
Shedding Light on the Black Box: Explaining Deep Neural 
Network Prediction of Clinical Outcomes

Yijun Shao1,2, Yan Cheng1,2, Rashmee U. Shah3, Charlene R. Weir4,5, Bruce E. Bray3,5, Qing 
Zeng-Treitler1,2

1George Washington University, Biomedical Informatics Center, Washington, DC, USA

2Washington DC VA Medical Center, Washington, DC, USA

3Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA

4Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA

5VA Salt Lake City Health Care System, Salt Lake City, UT, USA

Abstract

Introduction: Deep neural network models are emerging as an important method in healthcare 

delivery, following the recent success in other domains such as image recognition. Due to the 

multiple non-linear inner transformations, deep neural networks are viewed by many as black 

boxes. For practical use, deep learning models require explanations that are intuitive to clinicians.

Methods: In this study, we developed a deep neural network model to predict outcomes 

following major cardiovascular procedures, using temporal image representation of past medical 

history as input. We created a novel explanation for the prediction of the model by defining impact 

scores that associate clinical observations with the outcome. For comparison, a logistic regression 

model was fitted to the same dataset. We compared the impact scores and log odds ratios by 

calculating three types of correlations, which provided a partial validation of the impact scores.

Results: The deep neural network model achieved an area under the receiver operating 

characteristics curve (AUC) of 0.787, compared to 0.746 for the logistic regression model. 

Moderate correlations were found between the impact scores and the log odds ratios.

Conclusion: Impact scores generated by the explanation algorithm has the potential to shed light 

on the “black box” deep neural network model and could facilitate its adoption by clinicians.
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1 Introduction

In recent years, a special type of machine learning (ML) method called deep neural network 

(DNN) has brought breakthroughs to a wide range of artificial intelligence tasks including 

computer vision, speech recognition, and authentic games because DNN showed superior 

performance over traditional ML methods on those tasks [1–6]. Clinical applications of 

DNN quickly followed [7–9], with anticipation that DNN would revolutionize healthcare 

delivery, and there have been some early signs of success [7, 10–13].

DNN models are black boxes to most clinicians; understanding and explaining their 

behaviors is the subject of ongoing research [14, 15]. To gain clinical acceptance and 

implementation, we need to explain DNN models in a way that is clinically understandable 

[16, 17]. Traditional statistical models, especially linear models like logistic regression, are 

widely used because they provide explanations of the impact of each independent variable 

on the prediction (e.g. in the form of odds ratio), despite suboptimal performance. However, 

DNN models are particularly difficult to explain due to the highly complex transformations 

carried out between the “deep” layers in the DNN [14].

Compared to clinical data, natural scene images, speech recordings, or game board layouts 

are much easier for humans to understand. A human can quickly recognize a dog in an 

image, but cannot quickly interpret lab values, radiologic images, and clinical notes as 

sepsis. As a result, the limited DNN explanation studies that have been published are mostly 

intended to confirm human interpretation, e.g., if an image feature critical to the prediction 

of being a dog looks like the outline of a dog [18]. With clinical prediction, human users 

may not have such prior knowledge and expect the model to return clinical features that 

justify the prediction.

We are working on tackling the challenging problem of explaining DNN models. In this 

study, based on a cohort of over 20,000 patients with cardiovascular diseases, we built a 

DNN model to predict death within one year of a major cardiovascular procedure (MCVP) 

and provided explanations for the outcome prediction by the DNN model. To generate the 

explanation, we defined a new concept, referred to as the impact score. The impact score is 

based on the presence/value of clinical conditions’ impact on the predicted outcome. Similar 

to the (log) odds ratio generated by logistic regression models, impact scores are continuous 

variables intended to shed light on the black-box DNN models. For comparison, we fitted a 

logistic regression model on the same data. The logistic regression performance and the log 

odds ratios were compared with the DNN model performance and the impact scores.
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2 Methods

2.1 Data

The data source for this study was the clinical data warehouse administered by Veteran 

Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans 

who had their first major cardiovascular procedure (MCVP) in 2014. The hospitalization 

during which the patient received the first MCVP was called the index hospitalization. The 

primary outcome was mortality within one year of the discharge date of the index 

hospitalization. The patient data used by the prediction model included demographic data as 

well as medical data from the two years prior to the index hospitalization and including the 

index hospitalization.

