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1. Introduction 

As of February 23rd, 2021, more than 113 million people worldwide 
have been diagnosed with COVID-19, resulting in more than 2.5 million 
deaths (World Health Organization, 2021). Extensive investigation has 
been conducted on the etiology of COVID-19, yet researchers are still 
determining how exposure risk factors may influence COVID-19 inci
dence and mortality. Recent evidence from China, Italy, England, and 
the United States suggest that exposure to air pollution may play a role 
in COVID-19 incidence and deaths (Brandt et al., 2020; Coker et al., 
2020; Li et al., 2020; Lippi et al., 2020; Travaglio et al., 2021; Wang 
et al., 2020a; Wu et al., 2020b; Zhang et al., 2020; Zhu et al., 2020). 
These findings are consistent with prior research suggesting that air 
pollution, including traffic-related air pollution (TRAP), is associated 
with many respiratory morbidities (e.g., asthma, chronic pulmonary 
disease, lung cancer, and respiratory tract infections) (Bai et al., 2018; 
Dales et al., 2008; Franklin et al., 2015; Jerrett et al., 2008; Sydbom 
et al., 2001), hospitalizations (Neupane et al., 2010), all-cause mortality 
(Beelen et al., 2008; Jerrett et al., 2005) and increased risk of respiratory 
viral infection (Ciencewicki and Jaspers, 2007; Wang et al., 2020b). 
Nitrogen dioxide (NO2), a tracer of TRAP generated from tailpipe 
emissions (Quiros et al., 2013; Zeldovich, 2015), has been found to 
impair the function of alveolar macrophages and epithelial cells, thereby 
increasing the risk of lung infections (Neupane et al., 2010). 

Other factors such as age, race/ethnicity, and other sociodemo
graphic characteristics appear to increase risk for COVID-19 infection, 
severity, and associated death (Brandt et al., 2020). For example, 
compared to non-Hispanic whites, cumulative COVID-19 hospitalization 
rates for Black and Latinx populations are approximately 4.7 and 4.6 
times higher in the U.S., respectively (Centers for Disease Control and 
Prevention, 2020). Black and Latinx U.S. populations are dispropor
tionately exposed to SARS-CoV-2, as they are more likely to serve as 
essential workers (Martinez et al., 2020; Rogers et al., 2020) and to live 
in crowded conditions (Burr et al., 2010; Memken and Canabal, 1994). A 
higher prevalence of metabolic disorders (such as hypertension, dia
betes, and obesity) in these populations likely contributes to more severe 
disease (Commodore-Mensah et al., 2018; Divens and Chatmon, 2019) 
and death from COVID-19 (Du et al., 2020). In addition, minority pop
ulations are more likely to live in areas where there is greater air 
pollution (Ailshire and García, 2018; Collaco et al., 2020; Gaither et al., 
2019). 

Building on past research demonstrating an association between 
Severe Acute Respiratory Syndrome (SARS) and air pollution (Cui et al., 
2003), Wu et al. (2020a) reported associations between county-level 
COVID-19 mortality rates in 3089 counties through June 2020 and 
long-term average (from years 2000 to 2016) PM2.5 concentration across 
the United States. They reported that each 1 µg/m− 3 increase in PM2.5 
concentration was associated with an 11% increase in COVID-19 
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mortality rate (95% CI: 6%, 17%). In another recent study of COVID-19 
in 3122 U.S. counties through July 2020, researchers found an increase 
in interquartile range (IQR) of 4.6 ppb of NO2 to be associated with a 
16.2% (95% CI: 8.7%, 24.0%) increase in mortality rate and an 11.3% 
(95% CI: 4.9%, 18.2%) increase in case-fatality rate (Liang et al., 2020). 
In both studies, exposure estimates were based on concentrations at the 
county level and, therefore, could not account for variation in air 
pollution observable over smaller areas within cities (Kulhánová et al., 
2018; Wu et al., 2019). In addition, the quality and comparability of 
COVID-19 health outcome information may vary considerably across U. 
S. counties as reporting protocols may differ among jurisdictions at the 
local, state, and national levels (Bergman et al., 2020; Bialek et al., 
2020), which may lead to case ascertainment bias. 

Los Angeles became one of the only metropolitan cities globally to 
publicly report neighborhood-level COVID-19 cases in March 2020 and 
mortality in June 2020 (LACDPH, 2020). These data afforded the op
portunity to conduct spatial modeling for a large population with a 
smaller geographical area neighborhood unit of analysis. These smaller 
geographic areas allow for more accurate pollution exposure estimates 
than the county-level studies above. Los Angeles has a wide range of air 
pollution exposure levels with which to investigate intra-urban re
lationships with COVID-19. Furthermore, because the Los Angeles 
County Department of Public Health (LACDPH) governs all health sta
tistics, Los Angeles County is likely to have consistent health reporting 
practices. This diminishes the possibility of case ascertainment bias that 
may have been present in the national studies comparing among more 
than 3000 counties. 

Here we aim to analyze the relationship of air pollution and COVID- 
19 case incidence, mortality, and case-fatality rates in neighborhoods of 
Los Angeles County, using high-resolution exposure models. We focus on 
NO2 because this gaseous pollutant serves as a marker for traffic 
pollution, which displays substantial intra-urban variation over small 
areas in Los Angeles and elsewhere (Su et al., 2009, 2020; Zeldovich, 
2015). In California, 62% of NOx emissions come from mobile sources 
such as vehicle traffic (Almaraz et al., 2018). 

