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Abstract
The RNA World is one of the most widely accepted hypotheses explaining the origin of the genetic system used by all 
organisms today. It proposes that the tripartite system of DNA, RNA, and proteins was preceded by one consisting solely of 
RNA, which both stored genetic information and performed the molecular functions encoded by that genetic information. 
Current research into a potential RNA World revolves around the catalytic properties of RNA-based enzymes, or ribozymes. 
Well before the discovery of ribozymes, Harold White proposed that evidence for a precursor RNA world could be found 
within modern proteins in the form of coenzymes, the majority of which contain nucleobases or nucleoside moieties, such 
as Coenzyme A and S-adenosyl methionine, or are themselves nucleotides, such as ATP and NADH (a dinucleotide). These 
coenzymes, White suggested, had been the catalytic active sites of ancient ribozymes, which transitioned to their current 
forms after the surrounding ribozyme scaffolds had been replaced by protein apoenzymes during the evolution of translation. 
Since its proposal four decades ago, this groundbreaking hypothesis has garnered support from several different research 
disciplines and motivated similar hypotheses about other classes of cofactors, most notably iron-sulfur cluster cofactors as 
remnants of the geochemical setting of the origin of life. Evidence from prebiotic geochemistry, ribozyme biochemistry, and 
evolutionary biology, increasingly supports these hypotheses. Certain coenzymes and cofactors may bridge modern biology 
with the past and can thus provide insights into the elusive and poorly-recorded period of the origin and early evolution of life.
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The RNA World Takes Shape

All modern life shares the same fundamental genetic system, 
both biochemically and in terms of information processing. 
Genes are encoded on one type of molecule, DNA, tran-
scribed into a similar type of molecule, RNA, but then con-
verted to a completely unrelated molecule, proteins, through 
a vast translation machinery and by way of a genetic code. 
That all known organisms use a nearly identical genetic sys-
tem (Crick 1958; Woese 1965; Crick 1968) strongly indi-
cates that this genetic system evolved by the time of the last 
universal common ancestor (LUCA).

The origin and earliest evolution of life’s genetic system 
and its precursors remain an unsolved mystery in under-
standing the emergence of life on Earth. One compelling 
hypothesis is that this complex genetic system was pre-
ceded by a simpler information processing system that uti-
lized RNA as its principal component (Visser 1984; Gil-
bert 1986). This so-called “RNA World hypothesis” was 
strongly supported by the discovery of RNA-based enzymes, 
or ribozymes, which demonstrated that RNA could serve a 
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catalytic function in addition to its well-established infor-
mational function (Kruger et al. 1982; Guerrier-Takada et al. 
1983). Even before the discovery of ribozymes, however, 
an early version of the RNA World hypothesis was being 
formulated (Woese 1967; Crick 1968; Orgel 1968). RNA 
is, after all, central to the modern genetic system, serving 
as a bridge between DNA and proteins. Its key role in the 
translation process indicated that the translation system may 
have arisen from an RNA World scenario and that, prior to 
the evolution of protein synthesis by translation, RNA may 
have had the capacity to form functional molecules.

It was in this context that Harold White (1976) would pro-
pose a second, metabolic line of evidence for an RNA World. 
White noticed that coenzymes, which play an essential role 
in metabolism, tend to be nucleotides or dinucleotides or are 
synthesized from nucleotides or nucleobases. He proposed 
that these coenzymes are relics of ancient ribozymes. Fol-
lowing the evolution of protein synthesis by translation, the 
surrounding structural scaffold of these ancient ribozymes 
was replaced by protein, leaving only the active site RNA 
behind as a coenzyme.

The discovery of ribozymes six years after White’s pub-
lication (Kruger et al. 1982; Guerrier-Takada et al. 1983) 
prompted the emergence of a new area of study for bio-
chemistry centered on the identification and characteriza-
tion of new natural ribozymes, as well as the engineering of 
artificial ribozymes capable of new functions (e.g., Bartel 

and Szostak 1993; Ekland and Bartel 1996; Unrau and Bar-
tel 1998; Kumar and Yarus 2001; and many others). Com-
pared to the discovery of ribozymes, the impact of White’s 
coenzyme hypothesis on origin of life research has been less 
conspicuous, but still very influential. The hypothesis has 
motivated various other thought-provoking hypotheses about 
the relationship between cofactors and early evolution and 
has been supported by a number of studies representing a 
range of disciplines, which we briefly summarize below.

