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Abstract

Accurate and individualized breast cancer risk assessment can be used to guide personalized 
screening and prevention recommendations. Existing risk prediction models use genetic and 
nongenetic risk factors to provide an estimate of a woman’s breast cancer risk and/or the like-
lihood that she has a BRCA1 or BRCA2 mutation. Each model is best suited for specific clinical 
scenarios and may have limited applicability in certain types of patients. For example, the Breast 
Cancer Risk Assessment Tool, which identifies women who would benefit from chemoprevention, 
is readily accessible and user-friendly but cannot be used in women under 35 years of age or those 
with prior breast cancer or lobular carcinoma in situ. Emerging research on deep learning-based 
artificial intelligence (AI) models suggests that mammographic images contain risk indicators that 
could be used to strengthen existing risk prediction models. This article reviews breast cancer risk 
factors, describes the appropriate use, strengths, and limitations of each risk prediction model, and 
discusses the emerging role of AI for risk assessment.
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Introduction
Breast cancer screening has shifted from a one-size-fits-all 
approach toward personalized strategies based on risk level 
and personal preference (1). Supplemental MRI screening 
is widely recommended for high-risk women (with an es-
timated lifetime risk of 20% or more) (2,3). In addition, 
burgeoning evidence supports the use of supplemental 
screening for intermediate-risk women (with an estimated 
lifetime risk of 15% to 20%) (4,5). Emerging technologies, 
such as abbreviated MRI and contrast-enhanced mammog-
raphy, have been proposed as more cost-effective modalities 
for supplemental screening, particularly in intermediate-
risk women (6,7).

As such, a critical component of comprehensive breast 
cancer screening programs is breast cancer risk assessment, 
which can identify those individuals who would benefit from 
early and supplemental methods of screening, genetic testing, 

and/or preventive therapies, in addition to helping the general 
population make educated decisions about screening (3,8,9). 
To this end, multiple risk prediction models have been cre-
ated that estimate the probability of breast cancer incidence 
within a specified time period in an otherwise healthy woman 
and/or the likelihood that she has a BRCA1 or BRCA2 mu-
tation (10). The specific risk factors, and their weightings, 
differ between models. In addition, because each was devel-
oped using a sample of women who met certain inclusion 
criteria, models may perform differently depending on the 
population. Emerging evidence suggests that traditional risk 
factors and mammographic images contain complementary 
information and that deep learning-based artificial intelli-
gence (AI) models have the potential to strengthen existing 
epidemiology-based models (11).

In this article, breast cancer risk factors will be discussed. 
In addition, the strengths, weaknesses, and appropriate use 
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of each of the risk prediction models will be reviewed. Risk 
prediction models include: the modified Gail model/Breast 
Cancer Risk Assessment Tool (BCRAT); the Breast Cancer 
Surveillance Consortium (BCSC) model; the Rosner–Colditz 
model; the Tyrer–Cuzick (International Breast Intervention 
Study (IBIS) model; the Claus model; the BRCAPRO model; 
the Breast and Ovarian Analysis of Disease Incidence and 
Carrier Estimation Algorithm (BOADICEA); and, the 
Myriad model. The emerging role of AI for personalized risk 
prediction will also be highlighted.

Risk Factors for Breast Cancer
Multiple breast cancer risk factors have been identified, as 
discussed below (12,13).

 • Reproductive and hormonal risk factors: Older age, older 
age at first live birth and at menopause, younger age at 
menarche, and nulliparity are associated with elevated 
breast cancer risk, all of which are related to prolonged 
exposure to endogenous estrogen (13,14). In addition, 
use of postmenopausal hormone therapy is a risk factor 
that is dependent on type and duration of use (13,15). 
Reproductive and hormonal factors are considered to be 
modest risk factors (with risk ratios ranging between 1.0 
and 1.5) but, when multiple, have additive effects (12,16).

 • Breast density: Dense breast tissue is an independent risk 
factor for breast cancer, with many studies demonstrating 
an odds ratio of 4.0 or greater when comparing the most 
dense to least dense categories (17,18). Although in-
creased breast density confers lower risk than some risk 
factors, it is more common among women and thus may 
account for a considerable proportion of population risk 
(19,20). The addition of breast density as a risk factor 
improves calibration and discrimination of various risk 
prediction models (21–25).

