Skip to main content
. 2021 Mar 20;21:54. doi: 10.1186/s12880-021-00581-9

Table 2.

Performance of radiomic models built by the MLR and SVM for the training and validation cohorts

Radiomic model AUC
(95% Cl)
Accuracy Sensitivity Specificity PPV NPV F-1 score
T1WI model The training cohort MLR

0.85

(0.80–0.91)

0.81 0.82 0.80 0.83 0.78 0.82
SVM

0.95

(0.92–0.99)

0.92 0.92 0.92 0.94 0.90 0.92
The validation cohort MLR

0.71

(0.81–0.91)

0.71 0.76 0.65 0.73 0.69 0.74
SVM

0.85

(0.77–0.94)

0.74 0.71 0.76 0.79 0.68 0.75
T2WI model The training cohort MLR

0.87

(0.80–0.95)

0.83 0.88 0.77 0.83 0.83 0.85
SVM

0.97

(0.95–0.99)

0.95 0.98 0.92 0.94 0.97 0.96
The validation cohort MLR

0.85

(0.90–0.94)

0.80 0.86 0.71 0.78 0.80 0.82
SVM

0.74

(0.62–0.85)

0.68 0.76 0.59 0.70 0.67 0.73
T1-2WI model The training cohort MLR

0.95

(0.91–0.99)

0.86 0.90 0.82 0.86 0.86 0.88
SVM

0.96

(0.92–0.99)

0.92 0.96 0.87 0.90 0.94 0.93
The validation cohort MLR

0.90

(0.85–0.95)

0.84 0.88 0.79 0.84 0.84 0.86
SVM

0.93

(0.87–0.99)

0.87 0.81 0.94 0.94 0.80 0.87

PPV, positive predictive value; NPV, negative predictive value; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; SVM, Support vector machine; MLR, multivariable logistic regression