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Abstract
Often presented as a global pandemic spreading all over the world, COVID-19, however, hit not only countries but also 
regions differently. The objective of this paper is to focus on the spatial heterogeneity in the spread of the COVID-19 pan-
demic and to contribute to an understanding of the channels by which it spread, focusing on the regional socioeconomic 
dimension. For this, we use a dataset covering 125 European regions in 12 countries. Considering that the impact of the 
COVID-19 crisis differed sharply not only across countries but also across regions within the same country, the empirical 
strategy is based, on the one hand, on an exploratory analysis of spatial autocorrelations, which makes it possible to identify 
regional clusters of the disease. On the other hand, we use spatial regression models to capture the diffusion effect and the 
role of different families of regional factors in this process. We find that the share of older people in the population, GDP 
per capita, distance from achieving EU objectives, and the unemployment rate are correlated with high COVID-19 death 
rates. In contrast, the number of medical practitioners and hospital beds and the level of social trust are correlated with low 
COVID-19 death rates.
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Introduction

In the first months of 2020, COVID-19 affected many Euro-
pean countries and millions of people around the world. The 
pandemic required governments to operate in a context of 
radical uncertainty and to deal with difficult trade-offs given 
the health, economic and social challenges it raised.

After the first cases identified in Europe, different stud-
ies pointed out that European regions were not hit equally 

but that large differences existed between the peripheral 
regions where the infection rate remained limited and the 
core regions where the rates reached their maximum levels 
[1, 11].

The regional and local impacts of the COVID-19 crisis 
are highly heterogeneous, with a strong regional dimension 
that has important consequences for crisis management and 
policy responses. Governments at the subnational level are 
responsible for the crucial issues of containment measures, 
health care, social services, economic development and pub-
lic investment, putting them at the frontline of crisis man-
agement [42].

COVID-19, like all pandemics, has a spatial dimension 
that needs to be considered [38]: the impact of the COVID-
19 crisis differs greatly not only across countries but also 
across regions and municipalities within countries, both 
in terms of declared cases and related deaths. In Italy, the 
country’s north was the hardest hit, and one of the wealthiest 
regions in Europe, Lombardy, registered the highest num-
ber of cases. In France, the regions of Île-de-France and 
Grand Est were the most affected, whereas other regions 
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were substantially untouched by the spread of the epidemic 
[1, 11].

The objective of this study is to contribute to an under-
standing of the channels by which the pandemic spread and 
to emphasize the regional socioeconomic dimension. This 
study contributes to the field of health geography, which 
underwent a profound renewal in the 1990s under the influ-
ence of numerous and varied research works in the fields of 
epidemiology, the environmental sciences, the social sci-
ences, public health and service management to account for 
spatial disparities in terms of access to care, exposure to 
disease and morbidity [48]. This research also complements 
that undertaken by epidemiologists who point to individual 
factors, such as the age or health status of people affected 
by COVID-19 [44, 68].

There are a number of factors that contribute to the dif-
ferential impact of COVID-19, which may also explain the 
disparities seen among European regions and countries. One 
factor relates to how the first “clusters” of cases developed. 
On many occasions, large cities, with their dense interna-
tional links, are often the entry points for the virus and have 
been hit particularly hard [14].

Clinical data and surveillance, at an early stage, reported 
two important aspects of the pandemic: (i) the elderly male 
population (over the age of 65) and patients with comor-
bidities, such as diabetes, hypertension, chronic respira-
tory diseases, cancer and cardiovascular disorders are at 
higher risk of dying from COVID-19 [16] and (ii) there is 
a strong spatial dimension to the pandemic’s spread [1, 11, 
28, 40, 42]. Following this train of thought, a multitude of 
social and economic factors have been identified as poten-
tial determinants of the observed variety in COVID-19 out-
comes. The importance of local socioeconomic parameters 
in explaining the health of populations and mortality rates 
has been widely demonstrated in the literature [12, 35]. The 
Millennium Development Goals signed in September 2000 
also underline the necessity of implementing social poli-
cies to improve the conditions of care to reduce mortality, 
especially for children. In addition, these factors have been 
associated with other epidemics in the past. For instance, 
Linard et al. [34] find that environmental and socioeconomic 
factors play a crucial role in determining the spatial variation 
in the Puumala and Lyme borreliosis infections in Belgium. 
Stanturf et al. [58] arrive at the same conclusion in their 
study on the 2014 Ebola epidemic in three West African 
countries (Liberia, Sierra Leone and Guinea). It follows that 
taking these contextual elements into account is essential 
for the study of health-related questions and that their omis-
sion would lead to a partial understanding of the phenomena 
studied, as underlined by Geronimus et al. [21] or, more 
recently and related to COVID-19 in Italy, by Bayer and 
Kuhn [7]. The latter, thus, envisage that family structures 
and the presence of families with several generations within 

the same dwelling differ according to region and could thus 
explain the geographic differences observed.

These socioeconomic factors that affect the occurrence 
and severity of an infectious disease can be grouped into 
four large categories: demographic determinants, income 
determinants, health care determinants and institutional 
determinants. Each captures an aspect of the local social 
environment.