 • Genetic factors: Family history—in particular, an af-
fected mother, sister, or male relative, early onset disease, 
and bilateral disease—is an established risk factor (13). 
Inheritance of high-risk genetic mutations, such as 
BRCA1 and BRCA2, account for some but not all of this 
risk (26). Common risk variants, mostly single-nucleotide 

variants (formerly single-nucleotide polymorphisms), can 
explain up to 18% of the familial risk of breast cancer 
and, when aggregated, can be incorporated into risk pre-
diction models as a polygenic risk score (27,28).

 • Benign breast disease and prior biopsy: Proliferative 
disease with atypia is a known risk factor. Specifically, 
there exists a 6- to 10-fold increased risk of breast cancer 
in women with lobular carcinoma in situ and a 4- to 5-fold 
increased risk in women with atypical ductal hyperplasia 
(2,29). In addition, prior breast biopsy alone is a modest 
risk factor for breast cancer, with relative risk associated 
with histologic findings (ie, proliferative disease with 
atypia is of higher risk than proliferative disease without 
atypia, which is of higher risk than nonproliferative 
disease) (30).

 • Radiation exposure: Radiation exposure between the ages 
of 10 and 30 years (for example, in survivors of Hodgkin 
lymphoma) is a known risk factor (2,31).

 • Lifestyle factors: Obesity is associated with elevated breast 
cancer risk in postmenopausal women but is thought to 
have a protective effect in premenopausal women (13). 
In postmenopausal obese women, the aromatase enzyme 
in adipose tissue converts androgens to estrogen, thus 
increasing breast cancer risk (32). Premenopausal obese 
women, however, have lower levels of serum estradiol 
(33). Physical activity decreases breast cancer risk in a 
dose-dependent manner (34). High levels of alcohol in-
take are associated with elevated breast cancer risk (13).

Risk Assessment Algorithm
The American College of Radiology recommends that all 
women, especially women of Ashkenazi Jewish descent 
and Black women, undergo breast cancer risk evaluation 
by age 30 (3). Given the complexities of breast cancer 
risk assessment, women who may be at high risk would 
best be served by formal risk assessment performed by 
trained professionals (35). In some cases, the breast im-
aging radiologist may be the first healthcare provider to 
recognize that a woman would benefit from formal as-
sessment (35,36). As such, breast imaging radiologists are 
encouraged to understand risk assessment, in addition to 
when a request for an examination (such as MRI) may or 
may not be indicated (35).

To begin the process of assessing a woman’s risk, it must 
first be determined whether she meets criteria for genetic 
testing, as risk prediction models that estimate breast cancer 
risk generally do not apply to women who harbor a genetic 
mutation (37). For example, BRCA mutations occur in ap-
proximately 1 in 300–500 women, accounting for 5%–10% 
of breast cancers; and, for these women, the mutation itself 
determines risk (ie, 45%–65% by 70 years of age) (38). If a 
woman does meet criteria for genetic testing, as discussed 
below, she would be directed to pursue genetic testing rather 
than risk assessment (37) (Figure  1). If she does not meet 

Key Messages
 • Risk prediction models use genetic and nongenetic 

risk factors to estimate a woman’s breast cancer risk 
and/or the likelihood that she has a BRCA1 or BRCA2 
mutation.

 • To use risk prediction models, clinicians and researchers 
must understand the populations to which each model is 
applicable and what each model predicts.

 • Emerging research on artificial intelligence-based models 
for risk assessment suggests that mammographic images 
include risk indicators beyond breast density.
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criteria for genetic testing, then risk assessment with existing 
models could be pursued.

