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Abstract

Escherichia coli is considered to be the best-known microorganism given the large number of 

published studies detailing its genes, genome, and biochemical functions of its molecular 

components. This vast literature has been systematically assembled into a reconstruction of the 

biochemical reaction networks that underlie E. coli’s functions; a process which is now being 

applied to an increasing number of microorganisms. Genome-scale reconstructed networks 

represent organized and systematized knowledge-bases that have multiple uses, including 

conversion into computational models that interpret and predict phenotypic states and the 

consequences of environmental and genetic perturbations. These genome-scale models (GEMs) 

now enable us to develop pan-genome analyses that provide mechanistic insights, detail the 

selection pressures on proteome allocation, and address stress phenotypes. In this Review, we first 

discuss the overall development of GEMs and their applications. Next, we review the evolution of 

the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore 

three emerging areas in genome-scale modeling of microbial phenotypes: collections of strain-

specific models, metabolic and macromolecular expression models, and simulation of stress 

responses.
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Introduction

Genome-scale network reconstructions are built from curated and systematized 

knowledge1,2 that enables them to quantitatively describe genotype–phenotype relationships. 

Genome-scale models (GEMs) are mathematical representations of reconstructed networks 

that facilitate computation and prediction of multi-scale phenotypes through the 

optimization of an objective function of interest3,4.

The development of a GEM requires curated metabolic knowledge bases, such as kyoto 

encyclopedia of genes and genomes (KEGG)5, and an annotated genome sequence of the 

organism of interest. By mapping the annotated genome sequence (Fig. 1a) to the knowledge 

base, one can reconstruct a metabolic network composed of all known metabolic reactions 

(Fig. 1b). This metabolic network can be converted into a mathematical format — a 

stoichiometric matrix (S matrix) — where the columns represent reactions, rows represent 

metabolites, and each entry is the corresponding coefficient of a particular metabolite in a 

reaction (Fig. 1c). A cellular objective is needed to enable computation of a feasible 

metabolic flux that optimizes the model objective. A widely used objective function is to 

optimize for growth rate, represented by a biomass function6, composed of essential 

metabolites needed for growth. The detailed steps to reconstruct a GEM have been described 

in a formal protocol1.

Flux balance analysis (FBA) is the most widely used7 approach to characterize GEMs. 

GEMs can simulate metabolic flux states of the reconstructed network while incorporating 

multiple constraints to ensure the solution identified by FBA is physiologically relevant and 

compliant with governing constraints; such as the metabolic network topology represented 

by the S matrix, a steady-state assumption (for example, the internal metabolites must be 

produced and consumed in a flux-balanced manner), and other limits on nutrient uptake 

rates, enzyme capacities, and protein/gene expression profiles. The S matrix and the 

objective function define a system of linear equations that can be solved given the imposed 

constraints, resulting in a solution space (that is, a space where all feasible phenotypic states 

exist. (Fig. 1d, Fig. 1e). FBA can identify a single or multiple optimal flux distributions that 

optimize the objective function in the solution space (Fig. 1f). FBA and many other GEM 

analysis methods are available through COBRApy8 in python or the COBRA Toolbox in 

MATLAB9.

GEMs have been successfully implemented for a wide range of applications10–17, including 

understanding microorganisms16–22, metabolic engineering23–28, drug development29, 

prediction of enzyme functions30, understanding microbial community interactions31–40 and 

human disease41,42. One metabolic engineering application focuses on suggesting gene 

deletion strategies to enable overproduction of a metabolite of interest24. An algorithm 

called OptKnock utilizes GEMs to identify gene deletion combinations that ensure the 

metabolite of interest becomes an obligatory metabolic byproduct of growth (known as 

growth-coupled production). This framework was applied to succinate, lactate, and 1,3-

propanediol production in Escherichia coli24. OptKnock combined with the E. coli GEM 

proposed similar gene knockout strategies as those mutant strains published in the literature, 

highlighting its potential in strain design24. GEMs have also been developed to study cancer 
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metabolism. One study29 used the GEM of cancer metabolism to predict potential drug 

targets by simulating gene knockdowns, evaluating the damage on ATP production, and 

assigning cytostatic scores for genes. The model predicted 52 cytostatic drug targets, of 

which 40% are already targeted by known cancer treatments, leaving the rest as potential 

new drug targets.

Since the development of the first GEM for Haemophilus influenzae43, the field has 

advanced substantially with a rapid rise in the number of GEMs built14,44. The number of 

tools and methods involved in network reconstruction and analysis has also bloomed, which 

accelerated the model-building process45 and enabled numerous uses of GEMs4. As of 2019, 

GEMs have been generated for more than 6,000 sequenced genomes either manually or 

through automatic GEM reconstruction tools45, covering bacteria, archaea, and eukaryotes.

In addition to the well-developed uses of GEMs, recent explorations of new applications 

have emerged. In this Review, we describe the ongoing efforts in reconstruction to increase 

the coverage of the tree of life by GEMs, the expansion in the scope and applications of 

GEMs as illustrated by the example of E. coli, and elaborate on three emerging areas where 

great potential exists: multi-strain analysis using strain-specific GEMs; the incorporation of 

macromolecular expression pathways into existing models of metabolism to form metabolic 

and macromolecular expression (ME) models; and prediction of complex phenotypes, such 

as stress responses. We foresee the continual development and implementation of GEMs for 

many more organisms of interest, and them becoming an essential tool for synthetic genome 

engineering.

Growth of genome-scale reconstructions

Extensive effort has focused on reconstructing metabolic networks for a broad range of 

organisms. GEM development was initiated for bacteria and has gradually extended to 

archaea46–48 and eukaryotes49, including yeast50, plants51–53, and human54–56.