An RNA World within the Proteome

While many protein enzymes operate without the require-
ment of a cofactor, others rely on non-protein cofactors for 
their catalytic functions. Cofactors may be inorganic, such 
as metal ions or iron sulfur clusters, or may be composed of 
organic or metallo-organic compounds. Organic cofactors 
are often referred to as coenzymes. Some of these coen-
zymes are further categorized as group transfer cofactors, 
which pick up a functional group as part of one reaction 
and release that functional group in a later, separate reac-
tion. The most common group transfer cofactors across all 
three domains of life are either composed of nucleotides 
or derived from nucleotides (Fig. 1). Harold White’s key 
insight was to recognize this central role of nucleotide-
derived cofactors across all domains of life and relate it to 

Fig. 1   Several prominent group transfer cofactors composed of or 
derived from nucleotides. ATP is both a group transfer cofactor and 
the adenosine monomer added to RNA. NAD+ is a dinucleotide com-
posed of adenosine monophoshate and the non-nucleic acid nucleo-
tide, nicotinamide riboside monophosphate. CoA is composed of an 

adenosine diphosphate nucleotide attached to a cysteamine  group 
(derived from  cysteine amino acid) with pantothenate in between. 
SAM is composed of an adenosine monophosphate attached to a 
methionine amino acid. Chemical structures for this figure are based 
on black and white vector images available from wikimedia commons
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the nascent hypothesis that would be called the RNA World 
a decade later.

The quintessential group transfer cofactor, probably the 
first group transfer cofactor any biology student learns about, 
is adenosine triphosphate, or ATP. ATP is typically formed 
from the addition of a third phosphate onto adenosine 
diphosphate (ADP) through either substrate level phospho-
rylation or through the ancient ATP synthase motor complex 
(Gogarten and Taiz 1992). The third phosphate on ATP is 
unstable and its hydrolysis is also favored due to the intracel-
lular disequilibrium achieved by high rates of ATP synthesis. 
Its transfer to another molecule can be used to drive energeti-
cally unfavorable metabolic reactions, to temporarily alter 
protein structures, or to facilitate other essential metabolic or 
physiological tasks. Notably, ATP is, itself, one of the four 
nucleotide monomers used for RNA synthesis.

Another prominent class of group transfer cofactors com-
prises the equally ancient and ubiquitous electron transfer 
compounds, such as NADH, NADPH, and FADH2, which 
are composed of dinucleotides, along with FMN, which is a 
mononucleotide. These cofactors are essential components 
of energy metabolism and the redox reactions that drive 
the synthesis of biomolecules. Two other group transfer 
cofactors that are central to metabolism are coenzyme A 
(CoA), which transfers acyl groups, and S-adenosylmethio-
nine (SAM), which transfers methyl groups. Both of these 
cofactors are synthesized from an amino acid and a nucle-
otide (and, in the case of CoA, a third compound called 
pantothenate, also known as vitamin B5). Like the electron 
transfer cofactors, CoA and SAM also play essential roles 
in both energy metabolism and biosynthetic metabolism. 
These group transfer cofactors only represent a handful of 
examples, but they demonstrate the centrality of nucleotide-
derived coenzymes in the core metabolism of all organisms 
across the tree of life.

White’s analysis was not limited to these group transfer 
cofactors. White also identified thiamin, a catalytic cofac-
tor responsible for various decarboxylation reactions and 
condensation reactions between aldehydes, as potentially 
derived from ribozymes because it contains a pyrimidine 
moiety. White also proposed that the amino acid, histidine, 
represents a relic of the RNA world. Histidine, though an 
amino acid, is biosynthesized from ribose 5-phosphate and 
ATP (for review, see Alifano et al. 1996). As such, its side 
chain contains an imidazole ring that resembles that of a 
purine nucleotide. Histidine plays a prominent role in the 
acid–base chemistry of many enzymes and is by far the most 
common amino acid found in the active site of enzymes 
(Ribeiro et al. 2020).