Guidelines from the National Comprehensive Cancer 
Network are commonly used for determining eligibility for 
genetic counseling and testing (39). Examples of testing cri-
teria for high-penetrance susceptibility genes include: a per-
sonal history of breast cancer diagnosed at or below the age 
of 45, at or below the age of 60 with triple-negative breast 
cancer, or at any age with Ashkenazi Jewish ancestry, or a 
family history of breast cancer in a first- or second-degree 
relative meeting any of the criteria listed above (39). Per the 
United States Preventive Service Task Force, the following 
tools accurately identify women who may have BRCA mu-
tations: the 7-Question Family History Screening Tool, 
the Ontario Family History Assessment Tool, the Pedigree 
Assessment Tool, the Referral Screening Tool, the Manchester 
Scoring System, the Tyrer–Cuzick model, and brief versions 
of the BRCAPRO model (38).

Risk Prediction Models for Breast Cancer
Risk prediction models and appropriate clinical applications 
are summarized in Table 1 and Table 2. The risk prediction 
models are divided into regression models and genetic risk 
models. In regression models, risk calculations are based on 
the combination of a regression model (derived from cohort 
or case–control studies) with population-based incidence 
rates (derived from cancer registries) (40). In genetic risk 
models, segregation analysis is used to estimate the likeli-
hood of harboring a genetic mutation based on family pedi-
gree data, and then the penetration of that mutation is used 
to determine age-specific risk (40). Some models, such as the 
Tyrer–Cuzick model, incorporate both regression and genetic 
risk but are listed in the genetic risk section of this article.

Interpretation of Statistics
Metrics describing risk prediction model performance in-
clude expected/observed (E/O) statistics that are used to 
measure calibration and concordance (C) statistics that are 
used to measure discrimination and often reported as the 
area under the receiver operating characteristic curve (AUC) 

(41). The key measure for estimating population risk is cali-
bration, or E/O statistics, which has implications for public 
policy, while the key measure for estimating individual risk is 
discrimination, or C statistics (40).

With regard to calibration, the “E” in E/O statistics refers 
to the expected number of breast cancers based on the cu-
mulative disease-specific hazards and, in some cases, cumu-
lative incidence (model probability of disease) (40). The “O” 
refers to the actual observed number of women with breast 
cancer. The perfect model would have calibration (expressed 
as E/O) of 1. A ratio below 1 indicates underestimation of 
breast cancer incidence and above 1 indicates overestimation.

The C statistic measures the discrimination performance 
of the model (ie, its ability to distinguish between individuals 
who develop breast cancer and those who do not) and cor-
responds to the AUC (41). The perfect model would have an 
AUC of 1. A ratio of 0.5 amounts to chance occurrence, and 
generally an AUC above 0.7 is considered clinically accept-
able (74) (Figure 2). The process of validation refers to ap-
plication of the model to an independent patient population 
that was not used to develop the model (41).

Regression Models
Modified Gail Model/Breast Cancer Risk Assessment Tool
The risk prediction model commonly known as the Gail 
model was developed in 1989 by Gail et al for women without 
prior breast cancer (42). The model has undergone several 
modifications over the years and is now available through 
the National Cancer Institute website as the BCRAT (43,44). 
The model is simple in design and can be used in various 
settings, including primary care. The first version, model 1, 
was composed of five questions focusing on reproductive 
and hormonal risk factors: age, age at menarche and at first 
live birth, number of previous breast biopsies, and number of 
first-degree female relatives with breast cancer (42). The risk 
factors and relative risks were based on case–control data 
from the Breast Cancer Detection Demonstration Project 
(BCDDP), a United States screening study conducted from 
1973–1980, and the analysis used for the Gail model in-
cluded data only from White women (42).

The second version, model 2, was developed in 1999 by 
the National Surgical Adjuvant Breast and Bowel Project in-
vestigators, in part, to determine eligibility criteria for the 
Breast Cancer Prevention Trial (43). This modified version 
uses incidence rates from the Surveillance, Epidemiology, 
and End Results (SEER) Program rather than data from the 
BCDDP and estimates only invasive cancer risk rather than 
invasive and in situ risk (43). Since then, the model, better 
known as the BCRAT, has undergone further modifications 
to include breast cancer incidence rates for African American 
and other non-White women and personal history of atypia 
as one of the risk factors (44). Other risk factors explored 
include breast density and weight (21).