Demography is a factor of spatial differentiation in health 
and, as such, is the subject of frequent analyses to explain 
international [27] and regional differences [20]. In their 
study on the European region, Sannigrahi et al. [53] find that 
the demographic composition of a country influences the 
rate of fatalities due to COVID-19. According to the WHO 
Regional Office for Europe (2020), 95% of people who died 
from this novel pathogen in the European region were over 
60, and more than 50% of all deaths were among people 
aged 80 years or older. For Borjas [10] and Schmitt-Grohé 
et al. [54], demographics explain the spatial heterogeneity 
in COVID-19 testing and infection rates in New York City 
neighbourhoods. Population density has also been found 
to be crucial in controlling the spread of COVID-19. This 
result is confirmed by Amdaoud et al. [1] with French data 
and Bourdin et al. [11] with Italian data.

Wealth and income play a major role in driving the pat-
tern of COVID-19 cases and deaths around the world. An 
important strand of literature has pointed out the role of 
poverty in the prevalence of cholera, as shown by Talavera 
and Perez [61] in an international comparison carried out 
using the data from the World Bank, and by Olson et al. [43] 
for tuberculosis. Occupations or the natures of jobs are likely 
to be determinants of infection, particularly those working 
in close physical proximity to other people (cleaners, retail 
staff, healthcare workers, teachers, etc.). Mongey et al. [40] 
showed that American workers in occupations that are more 
likely to be affected by social distancing policies are more 
economically vulnerable than other workers. These workers 
are less educated, less likely to have health insurance and are 
lower in the income distribution than workers in occupations 
that are unaffected by social distancing policies. Following 
Mathers and Schofield [37], we also consider unemploy-
ment, which has been shown to have significant harmful 
effects on morbidity and mortality. GDP per capita is another 
metric used in modelling health outcomes, health system 
performance and mortality trends [36, 60]. This relationship 
is positive and significant in the case of COVID-19 [11]. 
Regions with a higher level of GDP per capita are at higher 
risk of viral transmission because of their increased social 
connections between individuals, resulting from higher lev-
els of economic activity [19]. Moreover, in a connected and 
integrated world, rich regions are more open to international 
trade and the movement of people. Ascani et al. [5] suggest 
that the disease hit economic core locations harder. They 
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argue that areas with a notable concentration of economic 
activities might be subject to a higher risk of population 
exposure due to the physical contact entailed by the agglom-
eration advantages in the local industries and to the spatial-
ity of demand (internal and external local trade linkages) 
in the industries constituting the local economic structure. 
The quality of the health care system may also explain dif-
ferences between regions [55], as is the case for diabetes 
[56] or COVID-19 in China [1]. For numerous countries in 
Europe, the local level is the relevant level for public health 
organizations. This line of reasoning clearly argues in favour 
of a geographic approach to COVID-19. In addition, on this 
subject, empirical studies report that first, well-structured 
healthcare resources positively affect a government’s capac-
ity to deal with public health emergencies, such as major 
epidemics [22, 69]. Second, healthcare infrastructures also 
have a considerable impact on the government’s ability to 
rapidly detect, diagnose and report new infections [25, 26].

The institutional context, particularly regarding social 
institutions, is related to the behavioural and institutional 
response to the spread of COVID-19 infections. Manag-
ing the recent crisis between the different levels of gov-
ernment (local, national and supranational) is a central 
element highlighted by the OECD [42]. In a survey of 
social and behavioural results to support the COVID-19 
pandemic response, Van Bavel et al. [62] highlight how 
most measures needed to contain an epidemic are, by 
their very nature, difficult to enforce directly: this, in 
turn, makes trust in public authorities and among citizens 
all the more relevant.

Thus, the negative impact of the COVID-19 pandemic 
can be mitigated by trust in institutions and among citi-
zens, the basic component of social capital defined by 
Putnam [50] as “features of social organizations, such as 
networks, norms and social trust that facilitate coordina-
tion and cooperation for mutual benefit.”

Possible mechanisms for building social trust for the 
adoption of health behaviours during a disease outbreak 
could be via community norms promoting a healthy life-
style, the diffusion of health information, the promotion 
of access to local health services and cohesive social net-
works to provide affective support. This idea is corrobo-
rated in the recent work of Barrios et al. [6], which shows 
that a region’s civic capital is at the origin of its collec-
tive capital, enabling human societies to improve policy 
actions from the government. After controlling for the 
severity of the COVID-19 pandemic, the authors show 
that areas with high civic capital report high degrees of 
voluntary compliance with public health recommenda-
tions (such as social distancing rules and mask wearing), 
both across U.S. counties and across European regions. 
Parallel to this, some studies have shown the signifi-
cant role of social capital1 not only in the response and 

recovery stages after the health crisis but also regarding 
preparation and planning before a disaster even occurs 
[30]. This result is corroborated by Chuang et al. [13] for 
an influenza pandemic.

Thus, a key issue is to understand the potential impact 
of socioeconomic factors on the ongoing outbreak to sup-
port policy decisions pertaining to disease control. This 
is especially true for locations with a high incidence of 
COVID-19. In this context, this paper investigates the 
spreading power of COVID-19 in European regions and 
how this diffusion is related to those regions’ socioeco-
nomic characteristics. The evolution of the death rate 
in different European regions is quite similar over time 
and legitimates the choice of these dates to appreciate 
the kinetics of this epidemic. March 31st corresponds to 
the take-off of the disease, April 30th corresponds to the 
beginning of the slow down, and May 31st marks the sta-
bilization of the death rate. We propose the assumption 
that spatial dependence between regions across different 
channels explains the spatial heterogeneity in the spread 
of COVID-19.

