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Abstract

Ovarian cancer is a heterogeneous disease at the molecular and histologic level. Optical coherence 

tomography (OCT) is able to map ovarian tissue optical properties and heterogeneity, which has 

been proposed as a feature to aid in diagnosis of ovarian cancer. In this manuscript, depth-resolved 

en face scattering maps of malignant ovaries, benign ovaries, and benign fallopian tubes obtained 

from 20 patients are provided to visualize the heterogeneity of ovarian tissues. Six features are 

extracted from histograms of scattering maps. All features are able to statistically distinguish 

benign from malignant ovaries. Two prediction models were constructed based on these features: a 

logistic regression model (LR) and a support vector machine (SVM). The optimal set of features is 

mean scattering coefficient and scattering map entropy. The LR achieved a sensitivity and 

specificity of 97.0% and 97.8%, and SVM demonstrated a sensitivity and specificity of 99.6% and 

96.4%. Our initial results demonstrate the feasibility of using OCT as an “optical biopsy tool” for 

detecting the microscopic scattering changes associated with neoplasia in human ovarian tissue.
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1 | INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal 

gynecologic cancer [1, 2]. The 5-year survival rate of ovarian cancer is only 40% due to late 

detection [3]. However, when diagnosed at stage I, ovarian cancer has a 5-year survival rate 

of 92% [1]. Currently the best screening method provided for women at high risk is a 

CA125 blood test combined with transvaginal ultrasound; unfortunately, the sensitivity and 

specificity are low and only 15% of ovarian cancers are diagnosed at an early stage [4]. The 

standard of care for high-risk women is risk-reducing bilateral salpingo-oophorectomy 

(RRSO), which can reduce the risk of ovarian cancer by more than 50% [5, 6]. However, 

RRSO causes early menopause, which carries risks, including accelerated bone loss and 

increased risk of heart disease [7].

Ovarian cancer is a heterogeneous disease at the molecular and histologic level [8, 9]. 

During the progression of ovarian cancer, the collagen fiber architecture of the extracellular 

matrix is remodeled [10, 11]. As collagen fibers are the main elastic scatterers in the ovarian 

stroma, the redistribution and re-organization of collagen fiber bundles affect its optical 

scattering properties. A noninvasive and sensitive micrometer-resolution instrument has the 

potential to identify these structural alterations for early detection of ovarian cancer.

Optical coherence tomography (OCT) can provide microscale real-time images and is able 

to obtain an “optical biopsy” without physically resecting the tissue [12–15]. The OCT 

contrast is generated from the backscattered light from different layers of tissue; thus, it is 

suitable for extracting tissue scattering heterogeneity. The feasibility of OCT in laparoscopy 

and falloposcopy for ovarian tissue B-scan imaging has already been demonstrated [16, 17]. 
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The scattering coefficient, which is related to the collagen content and directivity, was 

extracted from OCT A-scans and found to be a good biomarker for characterizing human 

ovarian cancer [18, 19]. Scattering coefficient distribution within B-scans based on 2-D 

analysis and histogram analysis of B-scan images have been used in automated classification 

of urinary bladder cancer, Barrett’s esophagus, human skin cancer, and human atrial tissue 

using OCT. [20–23] All these studies mainly focus on B-scan images and features, and show 

promising results. 3-D texture analysis of OCT images of a mouse ovary model achieved 

statistically significant performance [24]. Histogram analysis has also been applied to MRI, 

ultrasound, and CT to characterize tumor heterogeneity [25–27]. Spatial frequency domain 

imaging (SFDI) is another imaging modality that is able to quantify scattering and has 

shown promise in classifying ovarian tissue [28]. SFDI has a large field of view; however, its 

resolution (~mm) is not high enough to detect neoplastic microstructural scatter changes 

associated with the progression of ovarian cancer.

In this study, we report, for the first time, characterization and classification of ex vivo 

human ovary and fallopian tube based on features obtained from 3-D analysis of depth-

resolved en face scattering maps of OCT images. Initial results indicate that quantitative 

scattering features extracted from the OCT images can be used to identify ovarian cancer.

2 | MATERIALS AND METHODS

2.1 | Ovary sample preparation

This study was approved by the Institutional Review Board (IRB), and informed consent 

was obtained from all patients. A total of 26 freshly excised human ovaries and 9 fallopian 

tubes from 20 patients (see Table 1) undergoing surgery for various clinical indications were 

imaged with OCT in the Optical and Ultrasound Imaging Lab located at Washington 

University School of Medicine. Ovaries were imaged immediately after surgery (~5 mins) 

and returned to the Pathology Department within an hour for routine processing. 