The most recent version of the BCRAT provides es-
timates for five-year invasive cancer risk and lifetime 

Figure 1. Risk assessment algorithm for breast cancer. Figure 
adapted from Barke and Freivogel (37), with permission.
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invasive cancer risk for women who are at least 35 years 
of age (44). In particular, the risk calculator is used to 
identify individuals with a five-year risk of at least 1.67% 
who would benefit from chemoprevention (75). Multiple 
validation studies have been performed, some of which 
have found that the BCRAT tends to underestimate risk 
in certain populations (41,55,75,76). For example, the 
BCRAT underestimates risk in individuals with a strong 
family history of breast or other cancer, as it only includes 
first-degree female relatives with breast cancer and does 
not consider onset ages, paternal family history, or family 
history of other cancers (75). To address concern regarding 
risk underestimation in African American women, the 
Women’s Contraceptive and Reproductive Experiences 
(CARE) study data were used to create the CARE model, 
which is based on the BCRAT, to estimate invasive cancer 
risk in African American women (77).

Breast Cancer Surveillance Consortium Model
The BCSC model has a similar appearance to the BCRAT 
but also includes breast density. Earlier work on the Gail 
model using breast density as a continuous variable showed 
improved discrimination for invasive cancer risk in White 
women, and Tice et  al demonstrated that the addition of 
Breast Imaging Reporting and Data System (BI-RADS)–
based breast density improved calibration (21,45). The risk 
factors included in the BCSC model are similar to that of the 
Gail model/BCRAT and include age, race/ethnicity, family 
history of breast cancer in a first-degree female relative, and 
history of a breast biopsy with benign breast disease, in add-
ition to BI-RADS breast density (46). The addition of other Ta
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Figure 2. Receiver operating characteristic curve. A  perfect 
classifier with an area under the curve (AUC) of 1.0 is represented 
by the solid blue line, and a random classifier with an AUC of 0.5 
is represented by the dashed red line. The classifier represented 
by the solid purple line has better discriminatory accuracy than 
the classifier represented by the solid green line, since its AUC is 
closer to 1.0.



150 Journal of Breast Imaging, 2021, Vol. 3, Issue 2

risk factors has been explored, such as polygenic risk scores 
and two sequential BI-RADS density measures (eg, breast 
density in 2007 and 2008) rather than one (47,78,79).

The BCSC model provides estimates for five- and 10-year 
invasive cancer risks for women who are at least 35 years of 
age without prior breast cancer, mastectomy, or breast aug-
mentation (46). In the BCSC study population, the model 
slightly underestimated risk in younger women aged 40 to 
44, Asian women, and Hispanic women (45). Subsequently, 
it was validated in cohorts from the Mayo Mammography 
Health Study and Metro Chicago Breast Cancer Registry 
(47,48). In the cohort of women in Chicago, 26% of whom 
were non-Hispanic Black, the BCSC model was well cali-
brated, with an E/O of 0.94, but it underestimated invasive 
cancer risk in younger women and in those with non-dense 
breasts (48). Discriminatory accuracy was 0.63, similar to 
that calculated in other validation studies (47,49,50).

Rosner–Colditz Model
The Rosner–Colditz model was based on the Pike model 
of breast tissue age, which was described in 1983 (51,80). 
The Pike model proposes that breast tissue age largely de-
pends on estrogen and progesterone levels. Specifically, 
first full-term pregnancy at an early age is associated with 
reduced breast cancer risk, due to terminal differentiation 
of the mammary gland (which makes it less susceptible 
to carcinogens), while subsequent pregnancies are asso-
ciated with transient increases in risk, due to the growth-
enhancing effects of estrogens on premalignant cells (81). 
Following menopause, hormone levels depend on the 
peripheral conversion of androgens into estrogen by fat 
metabolism.

Using Nurses’ Health Study data, Rosner and Colditz 
extended the Pike model by incorporating the following 
features into their risk prediction model: age at menarche, 
age at first birth and at each subsequent birth, and age at 
menopause (51). In 2000, the following risk factors were in-
cluded: first-degree family history of breast cancer, benign 
breast disease, type of menopause, postmenopausal hormone 
use, body mass index (BMI), height, and alcohol consump-
tion (82). The addition of those risk factors was shown to 
improve the model’s AUC from 0.57 to 0.63 (52). Other 
risk factors identified in the Nurses’ Health Study, such as 
breastfeeding, vegetable intake, physical activity, and breast 
density, were subsequently incorporated, which improved 
discriminatory statistics (83).

