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Abstract 

A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we 
focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desir-
able properties. This task can be framed as a machine translation problem in natural language processing, where in 
our case, a molecule is translated into a molecule with optimized properties based on the SMILES representation. 
Typically, chemists would use their intuition to suggest chemical transformations for the starting molecule being 
optimized. A widely used strategy is the concept of matched molecular pairs where two molecules differ by a single 
transformation. We seek to capture the chemist’s intuition from matched molecular pairs using machine transla-
tion models. Specifically, the sequence-to-sequence model with attention mechanism, and the Transformer model 
are employed to generate molecules with desirable properties. As a proof of concept, three ADMET properties are 
optimized simultaneously: logD, solubility, and clearance, which are important properties of a drug. Since desirable 
properties often vary from project to project, the user-specified desirable property changes are incorporated into 
the input as an additional condition together with the starting molecules being optimized. Thus, the models can be 
guided to generate molecules satisfying the desirable properties. Additionally, we compare the two machine transla-
tion models based on the SMILES representation, with a graph-to-graph translation model HierG2G, which has shown 
the state-of-the-art performance in molecular optimization. Our results show that the Transformer can generate more 
molecules with desirable properties by making small modifications to the given starting molecules, which can be 
intuitive to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.
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Introduction
A main challenge in drug discovery is finding molecules 
with desirable properties. A drug requires a balance of 
multiple properties, e.g.  physicochemical properties, 
ADMET (absorption, distribution, metabolism, elimina-
tion and toxicity) properties, safety and potency against 
its target. To find such a drug in the extremely large 
chemical space (i.e. 1023 − 1060 ) [1] is challenging. It is 

often that a promising molecule needs to be improved to 
achieve a balance of multiple properties. This problem is 
known as molecular optimization. Traditionally, chemists 
would use their knowledge, experience and intuition [2] 
to apply some chemical transformations to the promis-
ing molecule. In particular, the matched molecular pair 
(MMP) analysis [3, 4]—which compares the properties of 
two molecules that differ only by a single chemical trans-
formation—has been widely used as a strategy by medici-
nal chemists to support molecular optimization [5–7]. 
Typically, similarity, transferability, and linear analogu-
ing [8–10] are assumed and applied by the chemists to 
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suggest transformations to improve the promising mol-
ecule. However, they are not generally true, and become 
more problematic and difficult to apply when optimizing 
multiple properties simultaneously.

To address these shortcomings, this work uses deep 
learning models to learn the transformations involved in 
molecular optimization directly from MMPs. Deep gen-
erative models, e.g.  recurrent neural networks (RNNs) 
[11, 12], variational autoencoders (VAEs) [13–18], and 
generative adversarial networks (GANs) [19–22], coupled 
with reinforcement learning [19, 20, 22, 23], adversarial 
training [24–26], transfer learning [11], and different 
optimization techniques [13, 27], have been investigated 
to generate molecules towards desirable properties. 
Recently, chemical reactions are incorporated into neural 
networks for de novo design [28], which allows to gener-
ate synthesizable molecules with their synthesis routes. 
Additionally, conditional generative models [15, 18, 29, 
30] have been developed where the desirable properties 
are incorporated as condition to directly control the gen-
erating process. Another approach is to use reinforce-
ment learning to modify a molecule directly based on 
molecular graph representation [31, 32]. However, all the 
above methods are not direct and intuitive methods for 
molecular optimization. When given a promising mol-
ecule and the desirable properties, the direct way would 
be applying intuitive chemical transformations to achieve 
the desirable properties, while the above methods ignore 
the domain knowledge of chemical transformations.

In this paper, we focus on utilizing chemical transfor-
mations (i.e. MMPs), which reflect the chemist’s intuition 
to optimize a promising molecule. In particular, given a 
starting molecule and the desirable property changes, the 
goal is to generate molecules, which (i)have the desirable 
properties and (ii) are structurally similar to the starting 
molecule. As a proof of concept, we focus on optimiz-
ing ADMET properties which are applicable to all drug 
design projects. In particular, logD, solubility and clear-
ance are optimized simultaneously, which are important 
properties of a drug. LogD measures the hydrophobicity 
of a molecule, which influences the molecule’s potency, 
metabolism and pharmacokinetic properties. Solubil-
ity influences absorption and bioavailability. Clearance 
is a measure of the capacity of drug removal by various 
organs, which is a key parameter to understand meta-
bolic stability and dosing.

The problem of molecular optimization can be 
framed as a machine translation problem [33] in nat-
ural language processing (NLP), where a text is trans-
lated from one language to another. For molecular 
optimization, an input starting molecule is translated 
into a target molecule with optimized properties based 
on the simplified molecular-input line-entry system 

(SMILES) representation. The sequence-to-sequence 
(Seq2Seq) model [34] with attention mechanism [35] 
has been developed and applied in machine transla-
tion successfully. Recently, the Transformer, which only 
uses attention, has been shown to achieve the state-of-
the-art (SOTA) performance in machine translation 
[36], and has become the basic building block of most 
SOTA architectures in NLP. Lately, it has been applied 
to predict chemical reactions and achieved SOTA per-
formance (above 90% accuracy) on a common bench-
mark data set [37]. This motivated us to investigate the 
Seq2Seq with attention and the Transformer for molec-
ular optimization tasks in this work.

The models are trained on MMPs extracted from 
ChEMBL. Since it is difficult to obtain the experimen-
tal property values for molecules in ChEMBL, we built 
a property prediction model for each ADMET property 
based on in-house experimental data. Then the models 
are applied on the extracted ChEMBL MMPs. In order to 
generate molecules towards customized desirable prop-
erties, the desirable property changes are concatenated 
with the source molecules’ SMILES, as input to the 
models.