2. Material and methods 

2.1. Setting 

This study is situated in Los Angeles (LA) County. In 2019, LA County 
had a population size of 10,039,107 and was diverse in its racial, ethnic, 
and socioeconomic composition (U.S. Census Bureau, 2020). For 
example, 51% are White, 48% are Latinx, 15% are Asian, and 8.3% are 
Black. The median income of LA County is $64,251 USD. LA County is 
spread across a large geographic area of 4057 square miles or 10,508 
square kilometers. The sprawling landscape induces high levels of travel 
by automobile and TRAP (Su et al., 2009). In addition, the presence of 
two major seaports and associated goods movement infrastructure cre
ates additional emissions from diesel vehicles (Kozawa et al., 2009; Su 
et al., 2016, 2020). The first case of COVID-19 in California was iden
tified on January 26th, 2020 (LACDPH, 2020; Los Angeles Times, 2020), 
and the first community-acquired case in the United States was 
confirmed in California on February 26th, 2020 (CADPH, 2020; Hein
zerling et al., 2020). 

2.2. Data sources 

Table 1 summarizes the data sources and variables used. Cumulative 
COVID-19 case and mortality counts for March 16th to February 23rd, 
2021 were accessed from the Los Angeles County Department of Public 
Health (LACDPH) COVID-19 dashboard website. These outcome data 
were split into two time periods: a main study period from March 16th to 
September 8th, 2020; and a secondary period for sensitivity analyses 
from September 8th, 2020 to February 23rd, 2021. These data are re
ported at a neighborhood statistical area unit geography. LACDPH 

reports infectious disease data for ‘Countywide Statistical Areas (CSAs)’, 
used by many LA County agencies to report data to the County Board of 
Supervisors, which include mixed areal classifications such as ‘city’, 
‘community’, ‘neighborhood’, or ‘unincorporated area’ (Harris, 2020; 
LACDPH, 2021) This study refers to CSAs as ‘neighborhoods’. Based on 
prior research (Su et al., 2020), a land-use regression model was used to 
produce an annual pollution surface of NO2 across California at a spatial 
resolution of 30 m using data from 2016. This surface was used previ
ously for another recent health study in Los Angeles (Wing et al., 2020). 
The land-use regression model had an out-of-sample cross-validation R2 

of 0.76. This average annual NO2 surface was used to define the main 
exposure metric by neighborhood. 

Potential covariates were identified a priori based on existing liter
ature on risk factors for disease or severity of disease (including death) 
for COVID-19 (Myers et al., 2020), other pneumonic infectious diseases 
(Neupane et al., 2010), and previous studies on air pollution and COVID- 
19 (Liang et al., 2020; Wang et al., 2020b). Demographic covariates, 
including age, race/ethnicity, median household income, and household 
owner occupancy, were downloaded from the U.S. Census Bureau’s 
American Community Survey (ACS) 5-year moving estimate for 2018 
(U.S. Census Bureau, 2018). Population counts at the neighborhood 
level, and smoking and obesity prevalence at the census-tract level were 
downloaded from the LACDPH website (LACDPH, 2018). Population 
counts from LACDPH were compared to counts from the ACS to assess 
variable aggregation methods. Hospital and testing facility locations 
were acquired from the LA County’s GeoHub website for their potential 
association with case ascertainment (LAC, 2014). Residential building 
footprints were also downloaded from the LA County Geohub website to 
facilitate these demographic data aggregations (LAC, 2014). 

We also considered hypertension and diabetes as health outcomes 
potentially associated with COVID-19 severity (Myers et al., 2020). 
These health outcomes were modeled in the U.S. Centers for Disease 

Table 1 
Data sources and spatiotemporal dimensions for model of association between 
NO2 and COVID-19 case, mortality, and case-fatality rates in Los Angeles 
County.  

Data source Attribute(s) Spatial 
Dimension 

Temporal 
Dimensiont 

LACDPH1 COVID-19 cases and 
COVID-19 deaths 
Population*, smoking, 
and obesity 

Neighborhood 
statistical areas 
(polygon) 

March 16th – 
September 8th, 
2020 
September 8th, 
2020 – 
February 23rd, 
2021α 

2019 
ACS2 Age, median income, 

race/ethnicity, owner- 
occupancy status, and 
population* 

Census tracts 
(polygon) 

2018 

500 Cities 
Project 

Diabetes and 
hypertension 

Census tracts 
(polygon) 

2019 

LA County 
GeoHub 

Testing locations and 
hospital locations 
Building footprints** 

Site location (point 
or polygon) 

September 8th, 
2020 
2014 

LUR3 surface 
(Su et al., 
2020) 

NO2 (ppb) California (raster; 
30 m) 

2016 

*LACDPH population used for regression modeling; ACS population used to 
validate aggregation methods. 
**building footprints used for data aggregation. 

1 LACDPH = Los Angeles County Department of Public Health. 
2 ACS = American Community Survey (U.S. Census Bureau). 
3 LUR = land-use regression. 
t Temporal dimension describes the range in time for which the data was 

recorded. 
α Secondary time period used as sensitivity analysis in comparison to main 

study period of March 16th to September 8th, 2020. 
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Control and Prevention’s (CDC) 500 Cities Project health dataset (Cen
ters for Disease Control and Prevention, 2019). These covariates were 
included as sensitivity analyses due to incomplete spatial coverage, 

Uncertainties in the testing regime raise questions about potential 
case-ascertainment bias. As testing became more widely available, rates 
of testing likely changed from testing only suspected cases to people 
potentially exposed as a result of occupational or social interactions. 
This could have affected the case rate and subsequently the case-fatality 
rates. It is also possible that in the earlier stages of the pandemic, there 
was more undercounting of the deaths, which would have diminished 
over time as medical professionals learned how to identify more accu
rately deaths resulting from COVID-19. 