The Rosner–Colditz model predicts invasive cancer risk 
in women up to 70 years of age without prior breast cancer 
(67). It was validated based on California Teachers Study 
data, at which time it was revamped with newer data from 
the Nurses’ Health Study, and performed similarly when ap-
plied to the California Teachers Study data (AUC of 0.59) and 
to the newer Nurses’ Health Study data (AUC of 0.60) (53). 
It performed best in women aged 47 to 69 when estimating 
five-year risk. The Rosner–Colditz model highlighted the 

effects of modifiable lifestyle risk factors on breast cancer 
incidence and placed less importance on chronologic age; 
however, its clinical use is limited due to its modest discrim-
inatory statistics and lack of availability through a website 
platform.

Genetic Risk Models
Tyrer–Cuzick (IBIS) Model
Developed in 2004, the Tyrer–Cuzick model, or IBIS model, 
is among the most well-known and widely used tools (56). 
It is based on data from the IBIS conducted in the UK and 
combines a genetic segregation model for familial risk and 
a regression model for other risk factors (40). The genetic 
segregation model assumes a two-locus genetic model, with 
one locus for BRCA1 or BRCA2 and the other locus for 
an unknown, low penetrance gene (67). Risk factors con-
sidered in the model include: age at menarche, age at first 
live birth, age at menopause, parity, height, BMI, atypical 
hyperplasia/lobular carcinoma in situ, hormone replacement 
therapy, benign breast disease, family history of breast and 
ovarian cancer in first- and second-degree relatives, and age 
at diagnoses (40). The latest additions are breast density and 
polygenic risk scores (22–25,40). A UK study demonstrated 
that polygenic risk scores based on a large number of single-
nucleotide variants lead to improved risk stratification when 
combined with Tyrer–Cuzick risk and breast density (84).

The computer program for the Tyrer–Cuzick model dis-
plays a chart that shows a woman’s breast cancer risk until 
85 years of age, in addition to 10-year and lifetime risks (37). 
It also calculates the likelihood of having a BRCA mutation 
or a hypothetical autosomal dominant gene mutation as-
sumed to have a low penetrance but a high frequency in the 
population (37,57). The risk estimates can be used to iden-
tify women who would benefit from chemoprevention and/
or MRI screening (2,8). The Tyrer–Cuzick model includes 
a multitude of genetic and nongenetic risk factors, can be 
used in women younger than 35, and requires use of a spe-
cific computer program (57). It demonstrates good calibra-
tion and discrimination when used in high-risk populations, 
and recent evidence suggests that models with multigener-
ational family history, such as Tyrer–Cuzick, better estimate 
risk even for women with below-average or average breast 
cancer risk (55,67).

Claus Model
Developed in 1991, the Claus model is based on data from 
the Cancer and Steroid Hormone Study, which was con-
ducted by the Centers for Disease Control (85,86). The study 
population was composed of 4730 White women aged 20 
to 54 years with breast cancer and 4688 matched controls, 
registered between 1980 and 1982 at eight SEER centers 
(85,86). The original purpose of the model was to calculate 
familial breast cancer risk in women with a known family 
history of the disease. The model thus focused on family 
history of breast cancer (including age at diagnoses and 
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including paternal history) and subsequently also incorpor-
ated family history of ovarian cancer (87). It does not include 
nongenetic risk factors.