The most relevant work to this paper are Jin et al. [24, 
38, 39], who view molecular optimization as a graph-to-
graph translation problem. A variational junction tree 
encoder-decoder (VJTNN) [24] was trained on a set of 
MMPs for molecular optimization. Based on VJTNN, 
Jin et al. [38] proposed a multi-resolution, hierarchically 
coupled encoder-decoder for graph-to-graph translation, 
and extended it to be conditioned on desirable property 
criteria, to allow for different user-specified property cri-
teria and multi-property optimization. Recently, Jin et al. 
[39] proposed a new hierarchical graph encoder-decoder 
(HierG2G) by utilizing graph motifs as building blocks, 
which are frequently occurring substructures, to facili-
tate generating large molecules. It was also extended to 
graph-to-graph translation for molecular optimization, 
and outperformed VJTNN.

All the above models are based on molecular graph 
representations, while our models are based on SMILES 
representations and utilize the SOTA machine transla-
tion models, the Seq2Seq with attention and the Trans-
former. Although Jin et  al. [24, 38, 39] compared their 
models with Seq2Seq and showed that they performed 
better, the Seq2Seq used only one one-layer long short-
term memory (LSTM) in the encoder and decoder, while 
we use multiple layers. Additionally, the Transformer, 
has not been explored in molecular optimization. There-
fore, we conduct a comparison over these three models, 
Seq2Seq with attention, Transformer and HierG2G. For 
HierG2G [39], the conditional extension in [38] is applied 
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to support customized property optimization and multi-
property optimization.

Methods
Molecule representation and property representation
The models are trained on a set of MMPs together with 
the property changes between source and target mol-
ecules. Figure  1 shows an example of a MMP, and the 
properties of source and target molecules. The SMILES 
representation of molecules [40], as a string-based rep-
resentation, is used in our study to facilitate the use of 
machine translation models from NLP.

Considering practical desirable criteria and experimen-
tal errors, solubility and clearance changes are encoded 
using three categories, while the change in logD is 
encoded into range intervals, with each interval length = 
0.2 except for the two open intervals on the sides (Fig. 2). 
For clearance, human liver microsome intrinsic clearance 
(HLM CLint) is used in this work, and the thresholds for 
low/high solubility and low/high CLint are 50 µ M and 20 
µL/min/mg respectively (1.7 and 1.3 respectively in log10 
scale).

In order to translate source molecules into target mol-
ecules with customized properties, the encoded property 
changes are concatenated with the SMILES representa-
tion of starting molecules as input sequences for machine 
translation models, while the target sequences are the 
SMILES representation of target molecules. Figure  3 
shows an example of source and target sequences which 
are fed into machine translation models during training.

Given a set of MMPs {(X ,Y ,Z)} where X repre-
sents source molecule, Y represents target molecule, 
and Z represents the property change between source 
molecule X and target molecule Y, the Seq2Seq with 
attention and the Transformer will learn a mapping 
(X ,Z) ∈ X × Z → Y ∈ Y during training where X × Z 
represents the input space and Y represents the target 
space. During testing, given a new (X ,Z) ∈ X × Z , the 
models will be expected to generate a diverse set of target 
molecules with desirable properties.

Seq2Seq with attention
The Seq2Seq [34] is a framework that maps an input 
sequence to an output sequence, which has wide appli-
cations, such as machine translation, text summariza-
tion, chatbot, question answering system, and image 
captioning. In particular, it has brought a major break-
through in neural machine translation. The Seq2Seq is 
based on an encoder-decoder architecture using RNN. 
The encoder takes an input sequence, and compresses it 
into a context vector, defined by the hidden state in the 
last time step of encoder, which captures the informa-
tion of the whole input sequence. Specifically, at each 

Fig. 1  An example of a matched molecular pair and the properties

Fig. 2  Property change encoding

Fig. 3  An example of source and target sequences fed into Seq2Seq 
or Transformer during training
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time step in the encoder, the RNN takes a word from the 
input sequence and a hidden state from the previous time 
step, and output a hidden state. The hidden state memo-
rizes the words seen earlier and is updated at each time 
step, and the one from the last time step is called con-
text vector, which captures the information of the whole 
input sequence. The context vector is then passed to the 
decoder to predict an output sequence. The drawback of 
the Seq2Seq is that it becomes difficult to deal with long 
sequence because the encoder has to compress the whole 
sequence into a single context vector in the last time step. 
To overcome this problem, attention mechanism [35] was 
introduced, which utilizes the hidden states at each time 
step from the encoder. It enables the decoder to focus on 
specific tokens in the input sequence when predicting 
each token in the output sequence.

In this paper, the Seq2Seq with attention is explored 
for molecular optimization (Seq2Seq refers to Seq2Seq 
with attention in the rest of this paper). First, all the 
source and target SMILES in our dataset were tokenized 
to construct a vocabulary, which contains all the possi-
ble tokens. Two special symbols were added, start and 
end, representing the start and end of a sequence respec-
tively. In order to guide the model to generate mol-
ecules with different specified property constraints, the 
property changes between source and target molecule 
were concatenated with the source SMILES as the input 
sequence to Seq2Seq as illustrated in Fig.  3. Therefore, 
each possible single property change was treated as a 
token (e.g. LogD_change_(− 1.1, − 0.9]) and added to the 
vocabulary.