The demographic data included

• age (at the index hospitalization),

• gender,

• race,

• ethnicity.

The medical data included

• all ICD-9 diagnosis codes,

• all ICD-9 procedure codes used for MCVP,

• all medication orders,

• all-cause hospitalizations,

• clinical notes.

All the medical data except MCVP codes were obtained from the two years prior to the 

index hospitalization; the MCVP codes were obtained from the index hospital when the 

patients had their first MCVP in life. All the data except the clinical notes were structured 

(i.e., coded) data. Seven frailty indicators (e.g., mobility) were extracted from the notes 

using a natural language processing (NLP) program we previously developed [19].

2.2 Major cardiovascular procedures (MCVP)

Providers can now offer invasive and aggressive treatments to patients with cardiovascular 

disease - implantable cardioverter defibrillators, mechanical support devices, valve 

replacements, and other surgical procedures [20–22]. These interventions (i.e. MCVP), are 

invasive, involve risk, and can be painful; a careful patient selection is imperative [23–26]. 

Ideally, patients who receive these treatments should have a reasonable life expectancy to 

benefit from aggressive treatment, without substantial peri-procedural complication risk. The 

treatment intensity should match the expected patient outcome, yet providers do not have a 

reliable method to estimate prognosis as most clinical trials do not include older, frail 

patients. Older patients, in particular, comprise a growing proportion of the cardiac surgery 

Shao et al. Page 3

J Med Syst. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population, but existing risk scores are inaccurate -- they overestimate risk in robust, older 

patients, and underestimate risk in frail, older patients [27].

2.3 Variables used for prediction

Model features were divided into two categories: temporal and non-temporal. The temporal 

variables were created based on the patient history data, whose values were always 

associated with a time stamp. The temporal variables included all-cause hospitalization, 

diagnostic classes, drug classes, and frailty indicators. The diagnostic classes were the major 

ICD-9 diagnostic code categories (e.g. neoplasm, mental disorders, etc.) [28]. The drug 

classes were the RxClasses [20] built upon the RxNorm codes. These variables, except for 

the frailty indicator variables, were binary with value 1/0 representing the presence/absence 

of the condition in the patient’s record at a given time. The frailty variable had continuous 

values ranging from 0 and 1, representing the severity of frailty status. The non-temporal 

variables included demographic variables (age, gender, race, etc.) and the types of surgery 

the patient had at index hospitalization. For the complete list of variables, see Table A (1st 

column) in the Appendix.

2.4 Temporal data representation

To make temporal data suitable for use by the deep neural network, we proceeded as 

follows. First, we discretized time in the 2-year window prior to the index hospitalizations 

into 52 time points, with each time point representing a time slice of 2 weeks. For each 

temporal variable that took binary values, it took value 1 at a time point if the corresponding 

condition was present in the 2 weeks; otherwise, it took value 0. For each frailty variable, the 

maximum of the value(s) within the 2 weeks were used as its value at the time point. Thus, 

every temporal variable had a sequence of 52 values along with the time points on each 

patient. Next, we arranged the temporal variables in a fixed order so that each patient’s 

temporal data were represented by a matrix: the rows corresponded to the variables, and the 

columns corresponded to the time points. This matrix was further visually represented by an 

image, called a temporal image, as follows: every pixel of the image corresponded to an 

entry of the matrix, with color white/black representing value 0/1, and various gray scales 

representing values between 0 and 1. A sample image is provided in Fig. 1. Similar 

representations of patient data were used for feature embedding [29] and risk prediction 

[30].