To address the potential shifts in case-ascertainment, case-fatality, 
and mortality rates that could have occurred over time, we conducted 
further sensitivity analyses. Specifically, we extended our original study 
period which captured approximately the first six months of the 
pandemic (March 16th to September 8th, 2020), to the subsequent six 
months (September 8th, 2020 to February 23rd, 2021). Thus, we 
replicated the analysis for the subsequent 6-month period, which had 
nearly four times the incident cases (875,368 cases) as the first period 
(230,621 cases). In the latter period, the County changed the neigh
borhood definitions to exclude or combine about 13 neighborhoods, so 
the count of neighborhoods was less than in the original period (348 vs. 
335). Consequently, the two data sets are not uniformly constructed, but 
they are quite similar. 

2.3. Quantification of variables 

Very few spatial variables were available at the neighborhood ge
ographies, as most environmental, health, and demographic areal data 
are published by postal ZIP code or census tract. Environmental Systems 
Research Institute’s (ESRI) ArcGIS 10.7 (ESRI, 2020) was used to sum
marize NO2 zonal mean by each of the N = 348 neighborhoods 
(‘neighborhood’ statistical area geographies, as delineated by the 
LACDPH) in LA County. To account for misalignment in areal bound
aries between COVID-19 case/mortality and selected covariates, all 
areal covariates were first reaggregated to residential building footprints 
(acquired from LA County’s Geohub website (LAC, 2014)) and then 
reaggregated to neighborhoods by using counts per area density-based 
raster surfaces. This intermediate step was taken to minimize the ef
fect of geographies with highly variable population densities (e.g., a 
large neighborhood with few total residents). Hospital and testing fa
cility areal densities were calculated using a 10-mile radius kernel 
density process – generating a raster surface describing the number of 
hospitals or facilities per sq km within 10 miles of each raster grid cell. 
History of hypertension and diabetes drawn from the 500 Cities Project 
covered only 61% (212 of 348) of neighborhoods; therefore, we imputed 
the global mean for the remaining 136 neighborhoods and report these 
results as sensitivity analyses. 

2.4. Statistical modeling 

Extracted neighborhood NO2 concentrations were modeled in rela
tion to incident case rate (cases/population), mortality rate (deaths/ 
population), and case-fatality rate (deaths/cases). NO2 concentrations 
from neighborhoods were scaled to the interquartile range to aid in 
interpretation of model results (Liang et al., 2020; Wu et al., 2020a). We 
used three different statistical models to assess sensitivity of our results 
to model specification: (1) zero-inflated Poisson, (2) zero-inflated 
negative binomial, and (3) Bayesian conditional autoregressive (CAR) 
zero-inflated Poisson models. To assess incident case rate, all models 
treated the count of COVID-19 cases in the neighborhoods as the 
dependent variable and the total population as the offset. These models 
were also run for mortality counts with the total population as the offset 
(mortality rate) and for mortality counts with the total number of 
COVID-19 cases as the offset (case-fatality rate). Zero-inflated models 

were selected to account for a high number of neighborhoods with zero 
counts of cases or deaths and often low total populations; without zero- 
inflation, these low-count areas could disproportionately influence the 
model results. We also employed a Bayesian zero-inflated Poisson model 
whose spatial random effects were assigned a CAR prior distribution to 
account for potential spatial autocorrelation between neighborhoods. 
This model incorporated a spatial adjacency matrix of first-order 
neighbors and employed flat priors. 

All three models were run with and without adjustment for cova
riates. The final model included the following covariates: mean percent 
owner occupancy, mean median income, mean percent above 65 years 
old, mean percent nonwhite; mean smoking prevalence, mean obesity 
prevalence, and mean hospital density per square mile within a 10-mile 
radius. Covariates selected for final model were identified a priori; 
however, in the event of highly correlated or colinear covariate pairs, 
the covariate with the highest bivariate association with the outcome 
was included. In all models, no covariates were found to be significant 
predictors of the zero-inflation component. We used R version 3.6.3 to 
run all statistical analyses (R Core Team, 2020). 

3. Results 

The average area of the 348 LA County neighborhoods was 44.7 sq 
km (SD = 171.8 sq km), with the largest being 1144 sq km (Antelope 
Valley) in the northern exurban areas of the county and the smallest 
being 0.67 sq km (San Pasqual) in a more densely populated area near 
Pasadena, north of downtown LA. The annual mean NO2 across the 
study region was 11.7 ppb (SD = 7.3 ppb; range of 1.6–31.3 ppb). 
Concentrations of NO2 derived from the 2016 land-use regression sur
face are depicted in Fig. 1A. The mean aggregated NO2 across neigh
borhoods was 15.6 ppb (SD = 6.0 ppb) with an interquartile range of 8.7 
ppb. Between March 16th and September 8th, 2020, the LACDPH 
recorded 230,621 confirmed cases of COVID-19, and 5653 deaths due to 
COVID-19 were observed. In a population of about 10 million, this 
translated into a case rate of 2.2% (Fig. 1B), a mortality rate of 0.054% 
(Fig. 1C), and a case-fatality rate of 2.5% (Fig. 1D). The period from 
September 8th, 2020 to February 23rd, 2021 included 875,368 cases 
and 13,344 deaths and was used as sensitivity analysis. 