The model architecture is shown in Fig.  4. It consists 
of an encoder RNN and an attention decoder RNN, with 
LSTM cells. The encoder consists of an embedding layer 
of 256 dimensions and 5 stacked bidirectional LSTM 
layers with hidden size of 512 and dropout of 0.3. The 
embedding layer converts the input token at each time 
step into a continuous representation, which is then 
passed through the stacked bidirectional LSTM. At the 
last time step, the LSTM ouputs for both directions are 
summed and passed to the decoder. Similarly, the LSTM 
hidden states at each time step for both directions are 
summed and used to compute the attention with the hid-
den state from the current time step of decoder.

The decoder consists of an embedding layer of 256 
dimensions and 5 stacked unidirectional LSTM layers 
with hidden size of 512 and dropout of 0.3. Additionally, 
it includes an attention layer. The initial input token is the 
start token. At each time step in decoding, the attention 
layer computes the attention weights which captures the 
importance of each source token for predicting the next 
target token. The attention weights are computed by 
the scaled dot product between the the hidden states at 

all time steps in the encoder and the hidden state at the 
current time step in the decoder, followed by a softmax 
function. Then a context vector is obtained by a weighted 
sum of the encoder hidden states at all time step. The 
context vector captures relevant information from every 
source token to help predict the next target token. It is 
concatenated with the hidden state at the current time 
step in decoder and then passed through a linear layer 
with a hyperbolic tangent activation function. The out-
put is lastly passed through a linear layer to reshape to 
the vocabulary size, and a softmax activation function is 
applied to obtain the probabilities of each token in the 
vocabulary.

The model is trained to predict the next token of the 
target sequence, given previous tokens of the target 
sequence conditioned on the input sequence. In par-
ticular, teacher forcing, as a commonly used training 
technique for aiding efficient training of RNN, is used in 
the decoder, where the ground-truth target token in the 
training set at the current time step rather than the out-
put generated by the model, is used as input for the next 
time step. Specifically, given a training set, D = {(xi, yi)} 
where xi and yi represents the ith source sequence and 
target sequence respectively in the dataset D, we find θ to 
minimize negative log likelihood (NLL):

where θ represents all the parameters in the model, 
yi,t represents the tth token of yi . After training, when 
using the model for generation, the ground-truth target 
sequence is not available and the output sequence is gen-
erated by sampling one token at a time from the distribu-
tion over the vocabulary until the end token is sampled. 
Specifically, multinomial sampling is used to generate 
multiple molecules for a given input sequence.

Transformer architecture
Although the Seq2Seq with attention has achieved great 
success in machine translation, it is still challenging to 
deal with long-range dependencies, and the sequential 
nature of the RNN prevents parallelization. The Trans-
former [36] was proposed to discard the RNN and rely 
only on attention mechanism instead. In this paper, 
the Transformer architecture illustrated graphically in 
[36] is explored for molecular optimization, as shown 
in Fig.  5. The Transformer consists of an encoder and 
a decoder. First, a vocabulary is constructed the same 
way as the Seq2Seq with attention. Before feeding the 
input sequence to the encoder, each token in the input 
sequence is converted into an embedding vector, followed 

(1)NLL(θ) = −
∑

i∈D

|yi|
∑

t=1

log P
(

yi,t | yi,1:t−1, xi; θ
)
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by a positional encoding, which gives the embeddings 
order information.

Encoder The encoder consists of a stack of N identical 
encoder layers. Each encoder layer takes a list of input 
encodings from the previous encoder layer (list size is 
determined by the input sequence length) as input, and 
generates a list of output encodings that pass through 
the next layer. The input for the first encoder layer is the 
embedding of each token in the input sequence. Each 
encoder layer has two sub-layers: a multi-head self-
attention sub-layer and a position-wise fully connected 
feed-forward network sub-layer. A residual connection is 

used around each of the two sub-layers, followed by layer 
normalization.

In the first encoder layer, for each positional token 
embedding at position t in the input sequence, it first 
flows through the multi-head self-attention sub-layer, 
which helps the encoder focus on relevant tokens in the 
input sequence to better encode it. Specifically, three vec-
tors, Q (query), K (key), V (value) are first created from 
the input token embedding by multiplying with three 
weight matrices that are learned during training. These 
three vectors are used to compute the self-attention score 
for the input token at position t, which determines the 

Fig. 4  The Seq2Seq with attention architecture for molecular optimization
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importance of all the tokens in the input sentence for 
encoding the input token being processed. The score is 
computed by the scaled dot-product between Q of the 
input token at t being processed and K of each token in 
the input sequence, followed by a softmax function. Then 
a weighted sum of the value vectors of all tokens in the 
input sequence is obtained as the attention vector for 
the token at position t being processed. This process is 
for obtaining a single head attention. Multi-head atten-
tion [36] was introduced to help to focus on the input 
from different perspectives. Specifically, multiple weight 
matrices are learned to project the input embedding into 
multiple sets of Q, K, V, which are then used to derive 
multiple attention vectors. These attention vectors are 
then concatenated and projected to produce the final 
output of the multi-head self-attention sub-layer, which 
is then passed through the feed-forward neural network 
sub-layer. The output from the feed-forward neural net-
work sub-layer is fed to the next encoder layer.