2.5 Building a deep neural network

The deep neural network had 2 branches at the input end (Fig. 2). One branch took temporal 

data as input and the other branch took non-temporal data as input. The branch taking 

temporal data as input was a convolutional neural network (CNN). This branch was 

composed of a sequence of layers as follows:

• an input layer (A) receiving temporal images/matrices as input

• a 1-D convolutional layer (B)

• a 1-D max-pooling layer (C)

• a 1-D convolutional layer (D)
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• a 1-D max-pooling layer (E)

• a fully-connected layer (F)

For each of the layers, the modifier “1-D” meant that the operations (convolution and max-

pooling) were applied along the time-direction. Both of the convolutional layers (B and D) 

used 10 filters with a width of 3. Both of the max-pooling layers (C and E) had a width of 3 

as well. The convolutional layers combined with the max-pooling layers were able to 

automatically extract higher level features from the raw data [31]. The other branch was 

composed of two layers as follows:

• an input layer (G) receiving non-temporal vectors as input,

• a fully-connected layer (H).

The last layers (F and H) from the two branches were joined using a simple concatenation to 

form the last hidden layer (I) of the whole network. The last layer, or the output layer (J), 

was a fully connected layer producing a single number as the output. All the non-linear 

activation functions for the hidden layers were the rectified linear function, defined as f(x) = 

max(x, 0). The non-linear function for the output layer was the sigmoid function, defined as 

σ x = 1
1 + e−x , which transforms an arbitrary value into a value between 0 and 1. We used 

the binary cross-entropy function as the loss function and added both L1 and L2 

regularizations. The weights were updated using the algorithm of stochastic gradient descent 

with Nesterov momentum. The DNN was implemented in a Python library called Theano 

[32] together with a helper library called Lasagne [33].

2.6 Training and evaluation

We divided the 21,355 patients into 3 sets: training (70%), validation (10%), and testing 

(20%). The initial weights in all the hidden layers and the output layer of the DNN were 

randomly assigned with small numbers. Then the DNN was trained on the training set with 

weights updated iteratively using backpropagation. The weights were updated using the 

method of mini-batched stochastic gradient descent. The size of each mini-batch was 50. 

After each epoch i.e., a single pass over the whole training set, the DNN model was 

evaluated on the 10% validation set to measure the performance. The training stopped when 

no improvements in the validation performance were observed over 10 consecutive epochs. 

The model with the best validation performance before training was stopped was used as the 

final model. This final model was then applied to the 20% testing set to measure the final 

performance. The main performance metric was area under the receiver operating 

characteristics curve (AUC).

2.7 Explain the outcome prediction

It is a difficult task to explain the prediction process inside a DNN due to the multiple layers 

of non-linear transformations from input to output. For the clinical domain, a key concern is 

the relationship between variables and outcomes; in logistic regression models, odds ratios 

describe such relationships. For DNN, we set out to measure the “impact” of each variable 

on the predicted outcome.
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Observation-level impact score.—In our representation of temporal data, a temporal 

variable corresponds to a row of pixels, and every pixel with a nonzero value in the row 

means a presence (a value = 1) or a severity level (a value between 0 and 1) of the 

corresponding condition, hence represents an observation. To measure the impact of an 

observation on the outcome, we defined the impact score as follows. For each pixel with a 

nonzero value, we changed the value to zero and calculated the change on the prediction. 

The value 0 here is called the reference value. Recall that the last layer of the DNN outputs a 

value p between 0 and 1 through a sigmoid function p = σ(χ). The change of prediction was 

not the change in p but the change in x. One way to obtain x from p was to use the logit 

function: x = logit p = log p
1 − p  Therefore, the observation-level impact score was defined as

logit pcurrent − logit preference
current pixel value − reference pixel value

where preference was the new value of p after changing the pixel value to the reference value 

0.

Individual-level impact score.—To measure the impact of a temporal variable for an 

individual patient, we defined the individual-level impact score of a temporal variable as

logit pcurrent − logit preference
current max. pixel value in the row − reference pixel value

where preference was the new value of p after changing all pixel values in the row 

corresponding to the temporal variable to the reference value 0, and the “current max pixel 

value in the row” was the maximal pixel value along the same row.

For non-temporal variables, since each variable took a single value, the impact score 

followed the same way as the observation-level definition.

Population-level impact score.—We also defined the impact score of temporal or non-

temporal variables at the population level simply as the mean of all the impact scores of the 

variable on all those patients in the training set who had an impact score. Note that a variable 

did not necessarily have an impact score on every patient: if a patient had no presence of a 

condition throughout the 2-year window, then according to the above definitions, there 

would be neither observation-level nor individual-level impact score for this variable, and 

this patient would not be included in the population to calculate of the mean of the impact 

scores.