Between neighborhoods (N = 348), the mean percent owner occu
pancy was 54.7% (SD = 22.0%); mean median income was $47,483 (SD 
= $68,898); mean percent above 65 years old was 13.9% (SD = 0.1%); 
mean percent nonwhite was 45.2% (SD = 20.1%); mean smoking 
prevalence was 12.7% (SD = 2.6%); mean obesity prevalence was 23.7% 
(SD = 7.4%); and the mean hospital density per square mile within a 10- 
mile radius was 1.2x10-4 (SD = 1.4x10-4). The mean hypertension and 
diabetes prevalence were 18.7% (SD = 9.6%), and 7.4% (SD = 4.2%), 
respectively. Although median income was highly associated with the 
outcome in the crude model, it was highly correlated with owner oc
cupancy (r = 0.89); therefore, owner occupancy was selected for in
clusion as it demonstrated a larger bivariate association with all 
outcomes. 

Ordinary residuals from the zero-inflated Poisson and negative 
binomial models demonstrated significant spatial autocorrelation at the 
global (Moran’s I p-value < 0.001) and local (Anselin hot-spots) levels; 
thus, we used a Bayesian zero-inflated Poisson model with a CAR prior 
on the random effects to account for spatial dependence of the residuals 
per neighborhood. 

Crude and adjusted model results for (1) zero-inflated Poisson, (2) 
zero-inflated negative binomial, and (3) zero-inflated Poisson spatial 
models are shown in Table 2. In the adjusted zero-inflated Poisson 
model, we found that the incidence rate ratio (IRR) of NO2 was 1.31 
(95% CI: 1.29, 1.33) for the case rate. That is, we found that an increase 
of 8.7 ppb (IQR) in mean annual NO2 (2016) was associated with a 31% 
increase in COVID-19 incident case rate. The adjusted zero-inflated 
negative binomial and spatial models demonstrated a smaller effect of 
16% (95% CI: 2%, 32%) and 18% (Credible Interval - CrI: 10%, 32%) 
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Fig. 1. Maps of Los Angeles County: A. NO2 from land-use regression (LUR) model, 2016. (Map is zoomed in to demonstrate fine-resolution variability); B. COVID-19 
Case rate (cases/population); C. Mortality rate (deaths/population); and D. Case-fatality rate (deaths/cases) for the period between March 16th and September 8th, 
2020, depicted at the neighborhood level. 

Table 2 
Adjusted association of NO2 (scaled by interquartile range: 8.7 ppb) and COVID-19 from three models: A. Case rate (cases/population); B. Mortality rate (deaths/ 
population); and C. Case-fatality rate (deaths/cases) for Los Angeles County neighborhoods (N = 348) for the period between March 16th and September 8th, 2020. A 
sensitivity analysis was conducted to assess the inclusion of hypertension and diabetes as model covariates. A second sensitivity analysis assessed COVID-19 outcome 
data from a second time period between September 8th, 2020 and February 23rd, 2021 for N = 335 neighborhoods.   

Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

Crude Adjusted Crude Adjusted Crude Adjusted 

Main model1 (n ¼ 348) IRR CI IRR CI IRR CI IRR CI IRR CrI IRR CrI 

A. Case rate 1.82 (1.80, 1.84) 1.31 (1.29, 1.33) 1.47 (1.33, 1.62) 1.16 (1.02, 1.32) 1.77 (1.53, 2.09) 1.18 (1.10, 1.32) 
B. Mortality rate 1.72 (1.62, 1.83) 1.35 (1.23, 1.48) 1.77 (1.50, 2.08) 1.44 (1.11, 1.86) 1.94 (1.46, 2.58) 1.60 (1.37, 1.88) 
C. Case-fatality rate 0.96 (0.91, 1.01) 1.05 (0.96, 1.15) 1.07 (0.91, 1.25) 1.21 (0.97, 1.50) 1.13 (0.87, 1.42) 1.31 (1.10, 1.65) 
Sensitivity Analysis: Including hypertension & diabetes2 (n ¼ 348) 
A. Case rate 1.82 (1.80, 1.84) 1.28 (1.26, 1.30) 1.47 (1.33, 1.62) 1.18 (1.04, 1.33) 1.77 (1.53, 2.09) 1.27 (1.14, 1.34) 
B. Mortality rate 1.72 (1.62, 1.83) 1.35 (1.23, 1.49) 1.77 (1.50, 2.08) 1.57 (1.23, 2.01) 1.94 (1.46, 2.58) 1.44 (1.13, 2.06) 
C. Case-fatality rate 0.96 (0.91, 1.01) 1.05 (0.96, 1.15) 1.07 (0.91, 1.25) 1.19 (0.96, 1.49) 1.13 (0.87, 1.42) 1.34 (1.13, 1.69) 
Sensitivity Analysis: Second time period3 (n ¼ 335) 
A. Case rate 1.66 (1.65, 1.67) 1.29 (1.28, 1.29) 1.22 (1.04, 1.42) 1.21 (1.01, 1.45) 1.38 (1.51, 1.66) 1.24 (1.10, 1.42) 
B. Mortality rate 1.72 (1.63, 1.81) 1.28 (1.21, 1.36) 1.82 (1.53, 2.18) 1.38 (1.14, 1.67) 1.88 (1.53, 2.35) 1.77 (1.34, 2.14) 
C. Case-fatality rate 1.04 (0.99, 1.09) 1.04 (0.98, 1.10) 1.10 (0.95, 1.26) 1.09 (0.94, 1.25) 1.10 (0.98, 1.24) 1.15 (1.00, 1.35)  

1 All models controlled for owner-occupancy rate, percent population > 65 years of age, percent nonwhite, percent smokers, percent obese, and hospital density per 
sq mi within 10 miles. Full model results with covariates can be seen in Appendix A. COVID-19 outcome data was acquired from the Los Angeles County Department of 
Public Health (LACDPH). 