Decoder Similar to the encoder, the decoder consists 
of a stack of N identical decoder layers. Each decoder 
layer has three sub-layers, masked multi-head self-atten-
tion sub-layer, fully connected feed-forward network 
sub-layer, and encoder-decoder multi-head attention 
sub-layer. The decoder operates in a similar fashion to 

the encoder, except that the attention differ from those 
in encoder in the following: (i) while self-attention in 
encoder allows each position to attend all positions 
from previous encoder layer, self-attention in decoder 
only allows each position to attend earlier positions by 
masking the future positions. (ii) An additional encoder-
decoder multi-head attention was introduced to help the 
decoder focus on specific parts of the input sequence, 
which is similar to the role of encoder-decoder atten-
tion mechanism in Seq2Seq with attention. Specifically, 
the output of the top encoder layer is transformed into 
a set of vectors K and V, which is used by each encoder-
decoder multi-head attention sub-layer. Similar to 
Seq2Seq with attention, the model was trained using 
teacher forcing, and multinomial sampling was used to 
generate multiple molecules for a given input sequence.

Model training and selection
The Seq2Seq training and inferencing was performed on 
a NVIDIA GeForce RTX 2080 Ti. The Adam optimizer 
with learning rate 0.0001 and a batch size of 128 were 
used. The hyperparameters were tuned based on previ-
ous experience [34, 36]. The Transformer training and 
inferencing was performed on a NVIDIA Tesla K80. The 

Fig. 5  The Transformer architecture (following Vaswani et al. [36]) for molecular optimization
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hyperparameters were tuned, and most remained the 
same as [36], except that the input and output encod-
ing dimension was changed from 512 to 256, and label 
smoothing was changed from 0.1 to 0.

We saved a model at each epoch, and the best of these 
was chosen based on the accuracy on the validation 
set. The accuracy was computed by comparing the tar-
get molecule with one generated molecule using greedy 
decoding for each input sequence (property constraint 
and molecule) of the validation set. This is different from 
the evaluation with the test set. Here, we sample multi-
ple molecules using multinomial sampling and the gen-
erated molecules are not necessarily required to be the 
same as the target molecule (if provided). The generated 
molecules need to satisfy the specified desirable proper-
ties and maintain structural similarity (enforced by the 
training) to the input molecules. The reasons of the dif-
ferent approaches are (i) it is time-consuming to generate 
multiple molecules for each sample of the validation set 
after each epoch during training (ii) and compute their 
properties to check if they satisfy the desirable proper-
ties after each epoch during training. (iii) During model 
optimization, we observed a tendency that the higher 
accuracy on the validation set, the more molecules with 
desirable properties generated on the test set.

Data preparation
The models are trained on a set of MMPs extracted from 
ChEMBL together with the property changes between 
the source and target molecules. The properties (logD, 
solubility and clearance) are predicted from models built 
using the in-house experimental data.

Constructing matched molecular pairs
The matched molecular pairs (including reverse trans-
formations) are extracted from ChEMBL using an 
open-source matched molecular pair tool [41]. All the 
molecules were standardized using MolVS [42]. There 
are 9,927,876 pairs considering the following constraints,

•	 The number of heavy atoms of the core ≤ 50
•	 The number of heavy atoms in R group ≤ 13
•	 The ratio of heavy atoms in the R group to the mol-

ecule R group ≤ 0.33
•	 The number of H-bond donors in R group ≤ 3
•	 The number of H-bond acceptors in R group ≤ 3
•	 AstraZeneca’s AZFilter=“CORE” [43] to filter out 

bad-quality compounds
•	 Each molecule’s property values are within 3 stand-

ard deviations of all molecules’ property values

2% from the full 9,927,876 pairs are randomly sampled 
for comparing three models because HierG2G does not 
scale well on large data. We randomly split it into 90% as 
training and validation, and 10% as test, and further split 
the 90% into 90% as training and 10% as validation, which 
results in 160,831 training, 17,871 validation and 19,856 
test.

ADMET property prediction model
The property prediction models are built based on mes-
sage passing neural network [44]. They are used for con-
structing data during training and also for evaluating 
the generated molecules during testing. In particular, 
in-house experimental data are used for building prop-
erty prediction models. Table 1 shows the train and test 
size, root-mean-square error (RMSE), normalized RMSE 
(NRMSE) and R2 for each property prediction model. 
More results on the experimental properties and pre-
dicted properties can be found in Figure S1 in Additional 
file 1.

Experimental settings
Test sets
Each test sample (X,  Z) consists of two parts, the start-
ing molecule being optimized X and the desirable prop-
erty change Z, which therefore determines the input data 
space X  . In order to evaluate our models comprehen-
sively, three test sets are constructed:

•	 Test-Original is the original test set {(X ,Z)test} (10% 
of dataset) with 19,856 samples, where the desirable 
property changes are determined by the MMPs in 
the test set. It has the same input space as the train-
ing set, which is typical in machine learning models. 
But note that each test sample (X ,Z)test has not been 
unseen in the training set. This test set is used to test 
if our models can generalize well on unseen different 
combinations of X and Z in the input space X × Z.

Table 1  Property prediction model performance

LogD Solubility HLM CLint

Train size 170,337 184,883 144,300

Train RMSE 0.304 0.485 0.264

Train NRMSE 0.041 0.079 0.083

Train R2 0.935 0.774 0.749

Test size 18,927 20,543 16,034

Test RMSE 0.395 0.602 0.350

Test NRMSE 0.054 0.104 0.113

Test R2 0.892 0.658 0.557
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•	 Test-Molecule is a subset of Test-Original with 12,721 
samples where the starting molecules are not seen in 
the training set (by comparing their canonical smiles 
to be identical), {(X ,Z)test |X /∈ Xtrain} where Xtrain 
represents the set of source molecules in the training 
set. This set is used to test if our models can general-
ize well on unseen (X, Z) with further constraint of 
unseen starting molecules.