Exponentially growing numbers of genome sequences (Fig. 2a) enable the construction of a 

knowledge base of reactions and metabolites57, and the generation of increasing strain-

specific network reconstructions. As the manual reconstruction of genome-scale networks is 

laborious and time-consuming, many automated network reconstruction tools have been 

developed to accelerate the reconstruction process, including ModelSeed58, CarveMe59, 

RAVEN60,61, and kbase62. According to a summary generated in 2019, around 5,897 

bacteria, 127 archaea, and 215 eukaryote metabolic network reconstructions have been 

reported14. Many of them can be found in GEM databases including BiGG Models63, 

BioModels64, MetaNetX65, MEMOSys66 and Virtual Metabolic Human67. However, the 

majority of these reconstructions lacked manual refinement which may result in an 

inaccurate description of the organism and unreliable predictions of the model14. Therefore, 

the community developed reconstruction and GEM quality standards MEMOTE68 to 

provide an overall evaluation of the quality of a reconstruction and limitations on its use.

Of the published reconstruction models, we focus on 108 models deposited in BiGG 

Models63, a widely-used repository for high-quality GEMs, where all models have been 
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benchmarked against MEMOTE68. The content of these curated GEMs is detailed in Fig. 2. 

As with the availability of genome sequences, the reactions and metabolites accounted for in 

curated models continues to grow (Fig. 2b). Particularly, we observe a rapid increase in both 

reactions and metabolites since 2015, due to the development of models for eukaryotes and 

cyanobacteria, and species belonging to the Firmicutes and Actinobacteria phyla.

Despite the substantial growth in the number of network reconstructions, their coverage of 

the tree of life is still limited. A multiple correspondence analysis (MCA; the counterpart of 

principal component analysis for categorical data) of the reactomes [G] of 108 GEMs (Fig. 

2c) showed that the clustering of the models by their metabolic functions is strongly related 

to their phylogeny. MCA also suggested that the differences amongst prokaryotic models are 

relatively small. By overlaying the 108 models on the tree of life (Fig. 2d) we observed 

results similar to MCA analysis performed in 2014 (ref.44), namely that network 

reconstruction efforts have been mainly focused on Proteobacteria, leaving many other 

phylogenetic branches without any available reconstructions. Although this observation is 

only based on the 108 models in BiGG, it is clear that the development of GEMs for less-

studied organisms may greatly expand the coverage of metabolic pathways and the 

‘reactome’ represented by curated GEMs (Fig. 2b). A large-scale effort is needed to 

establish a global metabolic atlas, with ‘global’ referring to the tree of life.

Evolution of the E. coli GEM

The serial development of E. coli metabolic reconstructions has led to the expansion in the 

scope and applications of GEMs. Fig. 3 depicts the iterations69–77 of the E. coli GEMs 

published since 2000 and the changes in the model content. In this section we focus on the 

development of metabolic models (M models), and ME models shown in Fig. 3 will be 

discussed in later sections. The first two reconstructions (not shown in Fig. 3) were 

developed before the E. coli genome was sequenced and were based solely on biochemical 

knowledge. After the genomic sequence of E. coli K-12 MG1655 was established in 1997 

(ref.78), its annotation and new discoveries of metabolic functions led to a series of genome-

scale reconstructions of ever increasing scope and content.

The latest E. coli model, iML1515, now includes 1,515 genes76. iML1515 has 

comprehensive coverage of metabolic functions integrated with protein structural 

information, enabling growth simulation on different nutrients for strains of interest as well 

as an evaluation of mutational impact across strains using structural biology methods76,79,80. 

iML1515 was used to simulate gene knockouts on 16 different carbon sources and predicted 

gene essentially across conditions with an accuracy of 93.4% compared with experimental 

data, highlighting the potential to identify drug targets using GEMs of pathogenic 

organisms.

In addition, iML1515 was also used to analyze transcriptomics data from 333 experiments 

with various conditions and provided valuable insight into transcriptional variation across 

conditions. For example, the three isozymes of aspartate kinase (lysC, metL, and thrA) have 

variable expression across conditions. iML1515 simulation suggests that when only lysC is 

expressed, E. coli is unable to synthesis L-threonine, L-methionine, L-isoleucine, biotin, and 
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adenosylmethionine biomass components, which explains why lysC is preferentially 

expressed in nutrient-rich conditions when these metabolites are available.

We note that of the 4,623 open reading frames annotated on the E. coli K-12 MG 1655 

genome sequence, 1,600 are of unknown function (the so-called ‘y-genes’)81, leaving 3,023 

genes of known function on which to base a reconstruction. With the 1,515 genes in the 

latest metabolic network reconstruction, ~50% of the functionally annotated genes are 

accounted for. The known biochemical functions of the corresponding gene products can 

now be computationally assessed in the context of the function of all the other gene 

products. This coverage forms the genetic and biochemical basis for the metabolic systems 

biology of E. coli.

Thus, the scope of GEM applications has increased with the expansion of metabolic 

coverage. The early models were used to compute basic phenotypes such as growth rate, by-

product secretion, and yield of co-factors. Other applications of E. coli GEMs have been 

reviewed elsewhere10,11. The most recent GEMs now enable applications such as pan-

genome analysis, computation of proteome allocation [G], and the simulation of various 

stress responses that we will discuss in detail below.

Emerging applications of GEMs

The availability of genome-scale multi-omics data sets is growing rapidly; including whole 

genome sequences, and transcriptomics, proteomics and metabolomics data. This calls for 

the development of tools to interpret and contextualize such data sets. Therefore, to enable 

direct integration of such data with GEMs, recent model development introduced 

macromolecular expression into the metabolic models to produce ME models, which allow 

direct comparison between the simulation and experimental data. Additionally, earlier GEMs 

were usually developed based on a representative strain from a species, but the availability 

of multiple genome sequences within a species allows us to develop strain-specific GEMs to 

explore variation across strains.