2 Model conducted for sensitivity analysis includes all covariates from main model plus percent hypertensive and percent diabetic derived from 500 Cities Project 
data. Hypertension and diabetes data covered 212 of N = 348 neighborhoods (61% coverage). We imputed the global mean for the remaining 136 neighborhoods. Full 
model results from sensitivity analysis can be seen in Appendix B. 

3 Model conducted for sensitivity analyses includes all covariates from main model. COVID-19 outcome data acquired from the Los Angeles County Department of 
Public Health (LACDPH). 
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increase in case rate, respectively (Table 2A). Adjusted models reduced 
residual uncertainty compared to the crude model estimates for case 
rate. The adjusted Poisson, negative binomial, and spatial models all 
demonstrated an increase in COVID-19 mortality of 35% (95% CI: 23%, 
48%), 44% (95% CI: 11%, 86%), and 60% (CrI: 37%, 88%), respectively, 
across the IQR exposure increment (Table 2B). Again, these adjusted 
models reduced residual uncertainty compared to crude model estimates 
for mortality rate. Finally, adjusted Poisson and negative binomial 
models showed positive yet non-significant results for the association 
between NO2 and COVID-19 case-fatality; however, the spatial CAR 
model demonstrated that an IQR increase in mean annual NO2 was 
associated with a 31% (CrI: 10%, 65%) increase in case-fatality. Sensi
tivity analyses, which included the addition of history of hypertension 
and diabetes in the models, had comparable results across all three 
models. In comparing the two time periods, before and after September 
8th, 2020, we found that the results were largely consistent, despite very 
different case numbers, testing regimes, and improvements in classifying 
deaths. While some differences exist in the size of the effects, overall the 
conclusions remain the same. The results of this sensitivity analysis give 
some assurance that the changes in testing, case ascertainment, and 
mortality classification over time are not having a substantial effect on 
the key conclusion that long-term air pollution exposure likely increases 
the risk of Covid-19 infection and death. Full model results, including 
incidence risk ratios for all covariates, are described in Appendix A for 
the main model, Appendix B for sensitivity analysis including hyper
tension and diabetes, and Appendix C for sensitivity analysis utilizing 
the period between September 8th, 2020 and February 23rd, 2021. 

4. Discussion and conclusion 

We found annual NO2 to be associated with COVID-19 incidence and 
mortality in Los Angeles County neighborhoods while adjusting for 
numerous confounders. These findings were consistent across statistical 
model specification, although risk estimates displayed some variation 
between models. In addition, we found in the CAR an association be
tween NO2 and COVID-19 case-fatality; other models also showed a 
positive but insignificant associations. Covariates in the models largely 
had the expected sign of effect. Furthermore, our sensitivity analyses, 
which included the addition of hypertension and diabetes prevalence 
covariates, had a minimal impact on the effect size or interpretation of 
our model estimates for NO2 and COVID-19 outcomes. Our sensitivity 
analysis involving a second, approximately 6-month time period, with 
slightly different outcome reporting (N = 348 vs N = 335) also 
demonstrated comparable results to the main model and study period. 

Our findings are consistent with two previous studies demonstrating 
a relationship between air pollution and COVID-19 nationally at the 
county scale in the U.S. One study investigated the association between 
NO2 and COVID-19, and they observed remarkably similar findings. 
Specifically, Liang et al. (2020) reported an increase of 4.6 ppb (IQR 
across all counties) NO2 to be associated with a 16.2% (CI: 8.7%, 24.0%) 
increase in mortality rate and an 11.3% (CI: 4.9%, 18.2%) increase in 
case-fatality rate (Liang et al., 2020). When we scaled to Liang et al.’s 
IQR of NO2, our models demonstrated similar results of 17.1% (CI: 
11.3%, 23.2%), 21.3% (CI: 5.9%, 38.9%), and 30.1% (CI: 12.4%, 50.6%) 
increases in COVID-19 mortality rate for our zero-inflated Poisson, 
negative binomial, and CAR models, respectively. In comparison to the 
Wu et al. (2020a) study, which observed that a 1 µg m− 3 increase in air 
pollutant PM2.5 was associated with an 11% increase in mortality rate 
(Wu et al., 2020), we found an 8.7 ppb increase in another traffic-related 
air pollutant, NO2, to be associated with a 35–60% (range of three 
models; Table 2) increase in mortality rate. The Wu et al. study, how
ever, did not report results scaled to the interquartile range of PM2.5, so 
we scaled their results to the IQR for PM2.5 from the Liang et al. study 
(2.6 µg m− 3), which uses a similar number of U.S. counties. This resulted 
in a highly comparable 31.2% increase in mortality for a 2.6 µg m− 3 

increase in PM2.5. Although Wu et al., Liang et al., and the current 

research demonstrated similar effect sizes, there may be different bio
logical effects of NO2 and PM2.5. 