In this study, we use a dataset covering 125 European 
regions (NUTS-1 and NUTS-2) in 12 countries. The data 
on deaths from COVID-19 were collected for three cru-
cial moments in the first wave of the pandemic: growth 
(March 31st), peak (April 30th) and decline (May 31st). 
The empirical strategy is based, on the one hand, on an 
exploratory analysis of the spatial autocorrelation, which 
makes it possible to account for the level of dependence 
in the death rate linked to COVID-19 for different places 
in space. On the other hand, we use spatial regression 
models to capture the diffusion effect and the role of 
different groups of factors in this process. Spatial and 
geostatistical techniques have been widely used in sev-
eral studies dedicated to viruses, such as hepatitis C 
infections [29], MERS-CoV [33], H1N1 influenza [57], 
HIV [67], dengue [70] and recently, COVID-19 [1, 11, 
28, 39].

The paper is organized as follows: we first discuss the 
data, the exploratory spatial data analysis (ESDA) and 
the econometric model; this is followed by a presenta-
tion of the empirical results. In the last section, we sum-
marize the findings, discuss the study limitations, and 
suggest extensions for future research.

1  Social capital is a complex notion, which includes various compo-
nents such as trust, fairness and helpfulness, and social relations [46].
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Empirical framework

Data and variables

This study covers 12 European countries. We chose NUTS-2 
as the preferred regional level of analysis since NUTS-2 rep-
resents the basic region for the application of regional poli-
cies. Among the countries studied, four (Belgium, Germany, 
Ireland and the United Kingdom) do not have observations at 
the NUTS-2 level; therefore, we consider their NUTS-1 level 
regions. Therefore, we pool the observations into NUTS-1 
and NUTS-2 units to obtain a total sample of 125 regions.2

The data on the explanatory variables entering the analy-
sis are presented in Table 1. The data are provided by differ-
ent sources: Eurostat, the official database used for European 
Union (EU) regional studies and policy evaluations; ESPON 
(European Observation Network for Territorial Development 
and Cohesion); the NHS (United Kingdom National Health 
Service) and the European Social Survey. For each indicator, 
we consider the most recent data available.

On the basis of the literature discussed in Sect. 1, we 
distinguish four groups of indicators that may explain the 
spatial heterogeneity in mortality due to the COVID-19 
pandemic: demographic and concentration determinants 
(population density, population concentration, the share of 

the population aged 75 or over), income and wealth deter-
minants (GDP per capita, the unemployment rate, distance 
to EU targets), health care determinants (general medical 
practitioners, hospital beds) and, finally, a composite index 
of social trust.

Global and local spatial autocorrelation

To test the existence of spatial clustering in the data, we 
applied the exploratory spatial data analysis method, which 
can provide useful summary information about the spatial 
arrangement of the mortality rates related to the COVID-19 
pandemic. This approach has been employed in the literature 
to explain the geographic patterning of numerous phenom-
ena [23]. The ESDA tools allow for the detection of global 
and local spatial autocorrelation. Global spatial autocorrela-
tion, i.e. spatial dependency, has been employed to measure 
how each region’s COVID-19 death rate compares with that 
of its neighbours and with that of more distant areas, giving 
an indication of the degree of spatial concentration in the 
pandemic across Europe. One of the most applied measures 
of global spatial autocorrelation is the I coefficient devel-
oped by Moran [41]. Moran’s I can be calculated as follows:

In Eq. (1), n represents the number of spatial units indexed 
by i and j; y is the variable of interest (the COVID-19 death 

(1)I =
n ∗

∑n

i

∑n

j
Wij(yi−

−
y)(yj−

−
y)

∑n

i

∑n

j
Wij

∑n

i
(yi−

−
y)

2
.

Table 1   Definition of variables

a This index measures the distance that regions are from achieving these four targets: (i) early leavers from education and training, (ii) the share 
of population aged 30-34 with tertiary education, (iii) the percent of GDP invested in R&D, and (iv) the employment rate for the population aged 
20-65. A region would score 100 if it had reached all eight headline targets, whereas a region would score 0 if it was positioned the farthest away 
from all eight headline targets out of all regions in Europe. For more information about this index, see the SIESTA Final Scientific Report at 
https://​www.​espon.​eu/​progr​amme/​proje​cts/​espon-​2013/​appli​ed-​resea​rch/​siesta-​spati​al-​indic​ators-​europe-​2020-​strat​egy

Variable Definition Year Source

COVID-19 death rate 10,000*(cumulative death toll due to COVID-19/population) 2020 National ministries of 
health and statistical 
agencies

Population density Total population per km2 (log) 2019 Eurostat
Population concentration Presence of one or more cities with > 1,000,000 inhabitants 2019 Eurostat
Share of the population aged 75 or over Number of populations aged 75 or older over total population 2019 Eurostat
GDP per capita Gross domestic product (GDP) per capita in Purchasing Power 

Standards (PPS)
2018 Eurostat

Unemployment rate Number of unemployed persons as a percentage of the labour 
force

