we employed 
not only primary sequence features, secondary structure sequence features but also 
tertiary structure features, and adopted a conjoint k-mer method to extract multiple-
mers features by extending the range of k. Then, we adopted BLSTM to capture long-
range dependencies between dominating features of ncRNAs/proteins learned by CNN, 
and send them to the full connection layer to predict whether they have the interac-
tion relationship. Compared with the other three state-of-the-art methods under 5CV 
on RPI1807, NPInter v2.0, and RPI488 datasets, EDLMFC improved the performance 
with an increase of roughly 0.1%-7.7%. And the independent test between 6 organisms 
divided from NPInter v2.0 has an overall ACC of 90%, indicating that the ensemble deep 
learning framework can reveal and learn the high-level hidden information to improve 
prediction performance. Besides, according to the analyses of different feature combina-
tion strategies, we can conclude that all the features contain useful information. When 
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multiple features were fed into the model, they complemented each other to make the 
model achieve a better prediction performance. In conclusion, EDLMFC method can be 
a useful tool for predicting unknown ncRPIs.

Methods
Benchmark datasets

Primary sequence data of paired samples, ncRNAs, and proteins in RPI1807, NPInter 
v2.0, and RPI488 were downloaded from the previous study [40]. RPI1807 has extracted 
the possible interaction pairs by parsing a nucleic acid database (NAD) that provides 
RNA protein complex and protein–RNA interface, consisting of 1078 RNA chains 
and 3131 protein chains in total [31]. In data preprocessing, the EMBOSS needle pro-
gram has used to remove protein and RNA chains with high sequence similarity (cut-
off ≥ 30%), then further distinguishing the atomic interactions with a distance threshold 
(cutoff = 3.40  Å), which was reasonable and sufficient to cover ‘strong’ and ‘moderate’ 
hydrogen bonds and energy-rich van der Waals contacts [56, 57]. It contains 1807 posi-
tive pairs and 1436 negative pairs after deleting the RNA sequences length of fewer than 
15 nucleotides and the protein sequences of less than 25 amino acids. NPInter v2.0 was 
obtained from NPInter database, which documents functional interactions between 
noncoding RNAs (except tRNAs and rRNAs) and biomolecules (proteins, RNAs, and 
DNAs) verified by experiments [58]. In addition, as NPInter database only contains 
interaction (primarily physical interactions) pairs, and lack non-interaction pairs to work 
as negative samples in the training model, the same number of non-interaction pairs 
were generated by randomly pairing the ncRNAs and proteins in positive samples and 
further discarding similar known interaction pairs [26, 27] (a randomly generated pair 
R2–P2 was discarded if there has existed an interaction pair R1–P1 of P2 shared ≥ 40% 
sequence identity with P1 and R2 shared ≥ 80% sequence identity with R1). RPI488 is 
a lncRNA–protein interaction dataset, which was obtained from 18 ncRNA–protein 
complexes downloaded from the PDB database [27]. The atomic interactions were dis-
tinguished with a distance threshold (5 Å). CD-HIT tool [59] was used to remove pro-
tein and RNA chains with high sequence similarity (cut-off ≥ 90%). After redundancy 
removal, RPI488 dataset contains 488 lncRNA–protein pairs, including 243 interacting 
pairs and 245 non-interacting pairs.

Additionally, we used ncRNA secondary structure prediction method, SPOT-RNA, 
which was trained via RNAs with a maximum length of 500 nucleotides. Thus, ncRNAs 
with more than 500 nucleotides in primary sequence were deleted. ncRNAs-proteins 
paired samples of more than 500 nucleotides were further deleted based on the deleted 
ncRNA samples. Then, the protein primary sequences that were not paired with ncR-
NAs were deleted based on the deleted paired samples. Finally, RPI1807 contains 652 
positive pairs and 221 negative pairs, NPInter v2.0 contains 1943 positive pairs and 1943 
negative pairs. RPI488 contains 43 positive pairs and 233 negative pairs. The sample 
information of the original and processed set is shown in Table 4. Due to the large gap 
between the number of positive and negative samples in RPI488 dataset after processing. 
The negative samples were randomly divided into 5 groups to form 5 subsets with the 
positive samples. The average results of the 5 subsets were taken as the result of RPI488. 
The details of the 5 subsets are listed in Additional file 1: Table S1.
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Features extraction