The comparable effect size between our study and the Liang et al. 
study is notable given that the Liang et al. used large-area county-level 
geographies (3122 U.S. counties), and we focused on small-area neigh
borhoods of LA. The two studies also utilized different data sources, 
covariates, and model types – with Liang et al. also controlling for 
multiple pollutants. Our confounders were either similarly associated 
with our outcomes, like those included in the Wu et al. and Liang et al.’s 
studies, or were found to be null, reinforcing the validity of our results 
based on a priori expectation. The larger effect size on mortality rate in 
our study compared to the other two studies could be due to greater 
spatial variability resulting from using building-footprint covariate ag
gregation on smaller-area neighborhood geographies rather than using 
county-level data. 

To our knowledge, only one study from England has undertaken 
small-area neighborhood analysis of the association of COVID-19 and air 
pollution using spatial modeling techniques (Travaglio et al., 2021). 
This study also reported associations with nitrogen dioxides at a sub- 
regional scale. Smaller-area analyses likely reduce potential exposure 
measurement error and lead to more consistent ascertainment of cases 
and deaths than those using the larger county units — both of which 
likely result in more precise and reliable estimates of health effects from 
air pollution exposures. By utilizing Bayesian models with CAR priors, 
we also accounted for spatial autocorrelation or clustering between 
adjacent administratively defined neighborhoods. This addition is 
important as transmission for COVID-19 and other infectious diseases is 
likely to be clustered spatially due to respiratory community spread (see 
map of incidence in Fig. 1). 

Our study has several limitations. Most importantly, our study is 
limited by population-level counts of COVID-19 cases and deaths. These 
aggregate data, made publicly available by LACDPH, have facilitated 
this research but have also introduced some uncertainties. For example, 
it is difficult to determine how testing rates or the prevalence of 
asymptomatic cases, which may show significant neighborhood-level 
variation, could impact our results. We are unable to determine data 
accuracy, specifically for the earlier phases of the pandemic, when data 
collection protocols were still being defined. The number of neighbor
hoods reported by LACDPH has fluctuated, from 348 (in September 
2020) to 335 (in February 2021) distinct areas. Our sensitivity analysis 
on a second time period (September 2020 to February 2021) including 
N = 335 neighborhoods demonstrated similar results to our initial 
period (March 2020 to September 202), so these potential data quality 
issues appear to have minimal effect on the interpretation of our results. 
Ideally, with data access granted, future research would avoid 
aggregate-level data in favor of individual-level outcomes. Utilizing 
individual-level home locations of cases and deaths rather than 
neighborhood-level aggregate counts would greatly improve air pollu
tion exposure attribution and allow for better ascertainment of potential 
confounders. In addition, we could not include daily or weekly obser
vations to account for changes in case or mortality rate over time, but 
rather used cumulative counts for the study period. This was due to 
inconsistent case reporting and incomplete death reporting due to 
human subject concerns earlier in the pandemic. Deaths may have been 
undercounted, as death certificates and coroner reports may incorrectly 
attribute cause of death (Jewell et al., 2020; Quast and Andel, 2020). 
Future research may benefit from using excess mortality for comparison. 
(Banerjee et al., 2020) Indicators of symptom severity from hospital, 
intensive care unit, and emergency room admittance data are more 
difficult to acquire, as they are not publicly available, but future ana
lyses on outcomes of severity would allow for better understanding of 
the effect of NO2 exposure on the progression of the disease. 

This study is also limited by the use of land-use regression from 2016 
to estimate long-term NO2 exposure. Additional years of land-use 
regression surfaces could be utilized to better describe long-term 
trends; however, estimates of NO2 in Los Angeles County in the years 
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immediately preceding the pandemic are likely similar in their spatial 
pattern over such a short time span. Other covariate data included in 
these analyses were spatially misaligned. A strength of this study is our 
use of residential building footprints as an intermediate step in aggre
gating areal covariates. Although using these building footprints better 
accounts for population density patterns than more straightforward 
aggregation techniques (e.g., census-tract directly to neighborhood), the 
method may cause misalignment errors due to differences in building 
characteristics (e.g., height, unit size, etc.). Finally, our spatial models 
accounted for unexplained spatial variability in the between- 
neighborhood random effect, which suggests there may be additional 
covariates with a similar spatial pattern that we have not included in 
these analyses, and further investigation is necessary. While the CAR 
model accounts for this dependence in the statistical inference, we 
cannot rule out important missing confounders. 

In summary, our findings imply a potentially large association be
tween exposure to air pollution and population-level rates of COVID-19 
cases and deaths. Our findings demonstrate comparable results to other 
recent literature, especially concerning the association of long-term NO2 
and COVID-19 mortality rate. Our small-area analyses, covariate ag
gregation methods using building footprints for accounting for 

population density variability, and utilization of spatial modeling (CAR 
model with spatial random effect) make novel contributions to the 
available literature. These findings are especially important for targeting 
interventions aimed at limiting the impact of COVID-19 in polluted 
communities. 

In the U.S., more polluted communities often have lower incomes 
and higher proportions of Black and Latinx people. In addition, Black 
and Latinx people have higher rates of pre-existing conditions, poten
tially further exacerbating the risk of COVID-19 transmission and death 
(Clark et al., 2014; O’Neill et al., 2003). The elevated risk of case inci
dence and mortality observed in these populations might result partly 
from higher exposure to air pollution. As COVID-19 data reporting im
proves and data access is given more readily to researchers, we will 
further refine these analyses to the individual-level in a spatial 
framework. 
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Appendix A 

Adjusted association of NO2 (scaled by interquartile range: 8.7 ppb) and COVID-19 from three models: A. Case rate (cases/population); B. Mortality 
rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los Angeles County neighborhoods (N = 348) for the period between March 16th 
and September 8th, 2020. NO2 was scaled by its interquartile range for interpretation purposes; other covariates were not scaled.   