•	 Test-Property consists of 7,813 starting molecules 
with low solubility, high CLint, and logD between 2 
and 4.4 in Test-Original. For the logD change, while 
the exact task is performed on Test-Original and 
Test-Molecule, here we require that the target logD 
property has to be (i) lower than the starting value 
and (ii) in range of 1.0-3.4. This is considered to be 
the desirable range optimization, as reflected in the 
in-house data distribution. Overall, we are inter-
ested in optimizing all the starting molecules to 
achieve lower logD (constrained to 1.0-3.4), high 
solubility and low CLint. The desirable property 
change for all starting molecules is set to LogD_
change_=(-1.1,-0.9], Solubility_low→high, CLint_
high→low. Therefore, the test set can be represented 
by {(X ,Z}|(X ∈ Xtest) ∧ (solubility(X) = low)∧

{(X ,Z}|(X ∈ Xtest) ∧ (solubility(X) = low)

- 1.1, - 0.9] Solubility_low → highCLint_high → low)} . 
This test set is used to test if our model can general-
ize well on a particular property change we are inter-
ested in.

Evaluation metrics
Aligning with our goal, the models are evaluated in two 
main aspects,

•	 Satisfying all three desirable properties For each start-
ing molecule in the test set, 10 unique valid mol-
ecules, which are not the same as the starting mol-
ecule, were generated, and the number of molecules 
satisfying all three desirable properties out of the 
10 generated molecules was counted. The ADMET 
property prediction model described earlier is used 
to compute the properties of generated molecules. 
Additionally, the model error (Test RMSE) in Table 1 
is considered to determine if a generated molecule 
satisfies its desirable properties. For logD, the gener-
ated molecules with |logDgenerated − logDtarget | ≤ 0.4 
will be considered as satisfying desirable logD 
constraint. For solubility, the threshold for low 
and high will be a range considering the model 
error, i.e.  1.7±0.6. The generated molecules with 
solubility ≤ 2.3 will be considered as low, and those 

with solubility ≥ 1.1 will be considered as high. Simi-
larly, for CLint, the threshold is 1.3±0.35.

•	 Generation of MMPs The MMP analysis was per-
formed on the starting molecules and generated mol-
ecules to check if the generated molecules have single 
transformation to the starting molecules. Further-
more, the ratio of heavy atoms in the R group to the 
generated molecule Rgroup ≤ 0.33 and Rgroup ≤ 0.50 
are examined.

Baseline
We compare our models, Seq2Seq and Transformer with 
the following baselines,

•	 HierG2G HierG2G training and inferencing was per-
formed on a NVIDIA Tesla V100. The hyperparame-
ters were tuned, and most remained the same as [39], 
except that beta was changed from 0.3 to 0.6.

•	 MMP A natural comparison would be exhaustively 
applying all MMP transformation rules to the start-
ing molecules and selecting those yielding the speci-
fied desirable properties. However, a combinatorial 
issue occurs when applying all substructure search 
operations to all molecules and calculating proper-
ties on all outcomes. Therefore, we adopted a simpli-
fied baseline: we assume that we already know the R 
group to be substituted in the starting molecule, and 
randomly selected 10 R groups from all the possible 
R groups for substitution. The number of molecules 
satisfying all three desirable properties out of the 10 
resulted molecules was reported. This allows for a 
direct comparison with our models where 10 mol-
ecules were generated as well.

K‑sample Anderson–Darling test
The K-Sample Anderson–Darling Test [45] is a nonpar-
ametric test for testing if k-samples are drawn from the 
same population without having to specify the distribu-
tion function of that population. It is applicable to con-
tinuous and discrete data. This test is used to compare 
different models’ performance in terms of satisfying all 
three desirable properties.

Results and discussion
Data statistics
Figure 6 shows the source and target molecule’s proper-
ties distribution on the training set. The property distri-
bution for the source molecules is the same as the one 
for the target molecules because reverse transformations 
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are included in the data set. Figure 7 shows the training 
data distribution over pairwise property changes where 
most MMPs result in no change in properties. However, 

such MMPs are still useful because we could generate 
molecules with same properties, but different structures. 
It would also be useful when it is desired to keep some 
properties unchanged and change some other proper-
ties. Additionally, it can be seen from Fig. 7a, b that sol-
ubility tends to be negatively correlated with logD, and 
CLint tends to be positively correlated with logD.

Figure 10a shows the top 20 most frequently occurring 
transformations on the training set, which are encoded as 
SMIRKS [41]. The most frequently occurring transforma-
tion is [*:1][H]>>[*:1]C where a hydrogen is replaced by 
a methyl group and its reverse transformation. Note that 
they do not occur with exactly same frequency because 
we sampled 2% from the full MMPs. Table  2 shows the 
statistics of transformations on the training set where 
around 51.9% of transformations only occur once. The 
top 20 most frequently occurring transformation only 
accounts for around 8.2% of the training set, which 
means there are no dominant transformations.

Fig. 6  Source vs. target molecule’s properties and their distributions on the training set (solubility and CLint are in log10 scale)

Fig. 7  Data distribution over pairwise property changes on the 
training set where the circle size corresponds to counts. In a, b each 
tick x in horizontal axis represents (x − 0.1, x + 0.1] , e.g. 0 represents 
(− 0.1, 0.1] . For ease of presentation, x < −1.6 and x > 1.6 are not 
shown here

Table 2  Transformation statistics on the training set

Percentage of unique transformations 59.4%

Percentage of transformations that occur only once 51.9%

Percentage of the most frequently occurring transformation 1.2%

Percentage of the top 20 most frequently occurring transforma-
tions

8.2%
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Unconditional models vs. conditional models
This set of experiment compares conditional mod-
els—which use source molecule and property criteria 
as input, with unconditional models—which use only 
source molecule as input. For each starting molecule in 
the test set, 10 unique valid molecules, which are not the 
same as the starting molecules, were generated. Figure 8 
shows the performance of unconditional Transformer 
and conditional Transformer in terms of satisfying all 
three desirable properties on three test sets. K-Sample 
Anderson–Darling Test was performed, and condi-
tional Transformer was found to statistically outperform 
unconditional Transformer. In particular, 50% of the 
starting molecules in Test-Original and Test-Molecule 
have at least 6 molecules with desirable properties out 
of the 10 generated molecules using conditional Trans-
former, while the number dropped to 3 using uncondi-
tional Transformer. Similar results have been found on 
the comparison of unconditional Seq2Seq and condi-
tional Seq2Seq (Additional file 1: Figure S2).