In sum, nucleotide and nucleotide-derived group transfer 
cofactors are a foundational component of metabolism and 
the nucleotide-like amino acid, histidine, plays an outsized 
role in enzymatic catalysis. White argued that the central 

role of nucleotide-derived cofactors in modern metabolism 
suggests a prominent role for RNA in the early evolution of 
metabolism. In modern metabolism, however, there are also 
many other cofactors that are not composed of nucleotides. 
As we discuss below, it is possible that some of these non-
nucleotide cofactors may also be relics of early evolution-
ary history or even prebiotic chemosynthesis and carbon 
fixation.

A Cofactor Perspective on the Origin 
and Early Evolution of Life

Beyond providing an additional line of evidence for an 
RNA World, White’s hypothesis also serves as an example 
of how classes of cofactors may be used to better under-
stand early evolutionary history. Szathmáry (1999) would 
later use the idea of amino acid cofactors with nucleotide 
handles to propose a solution to an important problem in 
the evolution of protein synthesis following the RNA World. 
Protein synthesis requires both a genetic code to translate 
RNA sequences to protein sequences and an arsenal of pro-
teins and ribosomal machinery to implement the translation 
process, which Szathmary argued were more likely to have 
evolved at separate times than at once. A recent study dem-
onstrated that, indeed, multiple molecular systems may not 
be able to evolve at the same time in rapidly evolving popu-
lations (Venkataram et al. 2020). Szathmary proposed that 
the genetic code evolved first as a way to attach amino acid 
cofactors via nucleotide handles to specific codons within a 
ribosome (Szathmáry 1999). In this way, ribozymes could 
take advantage of the more diverse set of chemical moie-
ties found among amino acids and, in doing so, could have 
pre-adapted the late stage RNA World for the evolution of 
protein synthesis by translation.

Ancient cofactors, especially inorganic ones, may also 
reflect the geochemical environment in which life originated 
and/or first evolved. For example, hydrothermal vents are 
considered a potential setting for the origin of life because 
the chemical gradients surrounding them could have gen-
erally promoted prebiotic chemistry (Baross and Hoffman 
1985). The iron-sulfur minerals found within some types 
of hydrothermal vents could have helped convert carbon 
dioxide into organic carbon (Wächtershäuser 1992; Yama-
guchi et al. 2014; Roldan et al. 2015; Li et al. 2018; Hudson 
et al. 2020), and the porous nature of certain hydrothermal 
chimneys (which may have contained iron-sulfur minerals) 
could have helped concentrate compounds and served as an 
early form of compartmentalization prior to the evolution of 
phospholipid membranes (Martin and Russell 2003).

Many enzymes today, particularly redox enzymes, 
include inorganic iron-sulfur clusters which usually 
facilitate electron transfer but sometimes perform other 
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functions in proteins (for a recent review, see Lill 2009). 
Martin and Russell (2003) propose that the evolution of 
iron-sulfur clusters and the membrane-associated proteins 
that use iron-sulfur clusters was a necessary step before 
life could unmoor itself from the geochemical setting of 
its origin. The implication of this hypothesis is that iron-
sulfur cluster cofactors are a remnant of early evolution 
and their catalytic role in modern enzymes reflects the 
kind of chemistry that facilitated life’s origin in the first 
place (See Lane and Martin 2012; Sojo et al. 2016; but 
also Jackson 2016).

Various other organic and inorganic cofactors may have 
also played an important role in the origin of life. A variety 
of porphyrins, a class of organic cofactors that bind metals, 
which includes well known cofactors such as chlorophyll 
and heme, can be synthesized abiotically (e.g. Hodgson and 
Baker 1967; Lindsey et al. 2011) and may have been promi-
nent during the early evolution of metabolism. The so-called 
Zinc-world hypothesis proposes that ZnS promoted prebiotic 
chemistry by facilitating light-driven CO2 reduction (Mul-
kidjanian 2009) and that the prevalence of zinc in ribozymes 
and ancient enzymes reflects this history (Mulkidjanian and 
Galperin 2009). Lastly, some studies support a prebiotic syn-
thesis of pyridoxal phosphate (Austin and Waddell 1999; 
Aylward and Bofinger 2006), a very broadly used catalytic 
coenzyme, though an actual prebiotic synthesis has not yet 
been achieved.