A. Case rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 

NO2 IQR 1.307 (1.288, 1.327) 1.161 (1.024, 1.316) 1.180 (1.098, 1.316) 
Owner occupancy (%) 0.996 (0.996, 0.997) 0.996 (0.992, 0.999) 0.998 (0.996, 0.999) 
> 65 years (%) 0.977 (0.976, 0.978) 0.956 (0.942, 0.969) 0.965 (0.951, 0.989) 
Nonwhite (%) 0.995 (0.995, 0.996) 1.001 (0.997, 1.005) 0.994 (0.991, 0.997) 
Smokers (%) 1.020 (1.018, 10.022) 0.992 (0.966, 1.018) 1.033 (1.009, 1.073) 
Obese (%) 1.040 (1.039, 1.041) 1.033 (1.023, 1.042) 1.038 (1.035, 1.045) 
Hospital density 1.123 (1.118, 1.129) 1.036 (0.966, 1.111) 1.189 (1.149, 1.232) 
B. Mortality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.347 (1.225, 1.481) 1.438 (1.114, 1.857) 1.597 (1.367, 1.879) 
Owner occupancy (%) 0.989 (0.986, 0.991) 0.986 (0.979, 0.993) 0.987 (0.980, 0.991) 
> 65 years (%) 1.035 (1.027, 1.044) 1.040 (1.014, 1.067) 1.034 (1.012, 1.065) 
Nonwhite (%) 0.997 (0.995, 0.999) 0.996 (0.991, 1.002) 0.997 (0.992, 1.002) 
Smokers (%) 1.037 (1.024, 1.050) 1.049 (1.005, 1.094) 1.033 (0.981, 1.081) 
Obese (%) 1.019 (1.014, 1.024) 1.025 (1.010, 1.040) 1.025 (1.009, 1.041) 
Hospital density 1.061 (1.027, 1.096) 1.014 (0.902, 1.140) 1.090 (0.961, 1.289) 
C. Case-fatality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.049 (0.959, 1.148) 1.207 (0.969, 1.504) 1.308 (1.100, 1.650) 
Owner occupancy (%) 0.991 (0.989, 0.994) 0.993 (0.987, 0.998) 0.994 (0.989, 1.000) 
> 65 years (%) 1.070 (1.061, 1.080) 1.059 (1.038, 1.080) 1.064 (1.040, 1.086) 
Nonwhite (%) 1.001 (0.999, 1.003) 0.998 (0.993, 1.003) 0.998 (0.994, 1.002) 
Smokers (%) 1.001 (0.997, 1.022) 1.039 (1.001, 1.079) 1.037 (0.994, 1.070) 
Obese (%) 0.983 (0.977, 0.988) 0.985 (0.974, 0.997) 0.990 (0.978, 1.001) 
Hospital density 0.954 (0.924, 0.985) 0.927 (0.840, 1.023) 0.979 (0.868, 1.100)  

Appendix B 

Model conducted for sensitivity analyses – including main model (Appendix A) covariates with the addition of hypertension and diabetes derived 
from the 500 Cities Project dataset. Hypertension and diabetes data covered 212 of N = 348 (61% coverage) neighborhoods. We imputed the global 
mean for the remaining 136 neighborhoods. This table shows the adjusted association of NO2 (scaled by interquartile range: 8.7 ppb) and COVID-19 
from three models: A. Case rate (cases/population); B. Mortality rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los Angeles 
County neighborhoods (N = 348) for the period between March 16th and September 8th, 2020. NO2 was scaled by its interquartile range for 
interpretation purposes; other covariates were not scaled. 