SPOT‑RNA based features

The secondary structure of ncRNA was predicted by SPOT-RNA [60, 61]. We localized 
their work by downloading it from https://​github.​com/​jaswi​nders​ingh2/​SPOT-​RNA/. 
SPOT-RNA represented RSS with a macroscopic secondary structure, which is seven 
single character identifiers for the structure types of each nucleotide in the primary 
sequence. In this representation, S = stem, H = hairpin loop, M = multi-loop, I = internal 
loop, B = bulge, X = external loop, and E = end. Thus, each secondary structure sequence 
of ncRNAs can be represented by the seven-letter alphabet.

SPIDER3 based features

For protein secondary structure prediction, we localized SPIDER3 from the server 
http://​www.​sparks-​lab.​org/​server/​spide​r3/ [62], in which three classical protein second-
ary structures (α-helix, β-sheet, and coil) were used to represent each amino acid in the 
protein primary sequence. Besides, SPIDER3 also can be used to predict tertiary struc-
tures: solvent accessible surface area (ASA), contact number (CN), the upper half sphere 
exposure (HSEα-up), and the down half sphere exposure (HSEα-down) [62]. We calcu-
lated the average value of these tertiary structures for all amino acids in each protein 
sample.

Interface propensity

For interface propensity (IP) between a residue and nucleotide [63], we used an improved 
work by our team [63], which got the residue-nucleotide propensities (60 × 8) with sec-
ondary structure information of RNAs and proteins considered by scoring. Here, we cal-
culated the average value of the binding preferences of all nucleotides to amino acids in 
a paired sample.

Sequence coding

To input ncRNA and protein sequences into deep learning or conventional machine 
learning models, the sequence data need to be encoded as numeric vectors. Most exist-
ing studies extracted ncRNA and protein sequence features by using a simple k-mer: 
3-mer frequency feature for proteins and 4-mer frequency feature for ncRNAs [27, 30, 
32, 35, 39]. For protein, 20 amino acids can be classified into seven groups based on their 
dipole moments and side-chain volume:G1={A, G, V}, G2={I, L, F, P},G3={Y, M, T, S}, 

Table 4  The three original and processed ncRPI datasets used in this study

Dataset Positive pairs Negative pairs RNAs Proteins

Original set RPI1807 1807 1436 1078 3131

NPInter v2.0 10,412 10,412 4636 449

RPI488 243 245 25 247

Processed set RPI1807 652 221 646 868

NPInter v2.0 1943 1943 513 448

RPI488 43 233 13 155

https://github.com/jaswindersingh2/SPOT-RNA/
http://www.sparks-lab.org/server/spider3/
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G4={H, N, Q, W}, G5={R, K}, G6={D, E} and G7={C} [39]. Then, each protein sequence 
can be represented by the seven-letter alphabet. Thus, a protein sequence can be repre-
sented as a numeric vector with 343 ( 73 ) elements by calculating the 3-mer frequency. 
For ncRNA, using four ribonucleotides (A, U, G, C), an ncRNA sequence can be repre-
sented as a numeric vector of 256(44 ) elements.