In this section, we discuss three new directions in the development of GEMs and their 

emerging applications; multi-strain analyses that enable investigations into strain-specific 

variation; ME models that can compute proteome allocation; and simulation of stress 

responses that facilitate an understanding of complex phenotypes. Other directions in GEM 

development that have been addressed in other reviews, include, but not limited to the 

integration of GEMs with structural biology82, modeling of complex communities such as 

the microbiome83, and tissue or cell-specific models constrained by multi-omics data84.

Multi-strain analysis

With the ever-increasing number of genome sequences, it has become clear that large 

variations exist in the gene portfolio across strains of a species. In 2005, the concept of the 

pan-genome — the total list of genes found in all sequenced genomes of strains belonging to 

a species — was introduced. The pan-genome is composed of a core genome (that is, genes 

shared by all strains within a species), and an accessory genome (that is, genes present in 

only a subset of strains)85. Although some species have relatively conserved gene portfolios 
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(known as a closed pan-genome), other species have substantial variability in strain-specific 

gene portfolios (known as an open pan-genome).

E. coli was shown to have substantial differences in gene portfolios across strains, with as 

little as ~20% of the total number of genes annotated being shared across the sequenced 

strains86. The diversity in gene portfolios is thought to be a reflection of adaptation to 

different microenvironments. Many other microorganisms share this characteristic, including 

Salmonella spp.87, Staphylococcus aureus88, and Klebsiella pneumoniae89. It has become 

clear that it is important to understand the broad range of metabolic capabilities encoded by 

accessory genes, as they could potentially contribute to the pathogenicity and interactions 

with a human host90.

Pan-genome analysis typically refers to comparative analysis of genes across strains. 

Building GEMs for many strains offers a much deeper analysis based on all the mechanisms 

that GEMs contain for metabolic processes. The workflow to generate strain-specific models 

is illustrated in the left panel of Fig. 4. Genomes of strains of interest are mapped to a 

curated reference reconstruction to generate a homology matrix, which is used to guide the 

deletion of genes and reactions from the reference model to create draft models. Manual 

curations are needed to finalize strain-specific GEMs (Fig. 4). The first multi-strain GEM 

studies from 2013 established GEMs for a set of 55 E. coli and Shigella spp. strains91. By 

simulating growth capabilities on different nutrient resources, the study predicted strain-

specific auxotrophies and unique metabolic capabilities that correspond to their pathotypes 

and colonization sites. The simulated growth phenotypes separated the strains based on their 

pathotypes, as most commensal strains were unable to grow on a set of nutrients, such as N-

acetyl-D-galatosamine, which supports growth for 100% of extraintestinal pathogenic 

strains. In addition, 12 of the 55 strains were predicted to be unable to produce at least one 

essential biomass component, including folate, thiamin, and amino acids from glucose M9 

minimal media, some of which are confirmed in the literature.

More recent pan-genome studies of E. coli explored the linkage between metabolism and 

health outcomes. A study of metabolic capabilities of clinical isolates of E. coli strains from 

individuals with inflammatory bowel disease (IBD) (Fig. 4)92 compared growth simulation 

of strain-specific models of clinical isolates and commensal strains, and identified a pathway 

specific to strains from the B2 phylogroup that are prevalent in individuals with IBD. This 

pathway is involved in metabolizing the mucus glycan through the action of tagatose 

bisphosphate aldolase, which potentially aids E. coli strains in the colonization of intestinal 

mucosa92.

In a separate study utilizing time-series metagenomics data from an individual with IBD 

(Fig.4)93, we found multiple E. coli strains dominating the microbiome at different time 

points as inflammation level varied. Strain-specific GEMs were reconstructed for each 

strain, and the metabolic capabilities delineated by strain-specific GEMs were vastly 

different across these dominant strains. The models suggest that the strain extracted during 

the peak inflammation is the most similar to known representative pathogenic strains in IBD, 

whereas dominant strains extracted from low inflammation time points were more similar to 

commensal strains. Specifically, the dominant strain present during peak inflammation and 

Fang et al. Page 6

Nat Rev Microbiol. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



known pathogenic strains were predicted to share the capability to grow in a set of 

substrates, including cellobiose, deoxyribose, and monosaccharides derived from intestinal 

mucosa, suggesting that strain-specific features are potentially linked to pathogenicity and 

disease progression.

The application of GEMs for pan-genome analysis is not limited to E. coli. Great potential 

exists for using GEMs to study pathogens to understand strain-specific features and their 

association with colonization sites, pathogenicity, antibiotic resistance, and their impact on 

human health. Several published studies have already utilized strain-specific GEMs to 

further understand strain-specific characteristics of various microorganisms.

Salmonella spp. were shown to have serovar-specific metabolic traits, including 

auxotrophies and catabolic pathways that may be associated with adaptations to their 

colonization sites87. The metabolic capabilities of S. aureus were found to link to pathogenic 

traits and virulence acquisitions, which can then be used to classify mild versus severe 

infections94. For example, two S. aureus USA300 isolates were predicted to be the only 

strains capable of using spermidine as a sole source of carbon and nitrogen94. Spermidine is 

produced in areas of inflammation and wound healing95, which give these strains the 

opportunity to cause skin infection. A study of K. pneumoniae strains with antibiotic 

resistance phenotypes suggested differential utilization of nitrogen sources may help 

discriminate between antibiotic resistance phenotypes96. Similar studies have also been 

performed for other species: strain-specific Acinetobacter baumannii97 GEMs revealed the 

significant variation in lipopolysaccharide across strains; GEMs of Leptospira spp. 

delineated the differences in lysine metabolism between pathogenic and commensal 

Leptospira spp.98; and Pseudomonas putida strain-specific models reflected the diverse 

metabolic capabilities across strains due to variations in environmental niches99.