Pathologists in the frozen section lab provided guidance to the researchers as to the sample 

orientation and location of tumor, which was in any event not subtle. Therefore, we are 

certain that we imaged the tumor for the malignant specimens.

2.2 | Swept-source OCT system and experimental design

The OCT system is based on a swept source (HSL-2000, Santec Corp., Japan) with a center 

wavelength of 1310 nm, a FWHM bandwidth of 110 nm, and a scan rate of 20 kHz. The 

interference signal was detected by a balanced detector (Thorlabs PDB450C) and acquired 

by an A/D card (ATS9462, AlazarTech Technologies Inc). The lateral resolution of the 

system in the air is 10 μm, and the axial resolution is 6 μm. To compensate for system 

signal-to-noise ratio roll-off and Gaussian beam focusing, a calibration test was performed 

by measuring attenuated mirror signals from different imaging depths. For each 3-D scan of 

an ovarian tissue sample, an area of 5 mm × 10 mm was scanned. An illustration of the 

experimental setup and imaging system can be found in our recent publication [29].
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2.3 | Feature extraction

2.3.1 | Generating en face scattering coefficient maps—For ovarian specimens, 

collagen fibers were found to be the main scattering source in the stroma underlying the 

surface epithelium [30–32]. Thus, the ovarian epithelium layer was first located semi-

automatically (area between the two red curves in Figure 1A,C) using the shortest-path 

algorithm [33]. A wavelet filter was applied to B-scan images for noise reduction and fitting 

[33]. Then the scattering coefficient within the ovarian cortex layer was calculated by fitting 

each A-scan with a single scattering model based on Beer’s law [34, 35]. By fitting all A-

lines within one 3-D scan (1000 A-lines × 500 B-scans), we generated a depth-resolved en 
face scattering coefficient map of the scanned ovarian tissue.

2.3.2 | Histogram feature extraction—Each scattering map was further subdivided 

into several nonoverlapping images to avoid hyper-reflection and out-of-focus areas. Six 

features were extracted quantitatively using MATLAB R2018a from the analysis of the 

histogram of all scattering maps. Six features can be computed from Eq. (1) to (6), where xi 

is the pixel gray level and N is the total number of pixels.

Mean(μ) = 1
N ∑i = 1

N xi (1)

V ariance σ2 = 1
N ∑i = 1

N xi − μ 2
(2)

Entropy = − ∑i = 1
N p xi log2p xi (3)

Skewness = 1
N ∑i = 1

N xi − μ
σ

3
(4)

Kurtosis = 1
N ∑i = 1

N xi − μ
σ

4
− 3 (5)

Energy = 1
N ∑i = 1

N p xi
2

(6)

Where p xi =
xi

s(1)*s(2),
 s(1) is the image width and s(2) is the image length. The statistical 

significance of these six features was further evaluated using the Wilcoxon ranksum test.

2.4 | Feature selection and classification

In the first step, the Spearman’s cross correlation among all features was evaluated (Table 2) 

and features with correlation coefficient smaller than 0.5 were considered independent of 

each other [36, 37]. Next, two optimal feature sets: “mean and entropy” and “energy, 

skewness, entropy” were selected. Each optimal feature set consists of features that are not 
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correlated by our measure and provide best testing results [38]. Then two prediction models 

(LR and SVM) were trained using these two feature sets through glmfit and fitcsvm 

functions in MATLAB. Approximately two thirds of the data were used for training two 

predictive classifiers and the rest were used for testing the models. Repeated rounds (100 

times) of training and testing were applied by randomly selecting 2/3 of the samples for 

training and 1/3 of the samples for testing. One hundred receiver operating curves (ROC) 

were generated, and the averaged sensitivity, specificity, and area under the curve (AUC) 

were used for evaluating the accuracy of the model.

3 | RESULTS

A total of 20 patients (mean age 56 years; range 37–87) of 26 ovaries were imaged ex vivo 

from February 2017 to October 2018. Table 1 provides pathological characteristics of these 

ovaries. Diagnoses ascertained by subsequent surgical pathology examination revealed high-

grade serous carcinoma (n = 4 ovaries), Sertoli-Leydig cell tumor (a sex cord-stromal tumor; 

n = 1), normal ovaries (n = 6), other causes of benign but enlarged ovaries (n = 15), and 

benign fallopian tubes (n = 9) (Table 1).