We adopted a conjoint k-mer method to extract more feature information by extend-
ing the range of k to 1–4 in the k-mer frequency coding process for a ncRNA and 1–3 for 
a protein. That is to say, for ncRNA, we considered not only the 4-mer frequency infor-
mation but also the 1-mer, 2-mer, and 3-mer. Similar to 4-mer, 3-mer of ncRNAs can be 
represented as a numeric vector with 64(43 ) elements; 2-mer of ncRNAs can be repre-
sented as a numeric vector with 16(42 ) elements; 1-mer of ncRNAs can be represented 
as a numeric vector with 4(41 ) elements. As shown in Fig. 4a, the rows and columns are 
corresponding to all kinds of k-mer comprised of four ribonucleotides (A, U, G, C) and 
the primary sequence of each ncRNA. Then, a primary sequence of ncRNA can be rep-
resented by a binary matrix, which was then transformed into a numeric vector with 340 
( 
∑4

k=14
k ) elements by calculating each kind of k-mer frequency. Similar to Fig. 4b, using 

seven structure types (S, H, M, I, B, X, E), a secondary structure sequence of ncRNAs can 
be represented as a numeric vector with 2800 ( 

∑4
k=17

k ) elements. Therefore, integrating 

Fig. 4  a The primary sequence of ncRNAs representation by conjoint k-mer. b The secondary structure 
sequence of ncRNAs representation by conjoint k-mer
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IP would produce the ncRNAs coding vector with 3141 ( 
∑4

k=14
k + 7

k + 1 ) elements. 
For protein, we considered the 1-mer, 2-mer, and 3-mer frequency information, com-
bining primary sequence represented by the reduced seven-letter alphabet, secondary 
structure sequence represented by three classical secondary structures (α-helix, β-sheet, 
and coil) with tertiary structures (IP, ASA, CN, HSEα-up and HSEα-down) would pro-
duce the proteins coding vector with 443 ( 

∑3
k=17

k + 3
k + 5 ) elements.

Performance metrics

We adopted 5CV to evaluate the performance of EDLMFC and other methods by seven 
widely used metrics. Due to the random effects of the training procedure, the 5CV was 
repeated 10 times. The average of the performance metrics predicted from the 10 times 
was used as the final prediction, and the 10 results of EDLMFC on the three datasets 
are listed in Additional file 1: Tables S2–S4. The formulas of ACC, TPR, TNR, PPV, F1, 
MCC, and AUC of the ROC are as follows:

where TP, FP, TN, and FN denote the number of true positive, false positive, true nega-
tive, and false negative, respectively. ACC reflects the ability of the classifier to discrimi-
nate against the whole sample. TPR reflects the ability to predict positive samples. TNR 
reflects the ability to predict negative samples. PPV represents the ability to discriminate 
positive samples that are actually positive samples. MCC reflects the classification per-
formance of the classification model when the number of positive and negative samples 
are not balanced. F1 is a comprehensive index that considers TPR and PPV. And AUC is 
used to evaluate the performance of a classification model.

Model design

We adopted a conjoint k-mer to encode the primary sequence and secondary structure 
sequence features, merging IP and IP, ASA, HSEα-up, HSEα-down, CN for ncRNAs, and 

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)TPR =
TP

TP + FN

(3)TNR =
TN

TN + FP

(4)PPV =
TP

TP + FP

(5)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(6)F1 =
2× TPR× PPV

TPR+ PPV
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proteins, respectively, forming 3141 and 443-dimensional feature column vectors. Then the 
ensemble deep learning framework did the rest of the work automatically. Specifically, the 
two encoded feature column vectors of ncRNAs and proteins were separately fed into lay-
ered networks, including CNN and BLSTM layers. Then, a concatenated vector of the two 
outputs from the BLSTM layer was wired as the input of the fully connected layer. Finally, 
the ensemble module used the softmax activation function at the last layer to make binary 
predictions. The details of the proposed framework are shown in Fig. 5.

CNN consists of several layers, including the input layer, convolution layer, max-pool-
ing layer, full connection layer, and output layer [64]. Among these, the convolution layer 
includes activation operation and the max-pooling layer includes batch normalization 
operation. In the convolution layer, assume that A[l] is the feature map of the lth layer, 
which can be described as:

where W [l] is the weight matrix of the convolution kernel of lth layer, operator ⊗ repre-
sents convolution operation, b[l] is the offset vector, and f (x) is the activation function.