Taken together, these hypotheses portray a series of tran-
sitions from prebiotic geochemistry, to an evolving RNA-
based genetic system, to the advent of protein synthesis by 
translation (Fig. 2). At each stage, the catalysts that facili-
tate these transitions are retained as cofactors, all of which 
are still central to protein-mediated metabolism, today. It 
is a compelling idea that fragments of the origin and early 
evolution of life are retained as catalytic and group transfer 
cofactors in the modern proteome. More recent research has 
begun to shed light on whether certain extant cofactors are, 
in fact, relics of early life.

Supporting Evidence and Future Directions

The general hypothesis that certain cofactors reflect a histor-
ical role in the origin and early evolution of life can be tested 
through several independent and complementary avenues of 
research. Prebiotic chemistry can help to determine whether 
and in what geochemical environments certain coenzymes 
or enzymatic motifs may have been available as well as 
whether they were catalytic under prebiotic conditions out-
side of an active site of a protein enzyme. Some coenzymes, 
such as porphyrins (Hodgson and Baker 1967;  Lindsey 
et al. 2011) and potentially pyridoxal phosphate (Austin and 
Waddell 1999; Aylward and Bofinger 2006), may have been 

prebiotically available, and certain nucleotides can be syn-
thesized abiotically (Powner et al. 2009, 2010; Stairs et al. 
2017; Yi et al. 2020). These compounds could have played 

Fig. 2   A general scheme for the emergence of different cofactors dur-
ing the origin and early evolution of life. a A mineral surface (orange 
grid), for example FeS, and nearby ions (red circles), catalyze the 
formation of polymers such as peptides (blue) and oligonucleotides 
(green), which themselves may have catalytic properties. b An RNA 
world scenario emerges from within this geochemical context. c pro-
tein synthesis by translation evolved within the RNA-based genetic 
system and the resulting proteins retained cofactors that reflect the 
preceding RNA-based metabolism as well as the geochemical setting 
in which it first originated and evolved. This image is adapted from 
Goldman et al. (2016), published under open access in the Journal of 
Molecular Evolution
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a role in the origin of life if they were catalytically active 
outside of an enzyme’s active site.

White argued in his 1976 article that nucleotide-derived 
coenzymes may not be catalytic on their own because they 
evolved from ribozyme active sites and later adapted to 
enzyme active sites, and thus may require the context of a 
surrounding enzyme. This seems to be true of coenzyme A, 
which is stable under a range of probable early Earth condi-
tions (Maltais et al. 2020) but does not appear to facilitate 
acyl group transfer. NADH, on the other hand, has recently 
been shown to transfer electrons to an FeS cluster within a 
simple peptide, after which, the electron can then be passed 
to ubiquinone (Bonfio et al. 2018), thereby abiotically mim-
icking the activity of Complex I in the respiratory electron 
transport chain.

These insights from prebiotic chemistry do not actually 
test White’s hypothesis, which was about the transition from 
an RNA world to protein-mediated metabolism. But research 
on ribozymes and riboswitches suggests a potential role for 
nucleotide-derived cofactors in an RNA world. Ribozymes, 
that are capable of self-incorporating coenzymes have been 
discovered (Breaker and Joyce 1995) and other ribozymes 
have been engineered to synthesize CoA, NAD, and FAD 
(Huang et al. 2000). In addition to this line of evidence 
from artificial ribozymes, some nucleotide derived cofac-
tors such as NADH, FMN, SAM, and TPP are known to bind 
to naturally occurring riboswitches in vivo (Cochrane and 
Strobel 2008; Sherlock and Breaker 2020). Riboswitches are 
stretches of noncoding mRNA that moderate transcription or 
translation usually, but not always, through the binding of a 
ligand and a subsequent change in mRNA structure. Some 
have argued that riboswitches may have played a regulatory 
role in the RNA world (Breaker 2012). Furthermore, the 
coenzyme binding capabilities of riboswitches are thought 
to represent an ancient capacity for coenzyme-mediated 
catalysis in an RNA world metabolism (Cochrane and Stro-
bel 2008).