3.1 | B-scan images of ovary samples

Representative SS-OCT B-scan images of benign ovaries, malignant ovaries, and 

corresponding H&E slides are shown in Figure 1. The OCT and the histologic images have 

similar scales and come from similar, but not identical, locations within the ovary 

specimens. In Figure 1B, non-neoplastic ovarian stroma is seen, characterized by bland 

spindle cells in a dense collagenous background. Figure 1D, in contrast, is infiltrated by 

high-grade serous carcinoma. Irregular islands of neoplastic cells are present in the lower 

left of the panel, characterized by increased nuclear to cytoplasmic ratio, formation of 

abortive glandular structures, and surrounding stromal desmoplasia (stromal reaction to 

invasive tumor). The neoplastic cellularity in this case is approximately 20% by visual 

estimate of the H&E slide, which is typical of cases included in the study.

3.2 | Scattering coefficient maps of human ovary specimens

Figure 2A–C shows photographs of one benign ovary, one malignant ovary (high-grade 

serous carcinoma), and one benign fallopian tube, respectively. The scattering coefficient 

maps of the scanned areas, identified as white boxes in Figure 2A–C, are shown in Figure 

2D–F. The white areas in the scattering map indicate the background or tissue area that is 

out of focus. The normal ovarian specimen exhibits much higher scattering on average and is 

more homogeneous compared to malignant ovary, which has significantly lower scatter and 

disorganized collagen distribution. The benign fallopian tube shows a spatially 

heterogeneous scattering distribution that significantly differs from the ovary scattering 

maps.

3.3 | Histogram analysis

Six features were extracted from scattering maps and histograms of 27 nonoverlapping 

malignant ovary scattering maps, 64 nonoverlapping benign/normal ovary scattering maps, 

and 9 nonoverlapping benign fallopian tube scattering maps. Each nonoverlapping scattering 
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map was from a 5 mm × 10 mm area of a different region of the examined ovary. Depending 

on the size of the ovary, one to four nonoverlapping areas were imaged and scattering maps 

were generated. Figure 3 shows representative histograms derived from one malignant ovary 

(Figure 3A) and one benign ovary (Figure 3B). The six features for Figure 3A are 4.0 mm−1 

(mean), 1.71 (variance), 6.50 (entropy), 0.77 (skewness), 4.33 (kurtosis), and 0.17 (energy). 

The six features for Figure 3B are 11.48 mm−1(mean), 2.98 (variance), 7.30 (entropy), 0.22 

(skewness), 2.85 (kurtosis), and 0.10 (energy). Gaussian curves (best-fit) of the histograms 

are shown in red for visualization. More details can be found in Table 3.

Figure 4 shows the boxplots for the mean, variance, entropy, skewness, kurtosis, and energy 

across the entire set of 26 ovaries. All features showed statistically significant differences 

between malignant and benign ovarian tissues. Cancerous specimens had significantly lower 

mean, variance, and entropy of scattering coefficient, but markedly higher skewness, 

kurtosis, and energy than benign specimens. The mean and variance were significantly 

different between cancer ovaries and benign fallopian tubes, and the mean, variance, and 

kurtosis had statistically significant differences between benign ovaries and benign fallopian 

tubes. In addition, fallopian tubes showed different scatter distribution than either malignant 

tissue or benign tissue.

3.4 | Training and testing results of two predictive models

Although all features differed between benign and malignant, we hypothesized that a 

combination of features would allow better classification of ovaries. Figure 5 shows ROC 

curves for the testing sets of both LR and SVM models trained on two optimal feature sets. 

The first feature set consisted of mean scattering coefficient and scattering map entropy. For 

this set, a sensitivity and specificity of 97.0% and 97.8% was obtained from LR, with 

average AUC of 0.986; a sensitivity and specificity of 99.6% and 96.4% was achieved from 

the SVM, with average AUC of 0.991. A second set consisted of energy, skewness, and 

entropy. The trained LR model achieved a sensitivity and specificity of 93.4% and 82.1%, 

with average AUC of 0.956; the SVM achieved a sensitivity and specificity of 91.1% and 

84.2%, with average AUC of 0.957. Thus, the optimal set of features is mean scattering 

coefficient and scattering map entropy. Both LR and SVM have similar diagnostic 

performance.