2018 Eurostat

Distance to EU targets Index that estimates the distance of regions in relation to the 
EU2020S headline targetsa

2010 ESPON

General Medical Practitioners 10,000*(number of GPs/population) 2017 Eurostat & NHS
Hospital beds 10,000*(number of hospital beds/population) 2017 Eurostat & NHS
Social trust Index of social trust (see Appendix A1 for construction) 2014–2016 European Social Survey

2  The regions of Azores and Madeira in Portugal and the Canary 
Islands in Spain are excluded because of their geographical locations 
(far from the continent and geographically isolated).

https://www.espon.eu/programme/projects/espon-2013/applied-research/siesta-spatial-indicators-europe-2020-strategy


633Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID‑19 in Europe﻿	

1 3

rate in this study), 
−
y represents the mean of y; and Wij is an 

element of the spatial weight matrix.3 A randomized simula-
tion procedure was used to estimate the significance of the 
coefficient I; the inference process is based on the permuta-
tion approach with 9,999 permutations. In this approach, 
Moran’s I is then computed for each of these randomized 
data values, and the observed value of I is compared with 
the distribution of the I values derived from the randomized 
data.

The LISA (local indicator of spatial association) proposed 
by Anselin [2] completes Moran’s I by offering a more pre-
cise view of local spatial autocorrelation characteristics. 
LISA refers to the propensity of an area to group similar 
high or low values of y or, on the contrary, very diverse 
values. It is calculated to evaluate the null hypothesis of a 
random distribution by comparing the values of each specific 
location with the values of neighbouring locations. The local 
version of Moran’s I can be expressed as follows:

where zi is the difference in the variable y in region i from 
the global mean ( yi−

−
y ), zj is the difference in the variable y 

in region j from the global mean ( yj−
−
y ), and wij is an ele-

ment in the N × N spatial weight matrix that for each obser-
vation (row), expresses those locations (columns) that 
belong to its neighbourhood set as nonzero elements. In this 
study, the specification of which elements are nonzero relies 
on the inverse of the distance weight function, such as 
wij = 1∕d�

ij
 , where the effect of observation j on i is a declin-

ing function of the distance between them.
The same randomization method employed to assess the 

significance of the global Moran’s I was used to determine 
the significance of the local measures of spatial autocorrela-
tion (i.e. the forms of spatial associations).

The spatial distribution of the LISA coefficients distin-
guishes between five possible situations:

–	 High–high (HH) groupings or hotspots, where the spatial 
autocorrelation is positive such that spatial units with 
a high value of the variable are surrounded by similar 
spatial units,

–	 Low–low (LL) groupings or cold spots, where the spatial 
autocorrelation is also positive but, unlike the previous 

(2)Ii = zi

n
∑

j=1

wijzj j ≠ i

grouping, is such that spatial units with a low value of 
the variable are surrounded by similar spatial units,

–	 Atypical groupings of the high–low (HL) type, where the 
spatial autocorrelation is negative in such a way that spa-
tial units with a high value of the variable are surrounded 
by spatial units in which the variable has a low value,

–	 Atypical groupings of the low–high (LH) type, where 
the spatial autocorrelation is also negative but is such 
that spatial units with a low value of the variable are sur-
rounded by spatial units in which the variable has a high 
value,

–	 Spatial units for which no significant spatial autocorrela-
tion is found.

Spatial regressive analysis

In this subsection, we discuss our econometric model. For an 
easier understanding of regional disparities in mortality in 
Western Europe, it is crucial to highlight the different factors 
explaining those values. The econometric specification takes 
the linear ordinary least squares (OLS) regression model as 
a starting point:

Y represents the dependent variable (the death rate due to 
COVID-19). X represents the explanatory variables, β is the 
vector of parameters to be estimated and ε is the error term.

When spatial autocorrelation is ignored in the model 
specification but present in the data generating process, the 
OLS estimators are biased and not convergent. The first way 
to incorporate spatial autocorrelation into econometric mod-
els is through the spatial autoregressive model (SAR), which 
consists of correcting this bias by incorporating the spatially 
lagged dependent variable Y .

The model is written as follows:

In Eq. (4), WY is the lagged dependent variable from 
the inverse distance matrix W  , and ρ is the autoregressive 
parameter indicating the intensity of the interaction between 
the observations of Y. In this model, the observed value of Y 
is partly explained by the values taken by Y in neighbouring 
regions. The introduction of the variable WY  in the model 
above is a way to assess the degree of spatial dependence 
while the other variables are controlled for. On the other 
hand, it makes it possible to control for spatial dependence 
to assess the impact of the other explanatory variables.

(3)Y = Xβ + ε,

(4)Y = ρWY + Xβ + ε.