In addition to these observations from prebiotic chemis-
try and ribozyme research, evolutionary analysis of ancient 
protein families suggests that early protein enzymes likely 
used cofactors in general, as recently demonstrated for 
zinc- and molybdenum-specific metalloenzymes (Kacar 
et al. 2017, Garcia et al. 2020), and nucleotide-derived 
cofactors, specifically (Goldman et  al. 2013; Kirschn-
ing 2020). In one set of studies, Caetano-Anollés and 
colleagues chronologically ordered protein structures as 
defined by the SCOP database (Murzin et al. 1995) from 
most ancient to most recent (Wang et al. 2007; Caetano-
Anollés et al. 2009). Among the ten most ancient of these 
protein structures (Goldman et al. 2010) are the P-loop 
containing hydrolase fold and the adenine nucleotide 
alpha hydrolase fold, both of, which are involved in ATP 
hydrolysis as well as other functions; the flavodoxin-like 

fold, which utilizes cofactors such as NADH, NADPH, and 
FADH2; the S-adenosyl-L-methionine-dependent methyl-
transferases fold, which utilizes SAM; the ferredoxin-like 
fold, which is the primary protein fold that utilizes iron 
sulfur clusters; and the TIM beta/alpha barrel fold which is 
found in proteins performing an extremely broad range of 
functions and using a similarly broad range of coenzymes 
and cofactors (Goldman et al. 2016).

In particular, the TIM barrel protein architecture has 
been proposed as an early bridge between the RNA World 
and protein mediated metabolism (Goldman et al. 2016). 
Many protein superfamilies that fold into the TIM barrel 
structure appear to be ancient (due to their very broad 
taxonomic distribution) and have evolved an extremely 
broad range of enzymatic functions. Unlike other protein 
superfamilies, the range of molecular functions found in 
individual TIM barrel superfamilies is strongly corre-
lated with the incorporation of new cofactors within that 
superfamily (Goldman et al. 2016). During the transition 
from an RNA World to protein mediated metabolism, TIM 
barrel proteins may have provided a somewhat universal 
active site into which different ancient cofactors could be 
placed through evolutionary processes, thus transferring 
their catalytic properties from ribozymes (or minerals) 
into protein enzymes just as White proposed in 1976.

White’s hypothesis, as well as the broader hypothesis 
that cofactors in general reflect different stages of the ori-
gin and evolution of life, is supported by some laboratory 
studies as well as computational evolutionary analyses of 
extant protein families. However, the supporting evidence 
remains thin, most likely because these hypotheses have 
attracted less attention than other origin of life hypotheses 
over the last several decades. Even so, White’s hypothesis 
and the broader investigation of cofactors as relics of life’s 
origin and early evolution represent a conceptual founda-
tion for integrating different disciplines across the study 
of early life.

Prebiotic chemistry is a powerful way to explore pos-
sible origin of life scenarios, but even a successful result 
will only amount to a proof of principle rather than a his-
torical claim. Research on early evolution provides a form 
of historical evidence, but is currently unable to investi-
gate evolutionary events that occurred during and follow-
ing the emergence of the first life forms. Exploring protein 
cofactors as relics of life’s origin and early evolution is one 
potential way to bridge the divide between prebiotic chem-
istry and early evolutionary history. By bringing these two 
approaches together, it may be possible to combine their 
strengths and gather evidence about the origin of life as 
it most likely occurred given the subsequent evolution-
ary history. It is in this regard that White’s hypothesis is 
a powerful one because, as demonstrated above, it pro-
vides a unifying theme across otherwise disparate lines of 
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research, from prebiotic chemistry to ribozyme and RNA 
biochemistry to evolutionary biology.
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