For a large number of sequenced genomes (over 1,000 strains), it has been shown that the 

gene portfolio of individual strains cannot only be characterized in terms of the presence or 

absence of a gene, but also in terms of the particular allele of the gene. Thus, a field of 

‘alleleomics’ may have emerged. Alleleomic analysis was shown to be valuable for studying 

organisms with closed pan-genomes. Using a GEM-based machine learning classifier, one 

study100 was able to predict antimicrobial resistance in Mycobacterium tuberculosis, while 

enabling a biochemical interpretation of the genotype–phenotype map. Specifically, through 

investigation of key flux states discriminating between M. tuberculosis strains that are 

resistant and susceptible to pyrazinamide, the authors correctly identified pncA and ppsA 
alleles as major genetic determinants, which had been reported in the literature, and 

proposed new hypotheses that ansP2 mutants may potentially contribute to resistance 

through L-aspartate-based modulation of the coenzyme A pool.

A semi-automated protocol for generating strain-specific models from a collection of strain-

specific genome sequences has been made available2 to aid researchers in reconstructing and 

utilizing the strain-specific GEMs. This protocol details the major stages involved in strain-

specific model generation and curation, accompanied by easy-to-follow tutorials in python 

notebooks to ensure strain-specific GEMs are accessible to researchers interested in 

applying them to different organisms. The protocol does not require advanced coding skills.
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The ME model

The demonstrated predictive ability and broad applications of GEMs of metabolism (M 

models) challenged their boundaries and drove further development. M models can be 

improved by increasing the number of constraints or by expanding their scope in terms of 

cellular processes represented. For instance, a framework that incorporates enzyme 

abundances as constraints in metabolic models substantially reduces the solution space, but 

requires enzyme turnover numbers (so-called kcat values)101. Researchers have also 

developed models that integrate multiple layers (metabolism, transcription, and signal 

transduction) of the bacterial organism using multi-omics data102.

Expanding the scope of GEMs to include proteome allocation.—A major effort 

focused on expanding M models to include a genome-scale account of translation and 

transcription, leading to so-called ME models (for metabolism and expression). ME models 

are more fundamental than proteome or enzyme constrained models, as they explicitly 

incorporate a full reconstruction of the pathways that constitute transcription and translation 

in addition to metabolism, enabling the simulation of proteome composition. Thus, the 

constraints on the proteome are generated by the ME model itself as a part of computing a 

particular phenotypic state. The general formulation of ME models is depicted in Fig. 5. 

Like M models, ME models are solved using flux balances. ME models can thus be used to 

compute the proteome allocation between growth conditions of a strain (proximal causation 

[G]), or evolutionary adaptation to a new condition (distal causation [G]), which greatly 

expand the range of biological functions and behaviors over a metabolic model.

Building ME models.: The first large-scale network reconstructed to describe the 

transcriptional and translational machinery in E. coli appeared in 2009(ref.103). The 

reconstruction was mathematically described by the expression matrix [G] (E matrix) 

representing 13,694 biochemical reactions that delineate the expression of genes and protein 

synthesis in E. coli. The E matrix incorporated all the functional components (proteins, 

nucleotides, etc.) and pathways, known at the time, underlying translation and transcription, 

including biosynthesis, modification, and degradation of RNA and protein complexes. This 

reconstruction was also converted to a computational model to enable quantitative 

integration of omics data and simulation of phenotypic states; for example, the model 

predicted the ribosome production accurately under different conditions without any 

parameterization.

A ME model is an integration of the E matrix with a metabolic model (Fig. 5). The M model 

describes the metabolic function and the E matrix delineates the macromolecular expression 

pathways. M and E are combined through their shared metabolites and coupling constraints; 

that is, macromolecules are produced at a rate proportional to the rate of enzyme dilution to 

daughter cells (growth rate), proportional to the activity of the metabolic reaction, and 

inversely proportional to the enzyme turnover rate (kcat). By incorporating the E matrix into 

an M model, ME models enable the calculation of the cellular cost of enzyme synthesis, 

which is coupled to the reaction they catalyze. The maximum growth rate in ME models is 

thus solved by iteratively plugging in increasing growth rate values until the maximum value 

that produces a solvable model is found.
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Towards ‘proteometrics’.: The ME model’s formulation essentially produces an 

econometric model of cellular functions. Each cell has a limited space for protein to perform 

its metabolic and growth functions (the size of the E. coli proteome is estimated to be about 

2.5 million protein molecules per cell104). By assigning a ‘capital expense’ (that is, 

investment in proteome synthesis — the hardware of the cell) to each metabolic function, the 

ME model provides a framework to determine the most protein-cost effective way for the 

cell to carry out its required functions. A consequence of this ME model characteristic is that 

the substrate uptake rates do not need to be defined a priori, as is the case for M models. 

Optimal substrate uptake rates are determined by the optimal protein composition. As ME 

models are econometric in the sense that they compute the best ‘capital expenditures’ (that 

is, proteome allocation) and ‘operating expenses’ (that is, best metabolic state) to achieve a 

particular phenotypic state, one might think of them as being ‘proteometric’ models.

Whereas M model solutions fall within a multidimensional solution space (that is, there are 

alternative solutions for any optimal objective value), ME model solutions at their maximum 

feasible growth rate are effectively unique. Furthermore, the ME model not only predicts a 

cell’s maximal growth rate and corresponding metabolic fluxes, but also computes the 

optimal proteome allocation and gene product expression level. The ME model basically 

represents molecular biology and biochemistry on a genome-scale, and through its 

mathematical representation, allows the computation of its fully balanced operation. 