3  The features of our sample containing islands imply that the use 
of a contiguity-based matrix is less appropriate. There are two addi-
tional arguments to justify this choice. First, the inverse distance form 
is supposed to be more informative and better performing in distin-
guishing between neighbouring and distant regions. Second, this 
matrix is commonly used to describe “distance-decay” behaviours 
[4].
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A second way to incorporate spatial autocorrelation into 
econometric models is the spatial error model (SEM),4 
which consists of specifying a process of spatial depend-
ence in the errors in a regression model. The SEM model is 
defined as follows:

The parameter λ reflects the intensity of the interdepend-
ence between the residuals of the regression, and u is the 
error term. Omitting the spatial autocorrelation in the errors 
produces unbiased, but inefficient estimators, so statistical 
inference based on OLS will be biased. According to Le 
Gallo [31], different approaches can be used for the choice 
of models. We adopted the so-called bottom-up approach, 
which consists of starting with the nonspatial model. The 
Lagrange multiplier test [3] then makes it possible to decide 
between the SAR, the SEM or a nonspatial model; in our 
case, the results suggest better performance from the SAR 
model. Furthermore, SAR results are the most appropri-
ate model to capture, from an econometric point of view, 
the spread of epidemics across neighbouring regions. This 
model allows us to take into account spatial dependence 
in the explanatory variable and, in our case, the impact of 
the number of infected people spreading the virus between 
neighbouring regions. Accordingly, this model allows us to 

(5)Y = Xβ + � with ε = λWϵ + u,

Fig. 1   COVID-19 death rates on March 31st, 2020. Source: Own 
elaboration on national ministries of health and statistical agencies 
datasets

Fig. 2   COVID-19 death rates on April 30th, 2020. Source: Own elab-
oration on national ministries of health and statistical agencies data-
sets

Fig. 3   COVID-19 death rate at May 31st 2020 Source: Own elabora-
tion on National ministries of health and statistical agencies datasets

4  The modelling of both endogenous interaction effects on the one 
hand and interaction effects among the error terms on the other hand 
is due to the seminal contribution of Anselin [4].



635Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID‑19 in Europe﻿	

1 3

obtain estimators of the parameter ρ that characterize the 
transmission effect [11].

Results

Spatial dynamics of COVID‑19 death rates

The data on COVID-19-related deaths by region were col-
lected from the dataset provided by the health ministries 
and national statistical offices of the countries included in 
this study. The indicator for pandemic diffusion used in this 
study is the COVID-19 death rate, defined as the cumulative 
number of COVID-19-related deaths registered in a region 
per 10,000 inhabitants. We collected this information at 
three different time points (March 31st, April 30th, May 
31st) to capture the temporal evolution of the pandemic.

Figures 1, 2 and 3 display the distribution of COVID-19 
death rates across European regions at the three time points 
in our analysis. COVID-19, like all pandemics, has a spatial 
dimension that needs to be managed, and it is clear that the 
impact of the COVID-19 crisis may differ not only across 
countries but also across regions. At the end of March 2020, 
three countries were particularly affected by the epidemic: 
Italy, France and Spain. In Italy, the country’s north was 
the hardest hit, and one of the wealthiest regions in Europe, 
Lombardy, registered the highest death rate (7.16 deaths per 
10,000 inhabitants). High death rates were also registered in 
the Madrid region (Spain) and in Alsace (France), with 5.82 
and 3.12 deaths per 10,000 inhabitants, respectively. In the 
following weeks, the COVID-19 epidemic spread through-
out Europe, and at the end of April, higher death rates were 
registered in Italy (north), Spain (centre), France (Alsace 
and Lorraine), Belgium, the Netherlands and London. A 
similar picture comes from the analysis conducted for the 
end of May, with a higher diffusion in many regions of the 
United Kingdom, whereas Austria, Germany and Denmark 
were countries less hit by the pandemic, with 0.70, 0.83 and 
0.87 deaths per 10,000 inhabitants, respectively.

Global and local patterns of spatial concentration

Diagnostics ofglobal and local spatial autocorrelation were 
carried out with the free and open-source software Geoda 

1.18, developed by Luc Anselin and his team.5. The spatial 
patterns and spill-over characteristics are presented in the 
following text.

The generated Moran’s I values (Table 2) are highly sig-
nificant (p value < 0.0001) and indicate a quite strong degree 
of positive spatial autocorrelation; regions with similar rates 
of COVID-19 deaths tend to be located next to each other 
(i.e. they form spatial clusters). Furthermore, there is lit-
tle change over the three dates, with Moran’s I increasing 
over time. This trend is marginal, but it may suggest that the 
degree of spatial clustering in COVID-19 death rates may 
be growing.

To assess the level of spatial concentration in the COVID-
19 death rates, the local indicators of spatial association 
(LISA) [2] are used to complement this part of the analysis. 
In particular, the LISA maps identify clusters or collections 
of geographical units that are similar, in statistical terms, 
based on the pandemic indicator used. They are used to 
identify hotspots or cold spots across space. Hotspots are 
of particular interest in epidemiological analysis, such as of 
the spread of COVID-19, as they allow the identification of 
“hot” areas significantly affected by the virus.

Figures 4, 5 and 6 display the local indicators of spa-
tial autocorrelation reported for the COVID-19 death rates 
between March and May 20206 and reveal distinctive geo-
graphic patterning in the spread of the pandemic that is 
masked when assessing global indicators. Positive spatial 
autocorrelation is observed in areas labelled high–high (i.e. 
high death rates in a region surrounded by a high weighted 
average rate for the neighbouring regions) and low–low (a 
low rate in a region surrounded by a low weighted average 
rate for the neighbouring regions). There are also two forms 
of negative spatial associations (i.e. associations between 
regions with dissimilar values): high–low (a high rate in a 
region surrounded by a low weighted average rate for the 
neighbouring regions), and low–high (a low rate in a region 
surrounded by a high weighted average rate for the neigh-
bouring regions).  