The Claus model predicts risk of invasive cancer and 
ductal carcinoma in situ in women without a genetic muta-
tion and can be used to identify women who would qualify 
for supplemental screening with MRI (2,37). Based on the 
assumption that breast cancer is transmitted as an autosomal 
dominant trait, the Claus model was the first model based 
on familial cancer history with a single dominant hereditary 
genetic mutation as a cause (85–87). The results of the au-
thors’ studies laid a foundation for the existence of a herit-
able, germline mutation as a cause of breast cancer in women 
with family history, as their studies predated the identifica-
tion of the BRCA1 and BRCA2 mutations. Following the 
discovery of the BRCA genes and their link to ovarian cancer, 
the model was revised and has now been integrated into a 
pedigree drawing software (Cyrillic) (88). It calculates the 
likelihood of carrying a genetic mutation and the cumula-
tive risk of developing breast cancer. However, discrepancies 
exist between published tables and the extended Claus model 
available through the software package, possibly because the 
tables make no adjustments for unaffected relatives (10). 
Overall, the Claus model does not perform as well as other 
genetic risk prediction models (58,59).

BRCAPRO Model
Developed in 1997, the BRCAPRO model is a genetic risk 
prediction model that uses Bayes’ theorem to estimate the 
likelihood of carrying a BRCA mutation in patients with 
a family history of breast and/or ovarian cancer (60,61). 
Whereas the Claus model predated the discovery of the 
BRCA mutations and assumed a genetic cause for familial 
breast cancer, the BRCAPRO model estimates the likeli-
hood of carrying a BRCA mutation based on a Mendelian 
inheritance pattern and relies on published data about gene 
penetrance and prevalence (60). Initially, the original model 
assumed two-allele and autosomal dominant inheritance of 
BRCA1 genes, with the expectation that the BRCA2 gene 
would be incorporated later with further evidence, and re-
garded other genes as sporadic. As such, consideration for 
BRCA2 was later added and is included in the current ver-
sion (89,90). Since the first version, other factors such as 
race/ethnicity and tumor markers (eg, estrogen receptor and 
progesterone receptor status) have been added, which im-
proved its performance, and the current model consistently 
shows good discrimination between carriers and noncarriers 
(55,58,62,63,90).

The BRCAPRO model can be used to determine whether 
a patient would benefit from genetic testing (38). In add-
ition, lifetime risk above 20%–25%, as calculated by the 
BRCAPRO model, can be used to determine eligibility for 
supplemental MRI screening (2). The software program 
for the BRCAPRO model is freely available as part of the 
CancerGene genetic counseling package, the open-source R 

package BayesMendel, and as a web-based interface (91–93). 
Although the BRCAPRO model incorporates affected and 
unaffected relatives, its limitations include the following: it 
incorporates only first- and second-degree relatives, it con-
siders only breast and ovarian cancer, it does not account 
for genes other than BRCA1 and BRCA2, and it does not 
include nongenetic risk factors (10,37,89).

Breast and Ovarian Analysis of Disease Incidence and 
Carrier Estimation Algorithm
The BOADICEA is a genetic risk model that is based on 
breast cancer genetic susceptibility being attributed to the 
effects of the BRCA1 and BRCA2 mutations and the as-
sumption that residual clustering within families is due to 
the multiplicative effects of many genes (polygenic compo-
nent) (64,65). The specific pathogenic mutations it now in-
corporates are BRCA1, BRCA2, PALB2, CHEK2, and ATM 
(94). The BOADICEA was developed in 2002 with data from 
the Anglian Breast Cancer Study (which was later renamed 
SEARCH and included women with breast cancer diag-
nosed before the age of 55 who were registered in the East 
Anglian Cancer Registry) and from multiple case families in 
the UK (which included families with two or more breast 
cancer cases, one of which was diagnosed before the age of 
50)  (64,65). It was then updated using data from the  UK 
National Case Control Study, the Manchester Study, and 
pooled pedigree data from 22 studies (65,95–97). Similar 
to the Tyrer–Cuzick model, the BOADICEA incorporates 
nongenetic risk factors; more recently, tumor pathology and 
breast density were added (66,98).

The BOADICEA predicts the probability of carrying a 
BRCA1 or BRCA2 mutation (or the proposed polygenic 
component) and also predicts breast cancer and ovarian 
cancer risk (65). The model is available online, through which 
family history can be entered beyond second-degree relatives 
(66). Unlike other genetic risk models, family history is not 
limited to particular relatives or degrees (67). Compared to 
other models, the BOADICEA performs well with good cali-
bration and discrimination (58,67).