Discussion
Why does conditional models perform better than 
unconditional models? It is shown that using property 
criteria as additional input can help generating mol-
ecules with desirable properties. One reason is that 
unconditional models are trained only on MMPs (X, Y) 
without property changes Z, with only source molecule 
X as input and target molecule Y as output. In this case, 
given a source molecule, it can be mapped to differ-
ent target molecules with different properties because 
there could be multiple target molecules that are MMP 
with the source molecule in the training set. However, 
when using conditional models, the property change Z 
between source molecule and target molecule is used as 
part of input, which guides the model to generate mol-
ecules with desirable properties.

What do the results on three test sets convey? The 
performance on Test-Original shows that conditional 
models can generalize well on the unseen combination 
of starting molecules and desirable property changes, 
while the performance on Test-Molecule shows condi-
tional models can generalize well on the combination 
of unseen starting molecules and seen/unseen property 
changes. On Test-Property, both unconditional and 
conditional models perform worse compared with the 
ones on Test-Original and Test-Molecule, especially 
unconditional models. Note that Test-Property is chal-
lenging because only 344 (0.2%) samples out of 160,831 
training samples have the property change of interest.

Model comparison for conditional models
This set of experiment mainly compares the conditional 
version of the three models: Seq2Seq, Transformer and 
HierG2G.

Satisfying multiple desirable properties
Figure 9 compares the performance of the Seq2Seq, the 
Transformer, HierG2G and the MMP baseline in terms 
of satisfying all three desirable properties on three test 
sets. The Transformer performs best, with more gener-
ated molecules satisfying desirable properties.

Discussion
Comparison with MMP baseline The MMP baseline 
performs much worse since we randomly selected 10 R 
groups as we discussed in section  Baseline. While it is 
highly computational demanding to apply all MMP trans-
formation rules, rank and find the ones yielding desirable 
properties, our model can directly generate molecules 
with desirable properties. Additionally, the generated 
molecules are not restricted to be known MMPs 
(Table 3). Our model could in principle allow for several 
modifications as well as modifications not corresponding 
to MMPs if intended (not topic of this publication). 

Benchmarking The two main benchmarking suites in 
the field of de novo molecular generation: MOSES [46] 
and GuacaMol [47] are not directly comparable and 
suitable here since they are designed for benchmark-
ing the generative models which generates molecules 
from scratch, while we focus on improving a given input 
molecule towards its specified desirable properties. The 
improved molecules are required to have small modifica-
tions to the input molecule, which is enforced by training 
on the MMPs. This was not directly tackled by the gen-
erative models which are trained on a set of molecules of 
interest.

Generation of MMPs
For each starting molecule in the test set and the 10 gen-
erated molecules, MMP analysis [41] was performed 
between the starting molecule and each generated mol-
ecule. Table  3 shows the percentage of generated mol-
ecules that are MMPs with their corresponding starting 
molecules and the ratio of heavy atoms in R group to 
the generated molecule Rgroup ≤ 0.33 and Rgroup ≤ 0.50 . 
Additionally, among all the transformations results from 
Rgroup ≤ 0.33 , the percentage of transformations that are 
seen in the training set is reported. It can be seen that 
the Transformer generates much more MMPs than the 
Seq2Seq and HierG2G for all the three test sets.

Discussion The Transformer generated much more 
molecules with single transformation to the starting mol-
ecules. This mimics the chemist’s strategy that applying 
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single transformations when optimizing a starting mol-
ecule. Additionally, looking at “in Train”, all three models 
have learned to use not only the existing transformations 
in the training set but also novel transformations that 
have not been seen in the training set, to optimize novel 
combinations of starting molecules and specified desir-
able properties. Note that the MMP concept is used as 
a general concept for capturing the chemist’s intuition. 
This does not imply that the MMP concept is the only 
viable and solely strategy applied, but nevertheless due 
to its simplicity of linear analoguing it is commonly used. 
Furthermore, there are several well established algo-
rithms [41] to access and analyze MMPs readily support-
ing structure-property relationship analysis.

Top 20 most frequently occurring transformations gen-
erated by Transformer We further check the top 20 most 

frequently occurring transformations among the gener-
ated molecules from the Transformer, and compare them 
with the ones on the training set, as shown in Fig.  10. 
Most of the generated transformations on Test-Original 
and Test-Molecule are very similar to the ones on the 
training set.

Discussion The result indicates that the Transformer 
model has captured the transformations on the train-
ing set. The generated transformations on Test-Property 
are more different from the ones on the training set 
compared with the other two test sets. It is reasonable 
because the input space on Test-Property is very differ-
ent from the one on the training set due to the constraint 
of particular property change. The generated transfor-
mations on Test-Property are biased towards generating 
molecules with that particular property change.