2.8 Comparison with logistic regression model

Logistic regression models are widely accepted in the medical domain because they provide 

easy explanations/interpretations for the prediction. Specifically, the log odds ratios of a 

logistic regression model also describe the impact of the corresponding variables on the 

predicted results. Therefore, we built a logistic regression model on the same training set and 

evaluated its prediction performance (AUC) on the same testing set. Then we compared the 
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impact scores we calculated based on the DNN model with the log odds ratios of the logistic 

regression model in terms of their correlations. The signs of the impact scores/log odds 

ratios also matter, so we also counted the number of variables whose impact scores and log 

odds ratios had both positive/negative signs or opposite signs. This comparison would 

provide, to a certain extent, a validation for using the impact scores to explain the DNN 

model. We did not expect the impact scores to be exactly the same as the log odds ratios but 

hypothesized that there would be moderate to strong correlations because both types of 

scores reflect the relationship between the variables and the outcome.

3. Results

Among 21,355 patients who underwent an MCVP in 2014, 6.8% died within one year 

following the index hospitalization. The AUC for the DNN was 0.787, compared to 0.746 

for the logistic regression (LR) model (Fig. 3).

In Fig. 4, we show the top 10 variables ranked by the magnitude (i.e., absolute value) of the 

impact scores (at the population level) and the top 10 variables ranked by the magnitude of 

the log odds ratios. These variables were the most important factors “decided” by the DNN 

model or the LR model.

A complete list of numerical values of the population-level impact scores and log odds ratios 

are reported in Appendix, Table A.

We calculated 3 types of correlations – the Pearson’s correlation, the Spearman’s rank 

correlation, and the sign-agreement – between the impact scores and the log odds ratios. The 

sign-agreement is defined as the proportion of the variables on which the impact score and 

log odds ratios agree on the signs (positive or negative). We first calculated the 3 correlations 

on all the 37 variables (excluding the variables which were unused by the logistic regression 

model). The result is reported in Table 1.

Next, we calculated the same 3 types of correlations on the top 18 (50%) variables ranked by 

the magnitudes of the impact scores. The result is shown in Table 2.

We can see from Table 1 that the impact scores and log odds ratios had moderate 

agreements, while from Table 2 that they had stronger agreements. This suggests that the 

DNN model and LR model used similar key variables, i.e., those of large magnitudes, in 

their predictions. A more direct confirmation is in Fig. 4.

4. Discussion and Conclusion

DNN models can often outperform traditional machine learning and statistical predictive 

models. However, models like logistic regression and support vector machine with a linear 

kernel are more transparent and easier to understand, while a neural network is usually 

deemed as a black box. When we present the results of DNN models to clinicians and 

clinical researchers, a recurring question is how the model makes the prediction. Detailed 

descriptions of the layers of the neural network and weights of the nodes in the layers are not 
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helpful; clinicians and clinical researchers want to understand the variables’ role in the 

prediction and how they are combined.

In this study, we developed a DNN model to predict death during the first year following 

MCVP. The DNN model outperformed the logistic regression model by nearly 4 percentage 

points. The goal of this research is to support patient and physician decision making before 

MCVP by providing accurate outcome prediction. While we still need more accurate models 

we have provided clinically meaningful explanations to help with implementation. The 

explanation approach we developed is a first step toward shedding light on the DNN black 

box.

DNN models are useful because they can model complex non-linear relationships, which is 

particularly applicable to human disease. To decipher these relationships, we proposed using 

impact scores. The impact scores are comparable to the log odds ratios for logistic 

regression. The impact score of a temporal variable can be calculated at two levels: at the 

level of clinical observation/finding, represented by a pixel with black or gray color on the 

temporal image, and at the level of an individual patient (over the whole 2-year time period). 