However, it is worth noting that although the ME model covers both transcription and 

translation, it does not model the regulatory processes.

ME models are based on optimality principles with the implicit assumption that regulation 

will produce the computed phenotypic state. This characteristic opens up the ability to 

address a fundamental question, namely, do the evolved transcriptional regulatory processes 

reflect optimality principles that can be represented in a ME model? In other words, can 

evolution and adaptation-produced outcomes be represented by the appropriate statement of 

an optimal function?

Experience with specific ME models and their applications.: A ME model was first 

reconstructed for Thermotoga maritima, which has a genome with 1,877 annotated genes. 

The ME model for T. maritima was developed as a prototype, returned accurate predictions 

of cellular composition and gene expression, and showed potential for aiding in the 

discovery of new regulons and genome annotation105. Growth simulation identified a set of 

genes with strong differential expression when T. maritima grows in minimal medium with 

L-arabinose or cellobiose as the carbon sources, suggesting the presence of transcriptional 

regulation. The predicted differentially-expressed genes led the authors to discover potential 

transcription factor binding motifs that are similar to known motifs in other organisms, 

highlighting how ME models can guide discovery of new regulons.

A year later, a ME model was built for E. coli through the integration of the E matrix with 

the most recent M model available75 (Fig. 3 and Fig. 5). This ME model was able to better 

predict some phenotypes than M models due to its expanded scope and additional 

constraints. For example, unlike previous GEMs, the predicted growth rate by the E. coli ME 

model has a nonlinear relationship with the substrate uptake rate, which is consistent with 
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the long-standing empirical models of microbial growth. ME model simulation suggests that 

under nutrient-limited conditions, growth is constrained by substrate availability, whereas 

under nutrient-excess conditions, growth is limited by internal constraints on protein 

synthesis and catalysis. ME models can also predict the maximum batch growth rate and 

optimal substrate uptake rate that closely matches experimental data from laboratory evolved 

strains.

Subsequent efforts focused on the improvement of several aspects of the E. coli ME models 

(Fig. 3). One study added the protein translocation pathways across the inner membrane, 

leading to four cellular compartments and membrane constraints that reflect the cell 

morphology106. Efforts to refine numerical values for enzyme turnover number (kcat) 

through machine learning methods107 were undertaken, and a reformulation of the E. coli 
ME model computations by grouping major cellular processes and implementing explicit 

coupling constraints drastically reduced the size of the stoichiometric matrix and 

computational solving time108.

The expanded predictive capability of ME models motivated their construction for other 

microorganisms of interest. The development of a ME model for Clostridium ljungdahlii 
enabled the prediction of overflow metabolism [G] that shed light onto media optimization 

strategies for bioproduction109. The Wood-Ljungdahl pathway is the only known CO2-fixing 

pathway coupled to energy conservation in Clostridium ljungdahlii, and trace metals are 

crucial in this pathway. The ME model was able to evaluate the impact of trace metals on 

metabolite secretion as the model incorporated protein modifications accounting for these 

metals. Specifically, simulation results suggested that removing nickel from the media may 

reduce acetate production, leading to ethanol production as the main fermentation product, 

providing valuable insights to bioproduction design strategies. A summary of published ME 

models and their characteristics can be found in Table 1. Additional species-specific models 

are under development. It is worth noting that another ME model formulation has been 

developed110 to model metabolism, gene expression, and thermodynamic constraints, 

enabling new insights into the diauxic behavior in bacteria111.

Thus far, ME models have only been developed for a few microorganisms besides E. coli 
due to the challenges in computational resources and model development. However, the 

reconstruction process of ME models has now been made easier with the development of the 

software framework COBRAme108, a python [G] package that simplifies the process of 

reconstructing and analyzing ME models. With the use of COBRAme, draft ME models can 

be constructed from: a high-quality M model; a standard GenBank genome annotation file; 

curated enzyme subunit stoichiometries; mappings of enzyme complexes to metabolic 

reaction; and enzyme turnover rates. The ME model can also be made more sophisticated by 

incorporating enzyme prosthetic group information, post-transcriptional or post-translational 

modifications, protein translocation information, transcription unit information, and other 

cellular processes. Once reconstructed, researchers are able to edit and simulate ME models 

using COBRAme, which uses a software architecture mirrored after popular GEM analysis 

tools like COBRApy. The streamlined computational and analysis pipelines in COBRAme 

have enabled a substantially expanded range of computational predictions, as we will discuss 

in the following section.
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It is worth mentioning that assembling two data types mentioned above — enzyme complex 

stoichiometry and enzymatic turnover rates — can present bottlenecks when constructing 

ME models. For well-studied microorganisms, assembling enzyme complex compositions 

can be aided with the use of expertly curated organism knowledge bases such as 

MetaCyc112. Alternatively, elucidating enzyme turnover rates on a systems level is an area 

of ongoing research113 that has recently been facilitated by the use of machine learning and 

omics datasets107,114. Future work is necessary to determine the sensitivity of ME models to 

these parameters and the degree to which these quantities may be conserved across 

microorganisms.

Beyond ME-models lies many additional cellular processes. Whole-cell models of the 

human pathogen Mycoplasma genitalium115, Saccharomyces cerevisiae116 and E. coli117 

have been developed. The whole-model is composed of independent modules describing 

particular cellular processes, such as cell replication, transcriptional regulation, and DNA 

maintenance. Different from ME models, whole-cell models are computed by simulating 

each module over a short time increment. Additionally, the enzyme abundances in whole-

cell models are variables determined by the previous simulation increment, whereas 

enzymes in ME models are directly imposed as metabolites in their metabolic reactions, 

which ensures that protein limitation has a dominant role in defining the metabolic flux 

state.

