Skip to main content
. 2020 Sep 3;11(3):651–667. doi: 10.1016/j.apsb.2020.08.016

Table 1.

Examples of NPs-based insulin delivery systems.

Nano-carrier Size; Zeta potential Entrapment efficiency (%) Drug loading Dose Efficacy Ref.
Insulin-coated gold NPs 20−70 nm; – s.c.: 6 mg/mouse Effect lasting for 6 h 38
Poly(ethylene glycol) capped poly(lactic-co-glycolic) acid NPs 140−170 nm; −14.5 mV 66 s.c.: 2 IU/kg Effect lasting for ∼6 h 42
Poly(ethylene glycol) (PEG) and polylactic acid (PLA)-based copolymeric NPs 181.9 nm; – 58.5 313.4 IU/g s.c.: 25, 50 IU/kg Effect lasting for more than 7 days 43
Insulin phospholipid complex-loaded biodegradable PHBHHx NPs 182.4 nm; −36.93 mV 87.19 s.c.: 4 IU/kg Pharmacological availability (PA) 350.29%; effect lasting for ∼83.5 h 44
NPs loading insulin and glucose enzymes coated by chitosan or alginate 340 nm/293 nm; 10.6 mV/−11.5 mV 54.1/77.9 7.9%/11.4% s.c.:− Effect lasting for 10 days without peaks of hyperglycemia or hypoglycemia 52
Enzyme (GOx and CAT) nanocapsules loaded in chitosan microgels 12 nm; – 59.7 44.6% s.c.: 40 mg/kg Effect lasting for 24 h 62
Microparticles composed of chitosan, Con A and dextran 2.5 μm; – 92.2 9.1% In vitro: glucose responsive insulin release 74
Poly(ethylene glycol)-b-Poly(acrylic acid-co-acrylamidophenylboronic acid) (PEG-b-(PAA-co-PAAPBA)) micelles 130 nm; – 29% In vitro: glucose responsive insulin release 85
p(3-acrylamidophenylboronic acid-b-diethylene glycol methyl ether methacrylate) NPs Submicron−sized; ‒37.2 mV ∼70 ∼15% s.c.: 0.4 mg/kg In vitro: glucose- and temperature-sensitive insulin release
In vivo: effect lasting for 48 h
86
Cetyl palmitate-based solid lipid NPs 361 nm; ‒3.4 mV 43 p.o.: 50 IU/kg
s.c.: 2.5 IU/kg
PA 1.6%; effect lasting for 24 h 99
INS-loaded polymer–lipid hybrid NPs 176 nm; ‒31.1 mV 92.30 2.40% p.o.: 40 IU/kg
s.c.: 5 IU/kg
RBA 12.42%; effect lasted for 24 h 104
Insulin/L-penetratin complex NPs coated with hyaluronic acid 103.7 nm; ‒19.7 mV 97 67% p.o.: 80 IU/kg
s.c.: 5 IU/kg
BAR 11%; PA 3.7%; blood glucose level (BGL) reduced by 60% in 8 h 106
CS/γPGA-DTPA NPs (CS: chitosan; γPGA: poly(γ-glutamic acid); DTPA: diethylene triamine pentaacetic acid) 246.6 nm; +37 mV 75.70 16.30% p.o.: 30 IU/kg
s.c.: 5 IU/kg
BAR 19.7%; prolonged reduction in BGL 107
Polyester poly(-ε-caprolactone) and a polycationic non-biodegradable acrylic NPs 358 nm; +41.8 mV 96 p.o.: 50 IU/kg (PK); 100IU/kg (PD)s.c.: 10 IU/kg BAR 13.21%; reducing the glythemia–time curve area by 38% 109
TMC-based NPs coated with pHPMA (TMC: trimethyl chitosan; pHPMA: N-(2-hydroxypropyl) methacrylamide copolymer) 163 nm; ‒3.35 mV 54.10 24.50% p.o.: 50 IU/kg
s.c.: 5 IU/kg
BAR 8.56%; maximal BGL reduced 36% at 4 h; effect lasting for 10 h 114
Cell-penetrating peptide (CPP) grafted chitosan NPs 316 nm; +42 mV p.o.: 30 IU/kg
s.c.: 5 IU/kg
BAR 19.6%; BGL reduced 30% in 4 h and the effect lasted for 12 h 115
Lectin-modified solid lipid NPs 75.3 nm; ‒13.1 mV 40.18 p.o.: 50 IU/kg
s.c.: 2 IU/kg
BAR 7.11%; PA 6.08% 121
Vitamin B12‒nanosphere conjugate 160–250 nm; – 45–70 2%–4% p.o.: 20 IU/kg
s.c.: 0.4 IU/kg
PA 11.4–26.5%; effect prolonged for many hours 123
Vitamin B12 coated dextran NPs 192 nm; – 63.50 3% p.o.: 20 IU/kg
s.c.: 0.4 IU/kg
PA 29.4%; BGL reduced 70%–75% and effect lasting for 54 h 124
PEGylation and Con A-based targeted NPs 196.3 nm; ‒25.6 mV 44.60 p.o.: 20 IU/kg
s.c.: 0.4 IU/kg
A delayed (2–4 h) reduction of BGL and effect lasting for 24 h 125
FA-PEG-PLGA NPs 260 nm; – 87 6.50% p.o.: 50 IU/kg
s.c.: 5 IU/kg
BAR 19.62%; PA 20.40%; effect lasting for 24 h 126
FA-CS NPs 288 nm; +21.90 mV >80 p.o.: 50 IU/kg
s.c.: 5 IU/kg
BAR: 17.04%; significant decrease in BGL in 6 h and down to baseline at 24 h 127
Cp1-11 peptide/insulin-loaded NPs 237.2 nm;– 90.43 28.06% p.o.: 50 IU/kg
s.c.: 4 IU/kg
PA 9.83%; BAR 15.62%; BGL reduced to 55.1% in 2 h and maintained 60% for 8 h 128
Zein-carboxymethylated short-chain amylase/CS nanocomposites 311.32 nm; 43.77 mV 89.60 6.80% p.o.: 50 IU/kg
s.c.: 5 IU/kg
PA 14.12%; BAR 15.19%; effects lasting for up to 8 h 129

‒Not applicable.