The impact score of a non-temporal variable is only calculated at the individual level. The 

population-level impact score was calculated as the mean of individual-level impact scores 

over all patients. This allows an explanation both on the individual level and on the 

population level. The importance of a clinical observation/finding is expected to vary for 

each patient. At the same time, it is desirable to understand the importance of a clinical 

observation/finding on the population level. For example, older patients are more likely to be 

frail, but frailty differs dramatically among patients of the same age. Both age and frailty are 

strong risk factors for post-surgical outcomes. How they factor into a patient’s actual and 

predicted outcome still differs at the individual level.

We calculated the correlations between the impact scores from the DNN model and log odds 

ratios from the logistic regression model in order to provide a partial validation to our 

approach. Logistic regression models are generally trusted by clinicians as a tool to 

understand the relationships between the variables and the outcome [34]. We also know that 

a logistic regression model and a DNN model trained on the same data both reflect/

approximate the true underlying relationship in the data. Therefore, we expected that the two 

models would have some agreements in considering what variables were the key variables 

for predictions. The agreements could be measured by various correlations. We must stress 

that this “validation” does not consider the logistic regression model as the “gold standard”, 

and therefore one should not state that “the stronger the correlations are, the more correct the 

impact scores are.” We calculated 3 types of correlations – Pearson’s correlation, 

Spearman’s rank correlation, and the sign-agreement, which represent the agreements 

between the impact scores and the log odds ratios at different levels. The sign-agreement is 

the coarsest measure of agreement among the three as it completely ignores the magnitude. 

The Pearson’s and the Spearman’s correlations are both finer measures, but from two 

different perspectives: Pearson’s is more affected by magnitudes while Spearman’s is more 

affected by relative rankings. We see from the results that when calculated on all the 

variables, all the 3 correlations are moderate, but when calculated on only the half most 

important variables “considered” by the DNN model, all the 3 correlations become stronger. 
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An explanation for this may be that the variables having impact scores of larger magnitudes 

were considered as more important features by the DNN model, and the two models had 

higher agreements on the more important variables.

The ultimate evaluation of impact scores will require an understanding of the “ground truth.” 

Such ground truth is typically unavailable in real patient data. As an alternative, we are 

currently generating a number of simulated datasets to validate the impact scores. We admit 

that simulated data cannot reach the complexity of real patient data and models trained on 

any dataset cannot completely capture the ground truth. Nevertheless, simulation provides us 

an approach to further validate the impact scores.

One limitation is that we did not use an extremely large sample for training DNN. The 

sample size of 20,000 is not small, though complex DNNs can handle and perform better 

with even larger data sets. We plan to repeat our experiment on a larger dataset with the goal 

to improve predictive performance. Another limitation is the lack of differentiation between 

unknown/missing values and values representing negative findings/observations in our 

temporal data representation, as both were represented by zero. While it is common for a 

clinical study to assume that the absence of positive findings implies negative findings, the 

assumption is not always true. A patient with chronic illness still has the illness on the days 

of not visiting a hospital.

More work is needed to explain DNN models that are used for clinical outcome predictions. 

We have not yet explained how the individual values and variables are combined in the DNN 

model to make predictions. Since we represent clinical data using temporal images, we have 

an opportunity to discover complex patterns not only across variables but also within a 

variable over time. Arguably the trained DNN model has captured some of these 

relationships. We plan to develop new methods to reveal these patterns. We also plan to 

experiment with other DNN architectures such as LSTM and Transformer and develop 

methods to explain these models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of the temporal images. The x-axis is the time (in weeks) within the 2 years 

prior to the discharge date of the index hospitalization. The y-axis is the list of temporal 

variables.
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Fig. 2. 
Architecture overview of the deep neural network (see description in text).
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Fig. 3. 
The ROCs of the DNN model and LR model calculated on the testing dataset.
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Fig. 4. 
List of top 10 variables ranked by the magnitude of impact scores (left chart) and list of top 

10 variables ranked by the magnitude of log odds ratio (right chart).
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Table 1.

The correlations between the population-level impact scores and the log odds ratios

Correlation Type Value

Pearson 0.69

Spearman 0.63

Sign agreement 0.78
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Table 2.

The correlations between the population-level impact scores and the log odds ratios on the top 18 variables 

ranked by the magnitudes of the impact scores.

Correlation Type Value

Pearson 0.81

Spearman 0.79

Sign-agreement 0.89
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