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Congenital heart defects remain one of the most common developmental defects within the 

global human population, affecting up to 1% of all live births, and with increasing 

prevalence1. The abundance of these cardiac defects attests to the complexity of the 

developmental process, which requires specific and precise spatiotemporal control of gene 

expression. Early models focused on transcription factors; however, comparisons between 

mouse and human genomes revealed that less than half of conserved sequences encoded 

proteins, suggesting that the noncoding regions of DNA were just as important for 

development as the coding regions2. Interestingly, early genome-wide association studies 

(GWAS) also found significant susceptibility to disease mapping to noncoding regions3, 

supporting the notion that elements beyond transcription factors must aid in not only 

development but also disease susceptibility. Furthermore, these sequences were found to be 

tightly restrained to specific developmental time points4 and specific cell types, reinforcing 

them as key components of the gene regulatory system. Recent studies have identified 

noncoding sequences that regulate gene transcription, including enhancers, and provide an 

additional level of hierarchical gene regulation5.

Enhancers function as a scaffold for transcription machinery. Acetylation of histone H3 

lysine 27 (H3K27ac) and mono-methylation of histone H3 lysine 4 (H3K4me) within 

enhancers facilitate recruitment of transcription factors to initiate macromolecular complex 

formation, the enhanceosome. The mechanism by which the enhanceosome forms is 

incompletely understood but appears to follow one of two models: instructive or permissive. 

In the instructive model the regulatory structure is formed de novo in specific cell types, 

while in the permissive model, the structure is pre-formed but only activated in specific cell 
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types6. Once the enhanceosome is assembled, it is able to increase the activity of RNA 

polymerase II seemingly via alignment of the transcription machinery in space7. Due to their 

geometry and function as spatial regulators, enhancers are not limited to close proximity to 

their target gene but can function from thousands, or even millions, of bases away8. Unlike 

transcription factors, enhanceosomes do not function like an on/off switch, but rather titrate 

the level of the transcription9, 10.

The importance of these regulatory sequences is further supported by recent studies which 

found significant redundancy within the enhancer program during development5, 11. The 

redundant enhancers appear to function in an additive manner regarding strength of the 

target gene transcription level, suggesting a robustness within the program11. Within the last 

decade, multiple studies, including ENCODE and Roadmap Epigenome projects, have 

identified enhancers through characterization of DNA accessibility and various histone 

modifications in developing vertebrate systems2, 12, 13. Recent studies have also 

demonstrated strong association between congenital cardiovascular disease and mutations 

within enhancer regions14, 15. However, comprehensive identification of active enhancers at 

various stages of heart development – particularly in humans – is lacking.

In the current issue of Circulation Research, a study by VanOudenhove et al16 begins to fill 

this gap in our understanding by identifying and characterizing cardiac-specific active 

enhancers at various stages of human heart development. In their work, VanOudenhove et al 
utilized ChIP-seq against seven histone H3 post-translational modifications across Carnegie 

stage 13, 16 and 23 human embryonic hearts. By comparing the non-coding enhancer 

segments across the time points and analogous annotations from all tissues in Roadmap 

Epigenome, authors identified over 9,000 novel putative embryonic heart-specific enhancers 

that are differentially active during cardiogenesis. Active enhancers at early stages of cardiac 

development revealed enrichment of SOX2, OCT4, KLF, and FOX transcription factor 

binding motifs. During later stages of cardiogenesis, active enhancers exhibited a 

pronounced shift in enrichment, mostly towards T-box, GATA, PAX, and Zinc Finger 

transcription factor binding motifs. Interestingly, several enhancer regions exhibit robust 

active state throughout embryonic cardiogenesis but repressed state in fetal and adult human 

hearts, suggesting coordinate activation of super-enhancers during early cardiac 

development. These ~1600 embryonic human heart specific super-enhancers are often 

located near critical cardiogenesis genes, including NKX2–5, SCN5A, HAND2, TBX20, 
GJA1, and MYOCD, frequently mutated in patients with congenital heart anomalies.

By comparing embryonic human heart specific super-enhancers against a GWAS catalogue 

of congenital heart defects, the authors identified significant enrichment of variants 

associated with atrial fibrillation. While enhancers have been associated with atrial 

fibrillation in the past17, the work discussed here is unique in that it identifies activation of 

these enhancers during the earliest stages of cardiac development. Such findings suggest that 

atrial fibrillation may be a congenital cardiac disease – an enhanceropathy – rather than an 

acquired disease. The work thus begs the question of what other cardiac conditions, 

commonly felt to be acquired, may be primed in the earliest days of cardiac development. A 

second possibility is that atrial fibrillation triggers a reversion to fetal gene program, which 

would have important implications for future therapeutic development.
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Rather than relying on the identification of specific genes alone, the work goes one step 

further and examines the roles of networks of gene activation. This approach appears to be 

more representative of the biology of disease and development, and potentially more 

clinically relevant. In this study, VanOudenhove et al hypothesized that “hub” genes, which 

are located at the interface of several cardiac development pathways, could be unidentified 

regulators of congenital heart defects given their ability to affect multiple genetic programs. 

To test this hypothesis, the group utilized a weighted gene co-expression network analysis 

using all of their profiled embryonic human heart samples and investigated modules 

associated with early heart development and loss-of-function of variants. Through this 

method, they identified over 250 genes that appear to play a pivotal role in cardiac 

development with a low tolerance for gene disruption, suggesting they may function as 

potential diagnostic or therapeutic targets for developmental cardiac defects.

The findings by VanOudenhove et al suggest that the answers to many of our questions 

regarding congenital heart disease and even acquired disease, may be hiding in plain sight in 

the form of embryonic super-enhancers. While not the typical “on/off switch” of the classic 

transcription factors, enhancers fine tune gene expression and enhanceropathies are a 

testament to the sensitivity of the biological system to protein expression level9, 10. Such 

results are relevant to not only congenital disease, but also acquired disease as recent work 

has demonstrated enhancer activation from environmental signals18, potentially revealing an 

entirely new target for future treatments of cardiovascular disease.
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