From growth to stress responses

The scope and range of prediction continues to grow as the coverage of cellular processes in 

GEMs expands118–123. Whereas metabolic models enable predictions of growth on different 

nutrients, metabolite secretion, and auxotrophy, ME models have added capabilities to 

simulate the proteome allocation and RNA-to-protein mass ratio for a given phenotype124, 

and differential gene expression levels across environmental shifts105.

Combined with genome-scale multi-omics data, ME models have become useful tools that 

provide a mechanistic and systems-level understanding of E. coli. The integration of ME 

models and global proteomics data was used to characterize the unused proteome, that is, 

protein molecules that are not utilized or underutilized for cellular growth (although they 

might be synthesized), and protein molecules that are present in excess in E. coli. By 

comparing the number of protein molecules needed for growth predicted by the ME model 

with quantitative proteomics data, the authors identified proteins that were not used towards 

growth. The unused proteins were shown to decrease with increasing growth rate, suggesting 

that there exists a fitness tradeoff between growth rate and the unused proteins encoding 

stress- and nutrient- preparedness functions. This tradeoff possibly conveys fitness benefits 

in changing environments while taking resources away from growth125.

The ME model formulation can demand that translated proteins are folded, equipped with 

the proper prosthetic groups, and assembled into protein complexes in order to carry out 

their enzymatic function. Modeling the proteome in this level of detail inherently provides a 

robust link between metabolism and the biosynthesis of functional enzyme complexes126. 

ME models therefore enable genome-scale investigations into the cellular response to any 

dysfunction in protein synthesis or maintenance, such as those that can occur when cells 
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experience stress conditions. Thus, several extensions of ME models have recently been 

developed to describe stress response and mitigation functions in mechanistic detail127–129. 

Taking E. coli as an example, reconstructions of known stress response mechanisms have 

been integrated with ME models to form a new generation of models: FoldME128, 

OxidizeME129, and AcidifyME127, which simulate the response to thermal, oxidative, and 

low pH stress, respectively (Fig. 3 and Fig. 5). Each of these environmental stresses are 

relevant to the lifestyle of E. coli, particularly when existing in a host organism.

The FoldME model extension expands the ME model to include peptide folding (chaperone-

mediated or spontaneous) while taking into account basic biochemical properties such as 

protein kinetic folding rates and thermostability. By detailing these proteostatic mechanisms, 

FoldME is capable of describing protein folding, denaturing, and catalytic activity as a 

function of temperature on a genome scale. Applying FoldME produced multi-scale 

predictions for cellular adaptations under high temperature by introducing the unfolded state 

of the proteins and in vivo protein folding as a competition between spontaneous folding and 

DnaK or GroEL-assisted folding (Fig. 5). FoldME faithfully recapitulated the temperature 

dependent growth rate and changes in protein abundances128 — as the optimal growth 

temperature for E. coli is exceeded, more proteome denatures, forcing more chaperones to 

be expressed, and therefore less of the total proteome is available for growth functions.

Another universal stress that may hinder cell growth is reactive oxygen species (ROS). 

Oxidative damage in a cell can manifest in multiple ways, including oxidation and 

demetallation of the mononuclear iron cofactors in metalloproteins, iron-sulfur cluster 

cofactor damage, and DNA damage. The OxidizeME extension was constructed by 

incorporating pathways involved in these ROS-based damage and repair processes (Fig. 5). 

Furthermore, structural biology was applied to determine which proteins, based on the 

position of metallic cofactors in the 3D structure of the enzyme, were most susceptible to 

ROS damage. As ME models explicitly require the presence of the proper unimpaired 

cofactors in order for an enzyme to possess any catalytic function, the model could assess 

the systems-level effects of oxidative damage and repair in E. coli. OxidizeME correctly 

predicted the phenotypes under oxidative stress, such as aromatic amino acid auxotrophy, 

carbon-source dependent ROS sensitivity, and stress-specific differential gene expression, 

and traced the possible mechanisms involved in iron-sulfur cluster biosynthesis129.

Such an effort was also extended to pH stress to elucidate the changes in cellular responses 

under acidic conditions. AcidifyME simulates pH-dependent membrane lipid fatty acid 

composition, periplasmic protein stability and periplasmic chaperone protection, and 

membrane protein activity under low pH (Fig. 5). It recapitulated differential gene 

expression under acid conditions, enabled a systematic and mechanistic understanding of 

acid stress response, and most importantly suggested potential intervention strategies127. For 

example, model simulation suggests that knocking out hdeB, the only known periplasmic 

chaperone in E. coli, would result in no growth under acidic conditions. If such predictions 

can be verified by experimental studies, HdeB could become a promising antimicrobial 

target to inhibit E. coli growth under acidic environments such as the human digestive tract.
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Conclusions

The first annotated genome sequences appeared in the mid to late 1990s. With metabolism 

being a well characterized cellular process, a comprehensive list of metabolic genes was 

identified on these newly sequenced genomes. The recognition that the biochemical 

functions of enzymes could be defined led to a formulation of a process for network 

reconstruction at the genome-scale. In other words, one could, in principle, reconstruct the 

entire metabolic network from an annotated genome sequence. In practice, reconstruction 

technology has advanced over the past 20 years to include protocols to deal with issues 

arising from incomplete genome annotation and the development of quality control 

standards.

Reconstructions are knowledge-bases that have many uses. One use detailed here is the 

conversion of knowledge into computational models that represent the functions of an ‘in 

silico’ cell whose properties can be computationally simulated. These models open up the 

comparison between characterization of what is known about an organism (that is, the GEM) 

and how the organism actually functions. As we do not have complete knowledge of any 

organism, the difference between the two (observed and simulated functions) has proved to 

be a guide to the discovery of missing parts and an understanding of integrated cellular 

functions.