After convolution operation, a commonly used activation function rectified linear unit 
(ReLU) was applied to sparse the output of the convolution layer, which can be used to 
speed up the supervised train process and maintain the rate of convergence at a steady state 
to avoid the vanishing gradient problem [65]. Suppose that ReLU is the activating layer, its 
formula defined as:

(7)A[l] = f
(

A[l] ⊗W [l] + b[l]
)

(8)ReLU =
{

x, if x > 0

0, if x ≤ 0

Fig. 5  The workflow of the proposed EDLMFC



Page 15 of 19Wang et al. BMC Bioinformatics          (2021) 22:133 	

Followed by the convolution layer, the max-pooling layer was used to sample the fea-
ture graph according to certain rules to reduce the parameters and calculation while 
maintaining the main features. suppose that A[l] is the pooling layer, its formula is:

After the max-pooling operation, batch normalization (BN) [66] operation was 
employed to reduce internal covariate shift and help train the designed deep network.

LSTM is a widely used RNN with the memory cells [67], which store information over 
an arbitrary time allowing the network to learn long dependencies in the sequential 
data. Three non-linear gating units (input, output and forget) control the information 
flow through the time steps. Each gate gets a similar input as the input neuron. Moreo-
ver, each gate has an activation function [68], which forward mechanism expressed by 
the following equation:

where W, b denote the weights and bias, respectively, σ denotes the Logistic Sigmoid 
function, ∗ denotes pointwise multiplication, 

 represent the input gate, forget gate, and output gate, respectively. x<t>is input data at 
current step t, a<t−1> is hidden state at previous step t − 1. c<t−1> is cell state at previ-
ous step t − 1,c<t> is cell state at current step t,a<t> is the hidden state at the current 
step t, which equal to the output y<t> at current.

We used the variant BLSTM, which consists of two parallel LSTMs: one input 
sequence forward and the other input sequence inverted [69], to capture long-range 
dependencies between high-level abstract features extracted from primary sequence, 
secondary structure sequence, and tertiary structure by CNN.

To predict ncRPIs effectively, we designed a training model based on a three-layer 
CNN combining BLSTM. Two similar ensemble neural network parts analyzed the 
ncRNA and protein input vectors separately, and two feature vectors were formed by 
using a one-layer fully-connected layer. Then, a three-layer fully-connected concate-
nated the two feature vectors as input and made the interaction prediction. The main 
parameters in the ensemble deep learning framework, including the number of layers, 

(9)A[l] = sampling
(

A[l−1]
)

(10)
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filter size, kernel size, learning rate, dropout rate, BLSTM hidden size, and fully-con-
nection size, were tuned to maximize the MCC on a validation set randomly selected 
from the training set. For ensemble neural network of analyzing proteins, the values 
of the parameters are as follows: number of layers: 3; filter size: 45, 64, and 86; kernel 
size: 6, 6, and 6; and dropout rate: 0.2, 0.2, and 0.2; BLSTM hidden size: 45; fully-
connection size: 64; For ensemble neural network of analyzing ncRNAs, the values 
of parameters are the same as the ones for analyzing proteins, except for kernel sizes 
which are 6, 5, and 5. In the end, the three-layer fully-connected with 128, 64, and 2 
neurons, respectively, and the dropout with 0.25 and 0.3. Adam [70] and stochastic 
gradient descent (SGD) [71] were employed successively to train each part, among 
which Adam with a learning rate 0.001 first gave the module a quick converge and 
then SGD with a learning rate 0.005 was used to fine tune the module after. Besides, 
we used the back-propagation algorithm [72] to minimize the loss function of binary 
cross entropy, also used regularization [73] and early stopping [74] algorithms to 
avoid overfitting. Our model was implemented by the Keras2.2.5 library.
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