J. Lipsitt et al.                                                                                                                                                                                                                                   



Environment International 153 (2021) 106531

7

A. Case rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 

NO2 IQR 1.280 (1.261, 1.299 1.175 (1.037, 1.332) 1.272 (1.143, 1.344) 
Owner occupancy (%) 0.999 (0.998, 0.999) 0.996 (0.992, 1.000) 1.000 (0.999, 1.001) 
> 65 years (%) 0.974 (0.973, 0.976) 0.955 (0.942, 0.969) 0.962 (0.951, 0.972) 
Nonwhite (%) 0.994 (0.994, 0.995) 1.000 (0.996, 1.004) 1.004 (1.003, 1.006) 
Smokers (%) 1.014 (1.012, 1.016) 0.992 (0.965, 1.018) 1.005 (0.993, 1.020) 
Obese (%) 1.034 (1.033, 1.035) 1.030 (1.021, 1.040) 1.023 (1.014, 1.032) 
Hospital density 1.109 (1.103, 1.115) 1.028 (0.957, 1.103) 1.046 (1.005, 1.119) 
Hypertensive (%) 0.981 (0.980, 0.983) 0.982 (0.967, 0.998) 0.978 (0.974, 0.983) 
Diabetic (%) 1.073 (1.069, 1.077) 1.044 (1.005, 1.084) 1.060 (1.047, 1.077) 
B. Mortality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.354 (1.233, 1.487) 1.570 (1.226, 2.012) 1.441 (1.133, 2.058) 
Owner occupancy (%) 0.991 (0.989, 0.994) 0.988 (0.982, 0.995) 0.989 (0.979, 0.996) 
> 65 years (%) 1.032 (1.023, 1.040) 1.034 (1.008, 1.061) 1.027 (0.997, 1.059) 
Nonwhite (%) 0.996 (0.994, 0.998) 0.995 (0.989, 1.001) 0.999 (0.993, 1.006) 
Smokers (%) 1.033 (1.020, 1.047) 1.054 (1.010, 1.100) 1.027 (0.973, 1.076) 
Obese (%) 1.012 (1.007, 1.017) 1.021 (1.006, 1.036) 1.021 (0.999, 1.046) 
Hospital density 1.047 (1.012, 1.083) 1.000 (0.887, 1.127) 1.100 (0.897, 1.242) 
Hypertensive (%) 0.983 (0.974, 0.991) 0.985 (0.959, 1.012) 0.992 (0.980, 1.019) 
Diabetic (%) 1.071 (1.049, 1.094) 1.040 (0.975, 1.108) 1.028 (0.943, 1.070) 
C. Case-fatality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.050 (0.959, 1.149) 1.194 (0.958, 1.489) 1.336 (1.127, 1.691) 
Owner occupancy (%) 0.992 (0.989, 0.994) 0.991 (0.985, 0.997) 0.994 (0.988, 1.001) 
> 65 years (%) 1.071 (1.061, 1.081) 1.062 (1.041, 1.084) 1.061 (1.042, 1.084) 
Nonwhite (%) 1.001 (0.999, 1.003) 0.999 (0.994, 1.004) 0.998 (0.991, 1.003) 
Smokers (%) 1.007 (0.994, 1.020) 1.040 (1.002, 1.080) 1.046 (0.996, 1.105) 
Obese (%) 0.983 (0.978, 0.988) 0.987 (0.975, 0.999) 0.992 (0.981, 1.002) 
Hospital density 0.957 (0.927, 0.989) 0.935 (0.845, 1.034) 0.957 (0.858, 1.047) 
Hypertensive (%) 1.003 (0.994, 1.012) 0.998 (0.975, 1.022) 1.010 (0.998, 1.023) 
Diabetic (%) 1.001 (0.980, 1.021) 0.987 (0.932, 1.045) 0.966 (0.939, 0.999)  

Appendix C 

Model conducted for sensitivity analyses using secondary time period. Adjusted association of NO2 (scaled by interquartile range: 8.7 ppb) and 
COVID-19 from three models: A. Case rate (cases/population); B. Mortality rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los 
Angeles County neighborhoods (N = 335) for the period between September 8th, 2020 and February 23rd, 2021. NO2 was scaled by its interquartile 
range for interpretation purposes; other covariates were not scaled.   

A. Case rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 

NO2 IQR 1.285 (1.276, 1.294) 1.212 (1.017, 1.445) 1.245 (1.101, 1.422) 
Owner occupancy (%) 1.000 (0.999, 1.000) 0.996 (0.991, 1.001) 0.996 (0.995, 0.999) 
> 65 years (%) 0.985 (0.985, 0.986) 0.940 (0.923, 0.958) 0.990 (0.984, 0.995) 
Nonwhite (%) 0.995 (0.995, 0.995) 0.990 (0.985, 0.995) 0.991 (0.990, 0.994) 
Smokers (%) 1.042 (1.041, 1.043) 1.028 (0.990, 1.068) 1.040 (1.032, 1.048) 
Obese (%) 1.033 (1.033, 1.034) 1.035 (1.022, 1.049) 1.039 (1.035, 1.044) 
Hospital density 1.092 (1.089, 1.095) 0.885 (0.803, 0.974) 1.220 (1.176, 1.244) 
B. Mortality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.280 (1.206, 1.358) 1.377 (1.135, 1.671) 1.767 (1.339, 2.141) 
Owner occupancy (%) 0.997 (0.995, 0.998) 0.999 (0.993, 1.004) 1.000 (0.996, 1.008) 
> 65 years (%) 1.025 (1.019, 1.030) 0.980 (0.960, 1.002) 1.002 (0.980, 1.023) 
Nonwhite (%) 1.000 (0.999, 1.001) 1.002 (0.997, 1.006) 1.003 (0.999, 1.007) 
Smokers (%) 1.043 (1.035, 1.052) 1.040 (1.005, 1.076) 1.023 (0.991, 1.054) 
Obese (%) 1.020 (1.017, 1.023) 1.015 (1.004, 1.027) 1.020 (1.006, 1.037) 
Hospital density 1.100 (1.076, 1.124) 1.018 (0.929, 1.116) 1.074 (0.984, 1.142) 
C. Case-fatality rate Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson with spatial random effect  

IRR CI IRR CI IRR CrI 
NO2 IQR 1.036 (0.977, 1.098) 1.087 (0.944, 1.251) 1.154 (1.004, 1.348) 
Owner occupancy (%) 0.996 (0.995, 0.998) 0.999 (0.995, 1.003) 0.999 (0.996, 1.003) 
> 65 years (%) 1.053 (1.047, 1.059) 1.037 (1.022, 1.052) 1.035 (1.018, 1.052) 
Nonwhite (%) 1.005 (1.003, 1.006) 1.003 (1.000, 1.007) 1.004 (1.002, 1.007) 
Smokers (%) 1.003 (0.995, 1.011) 1.008 (0.983, 1.032) 0.999 (0.977, 1.020) 
Obese (%) 0.991 (0.988, 0.995) 0.991 (0.984, 0.999) 0.992 (0.985, 1.001) 
Hospital density 1.011 (0.990, 1.033) 1.022 (0.960, 1.087) 1.038 (0.967, 1.105)        
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