4 | DISCUSSION

In this study, depth-resolved human ovary and fallopian tube en face scattering coefficient 

maps are presented for the first time. The scattering coefficient map of malignant and benign 

ovarian tissues shows differences attributed to the presence of malignancy. Benign ovarian 

tissue demonstrated a homogeneous scatter distribution with high average scattering 

coefficient. Malignant ovarian tissues were heterogeneous with generally lower subsurface 

scattering coefficient. The difference between the scattering properties of the samples can be 

attributed to the reorganization of collagen in the ovarian tissue, although we did not directly 

test this. When cancer develops in healthy ovaries, it invades the collagen network and 

causes the remodeling of collagen architecture [10, 11]. This results in the heterogeneous 

distribution seen in Figure 2E.
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In addition, we can summarize the scattering coefficient maps by calculating mean, variance, 

entropy, skewness, kurtosis, and energy, which statistically separate benign from malignant 

tissues (Figure 4). Both LR and SVM models were trained based on these histogram features 

and achieved a high sensitivity, specificity, and AUC in testing. These interesting results 

indicate that OCT may be possible to predict the risk of cancer before surgery, which could 

potentially aid in clinical decision-making (eg, prioritizing surgical cases with higher risk of 

malignancy, avoiding unnecessary resection of low-risk cases, or triaging patients for 

referral to a gynecologic oncologist). It is worth to mention that the training and testing 

datasets are small (60 for training and 30 for testing), and overfitting can occur when the 

training dataset is limited [39]. We have selected the minimal number of independent 

predictors (one optimal set has three parameters, and second has two parameters) for each 

prediction tests, performed 100 times cross-validation, and used fairly high amounts (33%) 

of the sample data for testing. The performances of the prediction models based on 

respective training and testing datasets are similar with no obvious pattern of higher AUC 

values for training data and much lower AUCs for testing data, which would be expected if 

there were problem of overfitting. With more patients recruited to the study, we will be able 

to establish a large database to validate prediction models with more input predictors.

The malignant cases reported in this study were at various stages including stage I (for the 

Sertoli-Leydig cell tumor), stage II (one high-grade serous cancer) and stage III (three high-

grade serous cancers). Thus, a range of stages was represented. The progression from stage I 

to IV, based on the definitions of the International Federation of Gynecology and Obstetrics, 

does not necessarily involve more extensive involvement of the ovary, but rather is based on 

involvement of remote sites in the pelvis (stage II), abdomen (stage III) or elsewhere (stage 

IV). Therefore, one would not a priori expect the imaging characteristics of stage I ovarian 

cancers to differ from those of more advanced cases; the ovary could be involved to the same 

extent in any of these stages. The volume of cancer in an ovary may range from small to 

large, and it is plausible that the scattering maps of ovarian cancer tissue might vary 

depending on the size of the tumors. Our tumors did range from 5.5 to 10 cm in diameter 

(Table 1). It might be desirable to explore the operating characteristics of the imaging over a 

wider range of sizes. We would underline that this was a proof of principle study intended to 

document the imaging characteristics of benign as compared to malignant tissue. Once these 

characteristics are known, they can then be applied to ambiguous or difficult cases. It will 

eventually be important to determine the sensitivity and specificity of the OCT technique in 

a real-world mix of cases, including early-stage and small cases. Ovarian cancer is usually 

detected at advanced stage, and is often clinically “silent” until the tumor reaches a large 

size. It is therefore not surprising that our relatively small sample of convenience consisted 

of larger tumors.

Our study provides evidence that the benign fallopian tubes demonstrate different 

microscopic scattering distribution as compared to ovarian tissues. We have made the 

assumption that benign entities can be considered together (regardless of specific histologic 

diagnosis) and that malignant entities can be considered together, an assumption that is 

supported by the homogeneity of features in each group, as shown in Figure 4. A limitation 

of our study is the lack of malignant fallopian tubes. Studies have shown that the fallopian 

tube is the origin of high-grade serous carcinoma, which is the most common and most 
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lethal subtype of ovarian cancer [40–42]. Keenan et al. provided B-scan images using an 

OCT falloposcope imaging porcine fallopian tubes, presumably benign [17]. Madore et al. 

showed B-scan images of a fresh excised healthy human fallopian tube [43]. These studies 

focus on proving the feasibility of falloposcope and providing qualitative OCT images. Our 

future work will be focused on quantitative discrimination of microscopic scattering changes 

in benign and malignant fallopian tubes. Because malignant fallopian tubes are rare, a larger 

scale clinical study is needed.