Fig. 8  Number of generated molecules with desirable properties 
per molecule using unconditional Transformer and conditional 
Transformer on three test sets. Conditional Transformer outperforms 
unconditional Transformer using K-Sample Anderson–Darling Test at 
significance level of 0.1%

Fig. 9  Number of molecules with desirable properties among 10 
generated molecules per molecule using conditional version of 
HierG2G, Seq2Seq and Transformer on three test sets. The difference 
between each two is significant using K-Sample Anderson–Darling 
test at significance level of 0.1%
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MMPs within generated desirable molecules
We take a closer look at the generated molecules with 
desirable properties from three models, and examine the 
percentage of MMPs (Table 4). The Transformer can gen-
erate much more desirable molecules than HierG2G and 
Seq2Seq, with 8–18%, and 4–12% absolute improvement 
respectively. Within the generated molecules with desir-
able properties, above 90% of the desirable molecules 
generated from the Transformer make single transforma-
tion to starting molecules and the ratio of the change (R 
group) compared to the generated molecule is no more 
than 1/3, while the number dropped significantly to 
around 55% and 74% for HierG2G and Seq2Seq respec-
tively. Clearly, the Transformer can generate molecules 
with desirable properties by making small modifications 
to starting molecules as a chemist would do. 

Validity
We sampled 10 molecules for each sample on the test 
set, and reported the percentage of valid molecules (by 
RDKit) among all the generated molecules (Table 5). All 
of the models have achieved good validity, with Seq2Seq 
around 95%, Transformer 98% and HierG2G 99%.

Table 3  Comparison of the percentage of generated molecules from HierG2G, Seq2Seq and Transformer that are MMPs with starting 
molecules

Among all the generated molecules for each test set, MMP_0.33 and MMP_0.50 represent the percentage of generated molecules that are MMPs with their 
corresponding starting molecules and the ratio of heavy atoms in R group to the generated molecule Rgroup ≤ 0.33 and Rgroup ≤ 0.50 respectively. Among all the 
transformations results from MMP_0.33, in Train represents the percentage of transformations that are seen in the training set

For MMP_0.33 and MMP_0.50, higher values are better, and the best values are in italics

HierG2G Seq2Seq Transformer

MMP_0.33 
(%)

MMP_0.50 
(%)

in Train (%) MMP_0.33 
(%)

MMP_0.50 
(%)

in Train (%) MMP_0.33 
(%)

MMP_0.50 
(%)

in Train (%)

Test-Original 52.50 61.19 45.46 73.55 83.32 43.59 90.45 96.49 48.69

Test-Molecule 25.87 30.98 54.99 67.87 78.48 51.90 88.83 95.58 56.64

Test-Property 13.04 15.20 41.49 72.32 81.77 36.35 90.69 96.37 42.02

Fig. 10  Top 20 most frequently occurring transformations 
on a Training set, and the top 20 most frequently occurring 
transformations among generated molecules from Transformer on b 
Test-Original, c Test-Molecule and d Test-Property

Table 4  Comparison of the percentage of generated desirable molecules from HierG2G, Seq2Seq and Transformer that are MMPs with 
starting molecules

Desirable represents the percentage of molecules with desirable properties among all the generated molecules. Among all these generated molecules with desirable 
properties for each test set, MMP_0.33_D and MMP_0.50_D represent the percentage of generated molecules that are MMPs with their corresponding starting 
molecules and the ratio of heavy atoms in R group to the generated molecule Rgroup ≤ 0.33 and Rgroup ≤ 0.50 respectively

The results in italics indicate the best values; higher values are better

HierG2G Seq2Seq Transformer

Desirable (%) MMP_ 
0.33_D (%) 
(%)

MMP_ 
0.50_D (%)

Desirable (%) MMP_ 
0.33_D (%)

MMP_ 
0.50_D (%)

Desirable (%) MMP_ 
0.33_D (%)

MMP_ 
0.50_D 
(%)

Test-Original 38.66 62.94 70.77 46.94 79.66 88.11 56.14 92.67 97.64

Test-Molecule 37.62 56.81 65.44 45.22 74.81 84.26 56.74 91.41 96.98

Test-Property 33.58 55.70 63.28 37.67 74.32 83.43 41.75 91.06 96.83
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Varying performance of three models
Although the Transformer outperforms the Seq2Seq and 
HierG2G overall, it is not clear if it performs best for 
each test starting molecule. Therefore, we are interested 
in the following questions, which will help us understand 
if it will be beneficial to use all three models together. 

1.	 Does the Transformer always perform best for each 
starting molecules in the test set?

2.	 Are the generated molecules from the three models 
the same or different?

To answer the first question, we examine if one model 
always generates more desirable molecules for each start-
ing molecule than the other two models. Figure 11 shows 
the pairwise comparison of three models on the number 
of molecules with desirable properties out of 10 gener-
ated molecules on Test-Original. The Transformer gen-
erated more desirable molecules than the Seq2Seq and 
HierG2G for most starting molecules, with those dots 
lie below the diagonal line in Fig. 11a, b. However, there 
are still some starting molecules where the Transformer 
generated less desirable molecules. Table  6 shows the 
percentage of starting molecules for which each model 
generates either less or more desirable molecules com-
pared with the other two models on Test-Original. For 
46.20% of the starting molecules on Test-Original, the 

Table 5  The percentage of valid molecules among all the 
generated molecules on the test set

HierG2G (%) Seq2Seq (%) Transformer (%)