Visually comparing the maps for each individual time 
point reveals some distinctive geographical patterning that 
remains mostly consistent over time: the north of Italy 

Table 2   Moran’s I statistics

Source: Own elaboration on national ministries of health and statistical agencies datasets

Indicator Morans’ I Mean SD Standardized value p value

COVID-19 death rate on March 31st 0.355 − 0.0083 0.0497 7.3018 0.0001
COVID-19 death rate on April 30th 0.384 − 0.0081 0.0519 7.5516 0.0001
COVID-19 death rate on May 31st 0.398 − 0.0084 0.0521 7.7994 0.0001

5  Available at https://​geoda​center.​github.​io/​index.​html
6  We do not use methods to control for the false discovery rate (FDR) 
in this work.

https://geodacenter.github.io/index.html
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(with a slight reduction in April and May) and the regions 
around Madrid have high–high clustering at all three time 
points. The high–high clustering recorded in France started 
in the region of France–Comté but rapidly spread into a 

large cluster from the east to Ile de France (the political 
and economic centre of the country). A distinctive band of 
high–high clustering is also located in the United Kingdom 
(in the southeast and the centre of England and Wales) in 
May.

The geographical patterning of low–low clusters is also 
broadly consistent over time, with this type of spatial cluster 
predominantly found in western France, Denmark, eastern 
Germany, eastern Austria and southern Italy (April and 
May).

Modelling outcomes

This section discusses the findings presented in Table 3 for 
the COVID-19 death rate. We comment only on the results 
of the SAR model, which, as indicated above, performs 
better than the OLS and SEM models. These results are 
robust to the use of inverse squared distance and k-nearest 
neighbours spatial weight matrices (for k = 3, 4, 5, 10).7 Our 
estimations of the COVID-19 death rates on three different 
dates provide stable results in the sense that the significant 
demographic, income and wealth and health care determi-
nants remain the same regardless of the measurement date. 
The magnitude of the coefficients, however, varies over time. 
All the significant coefficients on the variables increase over 
time in absolute value. One notices only two (but essential) 
differences, which concern the distance to EU targets and the 

Fig. 4   LISA for COVID-19 death rates on March 31st, 2020. Source: 
Own elaboration on national ministries of health and statistical agen-
cies datasets

Fig. 5   LISA for COVID-19 death rates on April 30th, 2020. Source: 
Own elaboration on national ministries of health and statistical agen-
cies datasets

Fig. 6   LISA for COVID-19 death rates on May 31st, 2020. Source: 
Own elaboration on national ministries of health and statistical agen-
cies datasets

7  Complete results are available from the authors upon request.
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variable social trust. These variables are not significant at 
the end of March, but their significance and weight increase 
over time. The results presented in Table 3 are discussed 
below.

Of the demographic variables, only one is significant. 
We observe that a higher proportion of people aged 75 or 
over is related to a higher death rate from COVID-19. This 
result confirms the risk factor of age frequently mentioned 
in the literature [66] and the critical role of demographics, 
particularly how the age structure of a population may help 
explain differences in fatality rates across regions and how 
transmission unfolds [8].

All the variables describing income and wealth levels 
are significant, confirming that COVID-19 is a social dis-
ease [1, 51]. Due to the introduction of three proxies for the 
economic development level in the regions under review, 
our findings are more precise than those obtained by Sto-
jkoski et al. [59] in their analysis of differences between 
countries. They take into account only GDP per capita, a 
metric for determining a country’s economic output per 
person in that country. It is a widely used indicator of 
economic performance and a useful measure for making 
cross-regional comparisons of average living standards and 
economic wellbeing. GDP per capita also mirrors the abil-
ity of a country to intervene in a public health crisis [60]. 
When Stojkoski and co-authors combine GDP per capita 
with other demographics and societal characteristics, they 
conclude that COVID-19 also spreads according to soci-
etal characteristics. However, GDP per capita does not take 
into account socio-economic inequalities in a country. It is 
complemented by the unemployment rate, whose positive 
and significant sign confirms the findings in the literature 
[37], which emphasizes social exclusion and limited access 
to economic resources resulting from job loss [47]. Addi-
tional information on wealth and income is provided by 
the region’s distance to EU targets, a composite index that 
captures social gaps, on the one hand, and the employment 
rate on the other hand. Both the unemployment rate and the 
distance to EU targets are associated with significant posi-
tive coefficients, leading us to conclude that more serious 
social difficulties are more likely to increase the mortality 
rate due to COVID-19. Thus, our results provide additional 
evidence on the aggravating role of inequalities and social 
exclusion in the spread and intensity of epidemics. They also 
show that the influence of these variables increases as the 
epidemic becomes more severe.