Myriad Model
The Myriad model is based on gene sequencing analyses per-
formed by Myriad Genetic Laboratories (Salt Lake City, UT). 
Created in 1997, Myriad I (or the Shattuck-Eidens model) is 
an empirical model that was developed with 798 unrelated 
individuals from the United States and Europe thought to be 
at high risk of a BRCA1 mutation (68). Myriad I estimates 
the risk of harboring a BRCA1 mutation based on the fol-
lowing risk factors: personal history of unilateral/bilateral 
breast cancer or ovarian cancer, patient age at first diagnosis 
of cancer, Ashkenazi Jewish descent, and number of relatives 
with breast or ovarian cancer (68).

The current empirical model, Myriad II by Frank et  al, 
was developed in 1998 based on women with breast cancer 
diagnosed before the age of 50 or ovarian cancer diagnosed 
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at any age and at least one first- or second-degree relative 
with either breast or ovarian cancer (69). The model was 
then refined and tested in 2002 with the results of 10 000 
gene sequence analyses, which were performed to identify 
deleterious BRCA1 or BRCA2 mutations and three specific 
Ashkenazi Jewish founder mutations (69,70). The current 
model is based on the following risk factors: personal his-
tory of breast cancer, Ashkenazi Jewish descent, and family 
history of a first- or second-degree relative with breast cancer 
diagnosed before the age of 50 or ovarian cancer diagnosed 
at any age (71). The mutation prevalence tables are separated 
according to Ashkenazi Jewish ancestry, as this population 
has higher rates of BRCA1 and BRCA2 mutations attrib-
uted to three founder mutations (70). Myriad II is used in 
high-risk women based on family history but is only able to 
include risk from up to two relatives and attributes the same 
level of risk to all breast cancers diagnosed before age 50 
(eg, breast cancer diagnosed in the 20s is treated similarly to 
cancer diagnosed in the 40s) (67).

AI for Risk Assessment
Breast density has recently been added into risk prediction 
models, but density alone is not likely to reflect all of the 
data contained within mammographic images. Emerging 
research on deep learning models for breast cancer risk as-
sessment suggests that mammographic images contain risk 
indicators beyond breast density that may not be perceptible 
by humans (99,100). For example, investigators in Sweden 
trained a deep learning model to estimate breast cancer 
risk and then tested it on 2283 women, 278 of whom were 
diagnosed with breast cancer (99). The model output was 
a score from 0 to 1, reflecting the likelihood of developing 
breast cancer based on a single mammographic image, and 
the scores from all four of each woman’s mammographic 
images were averaged to estimate individual risk. The in-
vestigators’ model, which achieved an AUC of 0.65, outper-
formed other models based on age and breast density and 
also had a lower false-negative rate rather than the best-
performing density model.

In a recent study, three models were created to estimate 
five-year breast cancer risk: a risk factor–only logistic regres-
sion model, a deep learning model based on mammographic 
images, and a hybrid model that combined the logistic regres-
sion and the image-based deep learning model (100). These 
three models were compared to the Tyrer–Cuzick model. 
The hybrid model achieved the highest AUC (0.70), while 
the Tyrer–Cuzick model had the lowest (0.62). The image-
only model also had a higher AUC than the Tyrer–Cuzick 
model. These results demonstrate that mammographic im-
ages and traditional risk factors have information that is 
complementary, as illustrated by the improvement in AUC of 
the hybrid model over the other models. This deep learning 
model could strengthen existing models based on traditional 
risk factors, but further research is warranted to validate it 

across breast imaging practices and mammography vendors. 
Future research will also shed light on the imaging features 
and patterns that are being used by the deep learning models 
to predict risk.

Conclusion
Risk prediction models use genetic and nongenetic risk fac-
tors to estimate a woman’s breast cancer risk and/or the 
likelihood that she has a BRCA1 or BRCA2 mutation. Each 
model uses different risk factors and is best suited to provide 
risk estimates in certain patient populations. Emerging re-
search on AI-based models for breast cancer risk assessment 
suggests that mammographic images have risk indicators be-
yond breast density that could be used to strengthen existing 
models, but further research is warranted to validate such 
models across breast imaging practices and mammography 
vendors.
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