The computation of biological functions needs to represent proximal and distal causation. 

GEMs formulated through a constraint-based formalism can represent both, and thus 

simulate dual causation130. Proximal causation can be comprehensively detailed through the 

inclusion of increasingly accurate biophysical representations of cellular processes. This 

approach has led to the formulation of whole-cell models of M. genitalium115, S. 
cerevisiae116, and E. coli117 to describe in increasing biophysical detail their molecular 

components and interactions115. These models become increasingly specific to a particular 

strain functioning in particular environments.

Distal causation can be pursued through adaptive laboratory evolution and through pan-

genomics. Here, the differences between strains and species are considered, and the question 

of interest is how natural selection leads to adaptation and longer-term evolution. 

Reconstruction and GEMs are used as tools to compare gene portfolios with the 

corresponding phenotypic potential and matching these to selection pressures. The most 

comprehensive description of the formulation, underlying philosophy, and use of constraint-

based models is found in a recent textbook131.

As reviewed in this article, GEMs have developed over 20 years, starting with metabolism 

then expanding in scope to include transcription and translation and stress functions. They 

will continue to grow in their scope and accuracy in the representation of known cellular 

functions. Comprehensive representations of two-component systems and the structural 

proteome76,79 are now possible, as are cell division mechanisms, whose inclusion will refine 

the models from representations of populations to individual cells. This process will 

continually improve our understanding of how microbial cells function and evolve and will 

likely one day assist with the design of synthetic genomes.
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Glossary

Reactome All the reactions involved in genome-scale models (or a 

certain model of interest). Each base unit is a reaction, and 

the entities are metabolites involved in the reactions, such 

as proteins, nucleic acids and small molecules.

Proteome allocation Proteome is the entire set of proteins expressed by an 

organism at a certain time. Proteome allocation is the 

partition of proteomics resources into different functions to 

fulfil the organism’s need at the given condition.

Proximal causation Proximal causation explains traits/events (such as change 

in proteome allocation) in terms of immediate 

physiological or environmental factors

Distal causation Distal causation explains traits/events (such as change in 

proteome allocation) in terms of evolutionary forces acting 

on them.

Expression matrix Expression matrix (E matrix) is a matrix that describes all 

components (including DNA, mRNA, proteins, and 

metabolites) and reactions that are involved in the 

transcriptional and translational machinery in the organism 

of interest.

Overflow metabolism Overflow metabolism refers to when cells incompletely 

oxidize their substrate (which yields less energy), instead 

of using the more energetically-efficient respiratory 

pathways to completely oxidize their substrates, even when 

oxygen is available

Python Python is an interpreted, general-purpose programming 

language that is widely used in computational biology

Sensome Sensome refers to the components (such as genes and 

proteins) in an organism or cell that are involved in sensing 

the changes in the environment.
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BOX 1 |

Why build computational models?

Computational models describe a system through a mathematical formalism enabling the 

study of its behavior through simulation. Models are prevalent in the physical sciences, 

but are less common in biology. The motivation for building models can be broken down 

into five categories133.

Organize disparate information into a coherent whole

Network reconstructions represent a formal organization of knowledge that can 

subsequently be converted into computational models. Genome-scale models (GEMs) 

enable systems-level understanding and analysis, and produce predictions based on the 

scope, coverage, and quality of the underlying reconstruction44,68.

Identify important components and interactions in a complex system

An early use of GEMs was to compute gene essentiality72,134. For a poorly characterized 

organism, Geobacter sulfurreducens, GEMs produced a deep understanding of acetate 

uptake, acetate activation, and altered amino acid metabolism135.

Make new discoveries

GEMs can be used to simulate perturbation to a metabolic system to identify essential 

metabolites and to find its structural analogues as candidate drugs that inhibit the 

enzymes that degrade the metabolite136. GEMs have enabled designs of growth-coupled 

methylation systems137.

Fill in knowledge gaps

GEM prediction of ‘no growth’ under a condition where the organism experimentally 

grows is called a ‘false negative’ prediction, which usually is a result of a missing 

component in the GEM. Gap-filling procedures138–140 and other methods141 were 

developed to address this issue, driving discoveries and making important corrections in 

conventional wisdom.

Understand the essential and qualitative features

Qualitative features are important for complex systems. For example, global proteomics 

data and GEMs helped identify the fear-greed trade-off in E. coli growth125. E. coli was 
shown to have nearly half of the proteome mass unused in certain environments. This 

‘unused’ proteome is involved in nutrient- and stress-preparedness functions that may 

convey fitness benefits in changing environments.
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Figure 1: 
Basic principles of constraint-based modeling of cellular functions. a| Metabolic genes from 

annotated genomes of interest and metabolic knowledge lead to metabolic reactions. b| 

Integration of all the metabolic reactions through shared metabolites results in the 

construction of a metabolic network for the organism of interest. c| The metabolic network 

can be converted into a stoichiometric matrix (S matrix) where rows represent metabolites, 

columns represent reactions, and each entry represents the reaction coefficient of a particular 

metabolite in a reaction. d| With the S matrix and the objective function of the model, one 

can solve for the flux distributions. The solution space is where all possible solutions of flux 

distribution reside, and each axis represents the metabolic flux of a reaction. e| Applying 

additional constraints will shrink the allowable solution space. Commonly used constraints 

include the steady state assumption and feasible ranges of metabolic flux. f| One or multiple 

optimal solutions can be found in the allowable solution space that optimizes the objective 

function of the model (as represented by the red dot in the figure).
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Figure 2: 
The increasing number of genome sequences and the development of genome-scale models. 

a| The number of public genome sequences in the PATRIC database132. b| Number of 

reactions and metabolites represented in 108 manually curated models in the BiGG Models 

database63. c| Multiple correspondence analysis (MCA) of the reactomes of the 108 

reconstructions. d| Coverage of the 108 reconstructions in the tree of life. The number in 

parenthesis represents the number of reconstructions in each branch.