Health care determinants reflect governmental and 
regional health spending, proxied by the number of gen-
eral practitioners and the number of hospital beds. Both 
are negatively correlated with the COVID-19 death rate, 
confirming that regions in which the quality of the health 
system is low are more likely to have a more significant 
mortality associated with COVID-19. With the need to 

hospitalize > 15% of infected patients in intensive care units 
[52], the effective saturation of hospitals has been a critical 
issue in the management of the COVID-19 emergency and 
the death rate across areas [64]. For instance, since 2009, 
Italy has experienced a €37 billion cut in healthcare costs 
and a substantial decrease in its number of hospital beds, 
which dropped to 3.2 per 1000 inhabitants, compared with 
a European average of 5 per 1000 inhabitants [15]. Although 
national, health policies have, however, affected European 
regions differently. The number of hospital beds tends to be 
significantly higher in German regions, with 800 beds per 
100,000 inhabitants on average. Lower rates are observed 
in southern Italy, southern Spain, some Greek regions and 
the UK (less than 250). Our results confirm the literature’s 
findings, which also point out these discrepancies between 
regions [31]. The literature also highlights the central role of 
primary care professionals [17] as determinants of mortality.

Finally, our last, but not least relevant, result concerns the 
negative sign associated with the composite variable “social 
trust” computed from primary sources provided by the Euro-
pean Social Survey (see Appendix A1 for a complete presen-
tation of this variable). Our findings show that social trust is 
negatively correlated with COVID-19 death rates.

It is reasonable to consider that social trust acts similarly to 
institutional trust in that a crisis intensifies the primary trust cul-
ture. People with low trust tend to identify negative aspects of 
ambiguous situations [63], to consider that others do not respect 
the rules and, thus, to try to bypass them, underestimating the 
severity of the pandemic. In contrast, in places where a vast 
majority of citizens exhibit a high level of confidence in oth-
ers, rules are expected to be respected by others and are indeed 
respected by everyone.

Our results confirm that an essential aspect of the spread 
of the pandemic is citizen‐to‐citizen trust, an intangible asset 
able to shape the consequences of the COVID-19 phenomenon. 
Indeed, people’s willingness to engage in protective behaviours 
and respect lockdown rules depends on the belief that others 
will act in the same way and, broadly speaking, on social capital.

The spread of the virus could thus be more difficult in places 
where interpersonal relations and social trust are high than in 
regions characterized by a low level of trust, as already men-
tioned by Habibov et al. [24].

The relevance of trust for dealing with health emergencies 
is also linked to the limits of direct enforcement of the required 
behavioural changes: without the active cooperation of the 
population, any drastic intervention is doomed to fail because 
the desired behaviours (e.g., frequently sanitizing one’s hands, 
wearing a facemask and keeping a safe distance from others) 
cannot be effectively monitored on the required scale and with 
sufficient frequency [18].

These results on the importance of trust as a protective 
factor are in line with those of previous studies on other epi-
demics, e.g. Ebola, showing how people with higher trust 
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are more likely to follow the guidelines given by the health 
authorities [65].

Our findings confirm those of Putnam et al. [49], who con-
clude that information and political decisions are not enough to 
ensure the success of sanitary policies. Instead, they recommend 
mobilizing “social capital” in the community as an informal 
means of action against the epidemic. This background helps 
to adapt measures to the current context and to increase their 
effectiveness.

Our estimations also provide strong evidence of the proximity 
effect leading to the spread of the coronavirus. Indeed, with a 
significant ρ parameter ranging between 0.516 and 0.594, our 
results suggest that the autoregressive component of the model 
captures most of the spatial dependence in the data. This result 
reflects a diffusion effect among the regions located close to 
each other. The growing value and significance of the parameter 
estimates indicate that spatial autocorrelation has increased over 
time, reflecting the polarization of the epidemic in particular 
clusters.

Conclusion and discussion

As with any disease, the mortality resulting from COVID-
19 results from individual characteristics. However, the local 
economic and social context also matters, as is recalled by the 
abundant literature [38] that considers regional characteristics 
to be determinants of regional mortality and may help clarify 
the regional discrepancies observed since the beginning of the 
pandemic. This paper sheds light on the spatial heterogeneity 
in European regions and its persistence during the expansion, 
peak, and beginning of the decrease of the pandemic. Although 
some regions were severely hit by the formation of COVID-19 
clusters in which the mortality rates were significantly higher 
than on average, some other regions were spared, composing 
a belt of low mortality rates mainly located on the eastern and 
southern fringes of Europe. Our first conclusion is thus that 
COVID-19 is a global pandemic taking the form of intense local 
epidemics. In addition to this peculiar spatial distribution of the 
mortality rates, our results lead us to conclude that if some par-
ticular events occur (football matches, a meeting of the faithful 
of a church, the arrival of infected people coming from already 
affected non-European countries, etc.), the resulting spread of 
the epidemic can be explained by a mix of factors describing the 
socioeconomic context. In addition to the classical demographic 
indicators, we found that income and wealth, on the one hand, 
and public health policies, on the other hand, were tangible ele-
ments enabling us to explain the local differences observed. In 
addition to these monetary or purely quantitative aspects, the 
introduction of an intangible asset named social trust permitted 
us to enrich the analysis by introducing culture and interpersonal 
relationships. They are shown to influence the mortality rate 

from COVID-19 and that their role increased over the period 
studied. According to our findings, compliance with sanitation 
rules imposed to control the pandemic and to flatten the peak 
of infections in order to limit congestion in hospitals depend 
on trust that others will respect those rules. This cultural aspect 
should thus be considered when deciding on the implementation 
of sanitation rules because, beyond their theoretically expected 
effects, their real effects depend on their actual use resulting 
from social trust.