A limitation of this study is that we have studied only the most common pathologic entities 

to occur in the ovary. A real-world mix of patients will include a larger spectrum of 

diagnoses, including tumors of other epithelial cell types, borderline tumors, sex cord-

stromal tumors, germ cell tumors, metastatic tumors, and benign processes that enlarge the 

ovary such as tubo-ovarian abscess and endometriosis. Some more complicated cases will be 

included in future studies, including but not limited to specimens with a mixture of 

pathologies and ovaries with subtle involvement. Moving forward, one critical obstacle for 

translating OCT into in vivo imaging as a clinical screening technique will be data 

acquisition. As ovaries are deeply buried within the human abdomen, it is challenging to 

access them. Several approaches have been proposed so far, including OCT laparoscopy [16] 

and falloposcopy [17]. Future studies will focus on endoscopic OCT designs and evaluate 

them in vivo.

Currently, all image post-processing is performed in MATLAB. The total image post-

processing time for a 5 mm by 1 cm (500 B-scans, 1000 A-lines/B-scan, and 1024 pixels/A-

line) area is 12 hours on a Dell Inspiron 3650 (64 bits, Intel Core i5–6400 CPU @ 2.70GHz, 

8GB RAM), which is too long for real-time decision-making. Future work will need to focus 

on algorithm optimization for faster and more accurate surface delineation and scattering 

coefficient fitting, and on GPU implementation for improving computational speed. 

Certainly, an automatic scattering coefficient map segmentation algorithm is needed for real-

time data processing. Many automatic segmentation algorithms for OCT images have been 

implemented [44], for example, feature-based segmentation and machine learning based 

methods. A suitable methodology will be thoroughly explored in the future. The final goal is 

to provide real-time quantitative assessment of microscopic optical scattering changes 

associated with development and progression of ovarian cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Representative OCT images of benign and malignant ovary specimens. The ovarian surface 

epithelium is between the two red curves in the B-scan SS-OCT images. (A) representative 

B-scan image from a benign ovary and (B) corresponding H&E image. (C) representative B-

scan image from a malignant ovary (high-grade serous carcinoma) and (D) corresponding 

H&E image. Inset: best-fit Beer’s law is used to calculate the scattering coefficient. OCT, 

optical coherence tomography
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FIGURE 2. 
Photographs (A-C) of one benign ovary, one malignant ovary, and one benign fallopian tube, 

respectively. Scattering coefficient maps (D-F) of the scanned areas, identified as white 

boxes in Figure (A-C). The scale bar of 200 mm is shared by maps (D-F)
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FIGURE 3. 
Histogram analysis of one representative malignant ovary (A) and one representative benign 

ovary (B). The six features for (A) are 4.0 mm−1(mean), 1.71(variance), 6.50(entropy), 

0.77(skewness), 4.33(kurtosis), and 0.17(energy). The six features for (B) are 11.48mm
−1(mean), 2.98(variance), 7.30(entropy), 0.22(skewness), 2.85(kurtosis), and 0.10(energy). 

Fitted Gaussian distribution is shown as red curves
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FIGURE 4. 
Boxplot of the six features extracted from histogram analysis of scattering maps of 

malignant ovaries, benign ovaries, and benign fallopian tubes
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FIGURE 5. 
Testing results of two optimal data sets ([mean, entropy] and [energy, skewness, entropy]) 

used to train two classification models. (A-B) show the ROC curves for the testing sets of 

logistic regression and (C-D) show the ROC curves of SVM model
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TABLE 1

Lesion characteristics (20 patients of 26 ovaries, average age 56 years; range 37–87)

Cancerous ovaries High grade serous carcinoma (n = 4, average size 8 cm, range 5.5–10 cm)

Sertoli-Leydig cell tumor (n = 1, size 19.2 cm)

Benign ovaries Fibrothecoma (n = 1, size 14 cm)

Cystic follicles (n = 1, size 3 cm)

Epidermoid cyst (n = 1, size 7.6 cm)

Inclusion cysts (n = 2, average size 4.3 cm, range 3.5–5 cm)

Mesothelial cyst (n = 1, size 3.1 cm)

Cortical, fibrosis, and hyperthecosis hemorrhagic corpus luteum (n = 1, size 4 cm)

Benign leiomyoma (n = 1, size 5.5 cm)

Serous/Mucinous cystadenoma (n = 6, average size 8.4 cm, range 2.5–21 cm)

Benign cystic endometriosis (n = 1, size 6 cm)

No significant histopathological abnormalities (n = 6)

Benign fallopian tubes No significant histopathological abnormalities (n = 9)
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