Test-Original 99.98 95.00 98.50

Test-Molecule 99.98 94.60 98.25

Test-Property 99.99 95.54 98.55

Fig. 11  Pairwise comparison of HierG2G, Seq2Seq and Transformer on the number of molecules with desirable properties out of 10 generated 
molecules per molecule on Test-Original. The x axis and y axis represent the number of molecules with desirable properties out of 10 generated 
molecules. If two models always generate the same number of desirable molecules for each same starting molecule, all points will lie on the 
diagonal line

Table 6  Among all the starting molecules in Test-Original, 
the percentage of starting molecules for which each model 
generates either less or more desirable molecules when 
compared with the other two models

Less than the others (%) More than the 
others (%)

HierG2G 46.50 10.02

Seq2Seq 23.16 21.81

Transformer 8.89 46.20

Fig. 12  The overlap of the generated molecules with desirable 
properties from HierG2G, Seq2Seq and Transformer given each 
starting molecule in Test-Original. Each circle represents the set of 
molecules with desirable properties for each model. Transformer 
generated more desirable molecules than HierG2G and Seq2Seq, 
with the biggest circle. Most generated molecules with desirable 
properties from three models given the same starting molecule 
are different from each other, with only 2,937 identical molecules. 
Transformer and Seq2Seq have more identical desirable molecules 
(12,151) compared with (HierG2G, Seq2Seq) and (Transformer, 
HierG2G)



Page 14 of 17He et al. J Cheminform           (2021) 13:26 

Transformer generated more desirable molecules than 
HierG2G and Seq2Seq. But there are 10.02% + 21.81% = 
31.83% of the starting molecules, where either HierG2G 
or Seq2Seq generated more desirable molecules. There-
fore, it could be beneficial to use all three models 
together.

The second question was examined to see if the three 
models can generate diverse desirable molecules. For 
each starting molecule in Test-Original, we compute 
the overlapping and non-overlapping set of generated 

desirable molecules from HierG2G, Seq2Seq and Trans-
former, and sum the numbers over all starting molecules, 
which results in the Venn diagram in Fig.  12. First, the 
Transformer generated more desirable molecules than 
the Seq2Seq and HierG2G. Second, there is not much 
overlap of the generated desirable molecules among 
the three models. Third, the Transformer and Seq2Seq 
generate identical desirable molecules more frequently 
than the other two pairs. The reason might be that the 
Transformer and Seq2Seq are both based on SMILES 

Fig. 13  Example of diverse molecules with a desirable properties generated by b HierG2G, c Seq2Seq and d Transformer. The changes in the 
generated molecules compared with starting molecule are highlighted in red. Seq2Seq and Transformer have one molecule overlapping outlined 
by black rectangle
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representation and have a more similar working mecha-
nism compared to HierG2G which is based on graph 
representation. Overall, the three models can generate 
diversified sets of molecules with desirable properties, 
which encourages us to use them in an ensemble way to 
enrich the generated desirable molecules.

Figure  13 shows an example of the diverse mole-
cules with desirable properties generated by HierG2G, 
Seq2Seq and Transformer. Given the starting molecule 
[48] and desirable properties in Fig. 13a, the three models 
generate diverse molecules with desirable properties and 
different small modifications to the starting molecule. 
The Seq2Seq and the Transformer have one molecule 
overlapping as outlined by the black rectangles. Over-
all, we see the diverse set of desirable molecules that the 
three models generated.

Conclusions and future work
The molecular optimization problem was framed as a 
machine translation problem where a given molecule 
is translated into a molecule with optimized proper-
ties based on the SMILES representation. Two machine 
translation models, the Seq2Seq with attention and 
the Transformer have been investigated to generate 
molecules with desirable properties by capturing the 
chemist’s intuition, i.e.  MMPs. The property changes 
have been incorporated into the input (starting mol-
ecule being optimized) as condition to guide the mod-
els to generate molecules with different combinations 
of property constraints. Given a starting molecule and 
user-specified properties, our models can generate mol-
ecules satisfying multiple property constraints while 
maintaining the structural similarity to the starting mol-
ecule. Specifically, for the Transformer, around half of 
all the generated molecules satisfied all target proper-
ties, and within the generated molecules with desirable 
properties, around 90% had a single transformation with 
respect to the starting molecules and no more than 1/3 
change.

This can be beneficial to lead optimization, where a 
promising molecule needs to be improved to achieve a 
balance of multiple properties. The small modifications 
to the starting molecule, which mimic the chemist’s strat-
egy, would be intuitive for chemists and provide insights 
for designing new molecules. Our deep learning models 
start from capturing the chemist’s intuition from MMPs, 
but they go beyond the working assumptions of chem-
ists, e.g. transferability where the effect of a chemical 
transformation is assumed to be generalized to different 
molecular context. As data-driven approaches, our mod-
els can learn the intuitive chemical transformations with-
out explicit assumptions.

The Seq2Seq and Transformer, were compared to 
HierG2G, a graph-to-graph translation model for molec-
ular optimization. The Transformer performed best 
overall in generating more molecules with desirable 
properties and structurally similar to starting molecules. 
However, Seq2Seq and HierG2G can still generate differ-
ent molecules with desirable properties. We believe the 
ensemble use of three models will contribute to a further 
enrichment of diverse molecules.

We have extracted a dataset of MMPs from ChEMBL 
with the source and target molecules’ ADMET properties 
(i.e. logD, solubility and clearance) predicted by the prop-
erty prediction models trained on a large number of in-
house experimental data. We believe it will be beneficial 
for the studies of MMP analysis and optimizing ADMET 
properties.

As a proof-of-concept, we have focused on optimiz-
ing ADMET properties since they are general, important 
and applicable to all drug design projects. In principle, 
our model can be trained to optimize other properties as 
well, e.g. synthetic accessibility and bioactivity.
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