Our research underlines the importance of regional differ-
ences in mortality rates and their origin during the pandemic. 
This contribution could be of interest to policymakers and health 
agencies. The regional dimension of public health policies, even 
in countries where this policy is centrally managed, such as in 
France, results in the requirement of efforts to disentangle the 
spatial aspects of epidemics to design policies adapted to the 
context in which such epidemics occur. Strengthening this local 
dimension is essential for two main reasons. First, COVID-19, 
unlike other epidemics, such as the flu, does not spread uni-
formly across regions but tends to remain clustered. Second, the 
high rate of contagion of this disease requires a rapid detection 
of patients zero in order to almost immediately adopt the neces-
sary sanitation rules that help to prevent the spread of cases. 
Moreover, the proximity between policymakers and citizens 
helps the former know the culture, social norms and trust bet-
ter. Consequently, measures adopted to reduce the severity of 
epidemics could be more effective when defined as closely as 
possible to the field.

To expand our conceptual framework, these exploratory 
and quantitative analyses should be complemented by more in-
depth investigations. Future research should pay more attention 
to controlling the proportion of false declarations of significance 
among those individual deviations from null hypotheses con-
sidered to be significant. The recent studies have shown a sig-
nificant gain in the identification of meaningful clusters when 
controlling for the FDR [9] in comparison to more conservative 
approaches, such as Bonferroni and Sidak corrections. An addi-
tional shortcoming that should be addressed is the choice of the 
level of aggregation. This is of paramount importance in any 
spatial econometric analysis. This issue refers to the modifiable 
areal unit problem (MAUP) introduced by Openshaw et al. [45], 
a term used to describe the influence of the spatial breakdown on 
the results of statistical processing or modelling. More precisely, 
the irregular forms and limits of administrative levels that do not 
necessarily reflect the reality of the spatial distributions studied 
are an obstacle to the comparability of irregularly distributed 
spatial units. Some geographers recommend adopting a multi-
scale approach to study the multiplicity of spatial aspects within 
a single phenomenon.
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Appendix

See Tables 4 and 5.

A1. Measuring social trust

To analyse social trust or, more generally, social capital, it 
is now common to use a composite measure that combines 
a large array of indicators related to cooperative norms 
and the density of associational networks. In this study, 
social trust is calculated following the methodology used 
in Parente [46].

The construction of this variable is as follows. We use 
three questions from the European Social Survey relative 
to social trust (A4, A5 and A6). A4–A6’s numeric answers 
range along an 11-point scale, where 0 means one cannot be 
too careful/people will try to take advantage of you/people 
are mostly looking out for themselves, and 10 means that 
most people can be trusted/they try to be fair/they try to be 
helpful.

The composite measure is constructed from individual 
perceptions using factor analysis. Following the Kaiser cri-
terion, which retains the principal components for which 

the value is higher than or equal to 1, we keep one factorial 
plan. This plan explains 67% of the variance in the answers. 
Hence, the final index of social trust is calculated as the 
average of our composite measure at the regional level. A 
positive score indicates a high level of trust, fairness and 
helpfulness, and a negative score indicates a low level of 
social trust in the region.

Comp1 Comp2 Comp3

Eigenvalues 2.01 0.55 0.44
Explained variance (%) 66.99% 18.26% 14.75%
Cumulative variance (%) 66.99% 85.25% 100%

Table 4   Correlation matrix

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Population density 1.000
(2) Population concentration 0.357*** 1.000
(3) Share of the population aged 75 

and over
− 0.477*** − 0.234*** 1.000

(4) GDP per capita 0.427*** 0.039 − 0.294*** 1.000
(5) Unemployment rate 0.027 0.094 − 0.084 − 0.513*** 1.000
(6) Distance to EU targets 0.214** 0.175* − 0.242*** 0.567*** − 0.583*** 1.000
(7) General Medical Practitioners 0.227** − 0.109 0.179** 0.214** 0.215** − 0.075 1.000
(8) Hospital beds − 0.107 − 0.151* 0.342*** 0.138 − 0.252*** 0.195** 0.288*** 1.000
(9) Social trust 0.067 − 0.087 − 0.259*** 0.459*** − 0.598*** 0.625*** − 0.145 0.020 1.000

Table 5   Summary statistics Variable Obs Mean Std.Dev Min Max

COVID death rate on March 31st 125 0.73 1.15 0.00 7.16
COVID death rate on April 30th 125 2.67 2.92 0.01 13.69
COVID death rate on May 31st 125 3.28 3.39 0.01 16.01
Population density 125 5.21 1.17 3.11 8.93
Population concentration 125 0.45 0.50 0.00 1.00
Share of the population aged 75 and over 125 0.10 0.02 0.05 0.16
GDP per capita 125 10.33 0.28 9.76 11.30
Unemployment rate 125 0.08 0.05 0.02 0.29
Distance to EU targets 125 76.97 17.62 35.09 132.14
General Medical Practitioners 125 37.01 11.67 6.26 78.63
Hospital beds 125 44.72 23.88 9.46 128.63
Social trust 125 − 0.12 0.52 − 1.92 1.11
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