Fang et al. Page 24

Nat Rev Microbiol. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Historical development of Escherichia coli genome-scale models. Development of existing 

and potential future genome-scale models (both metabolic, shown in orange, and metabolic 

and macromolecular expression (ME) models shown in blue) of E. coli. The genome-scale 

metabolic model of E. coli first appeared in the early 2000s. An increasing scope of 

biological functions has been incorporated into the model, leading to various generations of 

the metabolic models as new discoveries were made. In the early 2010s, ME models that 

incorporate transcription and translation mechanisms emerged. Multiple efforts followed to 

improve and expand the ME model. Going into the 2020s, extensions of stress response 

modules have been added to ME models. Future directions involve incorporation of the 

sensome [G] to form the StressMe model, and the inclusion of toxins, biosynthetic gene 

clusters and cell cycle. Ovals indicate models, and boxes represent data incorporated to 

generate the models. According to the naming convention for network reconstructions, 
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model names consist of an ‘i’ for in silico followed by the initials of the person(s) who built 

the model, and the number of open reading frames accounted for in the reconstruction.
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Figure 4: 
Generation of strain-specific Escherichia coli genome-scale models and their application to 

multi-strain studies. Strain-specific models were generated from genome sequences of 

strains of interest and a curated reference model. The annotated genome sequences of target 

strains are mapped to the reference genome sequence to generate the homology matrix that 

delineates the gene sequence similarity across strains. The homology matrix can be used to 

create draft models of target strains. These models can then be finalized by manual curation. 

Strain-specific models were used to reveal variation in metabolic capabilities across different 

pathotypes, as illustrated in three studies shown on the right. The first multi-strain study of 

E. coli genome-scale models (GEMs) found metabolic capabilities predicted by GEMs 

correspond to pathotype and environment. In the second study, comparison of GEMs 

constructed for inflammatory bowel disease (IBD) clinical isolates suggested the possible 

link between metabolic functions of B2 strains and their prevalence in individuals with IBD. 

Lastly, GEMs of dominant strains in an individual with IBD revealed the potential 

correlation between metabolism and inflammation91–93. Panel ‘Strains of different 

pathotypes’ adapted from ref. 91. Panel ‘IBD clinical isolates’ adapted from ref. 92. Panel 

‘Dominating strains in IBD gut microbiome’ adapted from ref. 93.
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Figure 5: 
General formulation of a metabolic and macromolecular expression model and its 

application to the study of stress response. Metabolic and macromolecular expression (ME) 

models are generated through the integration of M models and protein synthesis pathways 

including transcription, tRNA charging, and translation. Therefore, the ME model describes 

the biosynthesis of proteins and their roles in catalyzing the metabolic reactions. Stress-

specific response mechanisms are integrated with the E. coli ME model to produce stress-

specific ME models: FoldME, OxidizeME, and AcidifyME. FoldME models respond to 

temperature stress through the incorporation of chaperone-mediated (GroEL or DnaK) or 

spontaneous folding pathways. OxidizeME simulates the response to oxidative stress 

through the inclusion of oxidation and demetallation in metalloproteins, iron-sulfur cluster 

cofactor damage and repair, and DNA damage. AcidifyME models the mechanisms related 

to acid stress, including pH-dependent protein activity and stability, membrane composition, 

and intracellular buffering. CBO, cytochrome bo terminal oxidase; NDH-I, NADH 

dehydrogenase I; NDH-II, NADH dehydrogenase II; SDH, succinate dehydrogenase; Glu, 

glutamate; GABA, gamma-aminobutyric acid; NTPs, nucleoside triphosphates. FoldME 

panel adapted from ref. 127. OxidizeME panel adapted from ref. 129.
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Table 1.

Summary of published metabolic and macromolecular expression ME models.

Model Organism Coverage Key findings

T. maritima- 
ME105

Thermotoga 
maritima

Metabolism, macromolecular synthesis, post-
transcriptional modification and dilution to 
daughter cells

Accurately predicted cellular composition and gene 
expression;
Enabled new regulon discovery and genome 
annotation

iOL1650-
ME124

Escherichia. coli 1,650 genes, 1,295 protein complexes 
accounting for metabolism, gene expression 
and macromolecular synthesis

Accurate prediction of multi-scale phenotypes;
Revealed the importance of proteomic constraints on 
growth, by-product secretion, metabolic flux, uptake 
rates and optimal

iJL1678-ME106 E. coli Incorporated four compartments, (cytoplasm, 
periplasm, inner, and outer membranes) 
translocation pathways, membrane constraints 
in previous iOL1650- ME

Enabled prediction of enzyme abundances and their 
cellular location;
Predicted impact of perturbations such as membrane 
crowding and enzymatic efficiency

iJL1678b-
ME108

E. coli Compared to iJL1678- ME: reformulated 
coupling constraints; groupedlumped major 
cellular processes; and iIncluded non-
equivalent changes

Significantly reduced free variables and solve time;
Increased accuracy in model prediction

iJL965-ME109 Clostridium 
ljungdahlii

965 genes, 735 protein complexes accounting 
for central metabolism, transcription, 
translation, macromolecule modifications, and 
translocation

Produced accurate prediction of fermentation 
profiles, yielding deep interpretation of overflow 
metabolism products, gene expression, and usage of 
cofactors and metals
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