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Abstract
Introduction: Obesity is a main global health issue and an 
outstanding cause of morbidity and mortality. Exploring 
miRNA profiling may help further studies on obesity. Meth-
ods: Three morbidly obese and 5 normal-weight Chinese 
women were enrolled in the microarray testing group. Ab-
dominal subcutaneous adipose tissue (SAT) samples were 
excised. Total RNAs including miRNAs were extracted. Af-
fymetrix GeneChip miRNA 4.0 Array was used to compare 
the expression profiles of miRNAs between the 2 groups. 
Two algorithms, miRanda and TargetScan, were used to pre-
dict target messenger RNAs (mRNAs). Bioinformatics analy-
sis was then done based on the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) databas-
es. The sample sizes were further expanded to 8 morbidly 
obese and 9 normal-weight subjects, and quantitative real-
time PCR (qRT-PCR) was utilized to verify the expression of 
differential miRNAs and target genes. Results: As per the mi-
croarray assay, 58 miRNAs were differentially expressed in 
the SAT from the morbidly obese and normal-weight groups 
(Fold > 4, p < 0.01, FDR < 0.05); 54 of these were downregu-

lated and 4 were upregulated in morbidly obese subjects. A 
total of 1,333 target genes were jointly predicted by miRan-
da and TargetScan. Further bioinformatics analysis showed 
that the differential miRNAs were involved in 269 significant 
biological functions and 89 significant signaling pathways. 
The validation experiment by qRT-PCR showed that the ex-
pression levels of miRNA-143-5p, miRNA-143-3p, miRNA-
145-5p, and let-7a-5p were downregulated in morbidly 
obese subjects, consistent with the microarray detection. 
High-mobility group A2 (HMGA2), a target gene of the down-
regulated miRNA let-7a-5p, was first found to be upregulat-
ed 3.19-fold in the SAT of morbidly obese Chinese women 
when compared to normal-weight controls. Conclusions: 
MiRNA downregulation is a hallmark of intact SAT in a mor-
bidly obese state. Transcription (DNA-dependent), small-
molecule metabolic processes, the MAPK signaling pathway, 
and cancer-related pathways may play important roles in the 
occurrence and development of obesity. For the first time, 
we proved that HMGA2, a target gene of let-7a-5p, is upreg-
ulated in the SAT of morbidly obese Chinese women.
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Introduction

Obesity is defined by the World Health Organization 
(WHO) as a disease [1] and has become a significant pub-
lic health problem. In 2014, it was found that obesity af-
fected 10.8% of the world’s adult males and 14.9% of adult 
females, with 0.64% (0.46–0.86) of the men and 1.6% 
(1.3–1.9) of the women being morbidly obese [2]. In par-
allel with the current global scenario, obesity has become 
one of the most severe problems in China. The number 
of obese people in China is the largest in the world, affect-
ing > 89.6 million Chinese people [2]. The outcomes of 
obesity are widespread, and the disease contributes sub-
stantially to cardiovascular diseases, type 2 diabetes mel-
litus, and certain types of cancer [3]. Compared with the 
normal-weight population, the mortality rate of obesity 
has increased by at least 50% [4]. As a pathophysiological 
disorder, obesity is characterized by excess accumulation 
of adipose tissue in the body. Adipose tissue contains sev-
eral different cell populations including adipocytes, pre-
adipocytes, mesenchymal stem cells (MSCs), macro-
phages, and lymphocytes [5]. Adipose tissue is a highly 
responsive endocrine organ that influences and interacts 
with metabolic homeostasis and inflammation [6]. It is 
the main lipid storage depot in our body and plays a cru-
cial role in buffering the daily influx of dietary fat entering 
the circulation. Under the condition of obesity, subcuta-
neous adipose tissue (SAT) may fail to expand appropri-
ately to store energy surpluses. The expandability of SAT 
thus seems to be a critical factor in the development of 
obesity-associated comorbidities [7].

MicroRNAs (miRNAs), encoded by the genome DNA, 
are a kind of small endogenous non-coding RNA that is 
widely expressed in the body [8]. MiRNAs are crucial ele-
ments in cell transcriptional regulation and are estimated 
to regulate > 60% of human messenger RNAs (mRNAs) 
[9], either via degradation of target mRNAs or by trans-
lational repression [10]. MiRNAs are useful for early di-
agnosis, risk assessment, and monitoring disease progres-
sion because they are more sensitive, more stable, and 
more slowly degraded than protein and mRNAs [11, 12]. 
Integrative miRNA-gene-pathway networks provide 
tools for the identification of disease-related miRNA sig-
natures [13]. A variety of pathophysiological processes, 
such as the metabolism, have previously been proven to 
be affected by miRNAs [14]. Thus, exploring miRNA 
profiling may help with further studies on obesity. How-
ever, there is a shortage of in-depth analyses of obesity-
related miRNAs alterations. Most previous studies fo-
cused on circulating miRNAs, or used animal models, or 

fat cell lines rather than human adipose tissue [15–17]. 
Also, most past studies are characterized by significant 
inconsistency, and focused on the differentiation of adi-
pocytes and adipogenesis [14, 18] which can only reveal 
a small part of the pathophysiological process of obesity.

Few studies have analyzed the expression pattern of 
miRNAs in human fatty tissues in an obese state. In addi-
tion, the limited studies have all been conducted in West-
ern populations. Arner et al. [19] identified 20 altered 
miRNAs (2 upregulated and 18 downregulated) in the 
white adipose tissue of obese Swedish patients. Ortega et 
al. [20] revealed that 11 miRNAs were significantly de-
regulated in the SAT of obese Spanish women. Martinel-
li et al. [21] showed that the expression of miRNA-519d 
was altered in the SAT of obese Italian patients. All these 
studies used microarray chips to study the miRNA ex-
pression patterns; an important caveat is that the func-
tional roles of the identified miRNAs were not well estab-
lished [22]. The lack of miRNA profile studies on adipose 
tissues in Eastern populations and the absence of bioin-
formatics analysis of the identified miRNAs limit our un-
derstanding of the role played by miRNAs in obesity in 
Easterners.

In this study, we used the Affymetrix GeneChip mi
RNA 4.0 Array to compare the miRNA expression signa-
tures in the SAT of 3 morbidly obese and 5 normal-weight 
Chinese women. We also dissected the role of miRNAs 
via GO and KEGG bioinformatic analysis. The levels of 
differential miRNAs and the interested transcription 
genes were further validated using quantitative real-time 
PCR (qRT-PCR), after the enlargement of the sample size 
to 8 morbidly obese and 9 normal-weight subjects. This 
study may help provide unique data on the SAT miRNA 
expressing profiles and regulatory networks concerning 
oriental morbid obesity.

Material and Methods

General Characteristics of Enrolled Subjects
Three morbidly obese female patients (42.00 ± 7.57 years of age; 

BMI 47.53 ± 1.53) who received laparoscopic adjustable gastric 
banding (LAGB), and 5 normal-weight females (aged 47.20 ± 2.58 
years; BMI 22.03 ± 0.78) admitted for elective abdominal surgical 
procedures (4 for uterus myoma and 1 for hepatic hemangioma), 
were enrolled in the microarray testing group. We further expand-
ed the sample size for the purpose of validating the differentially 
expressed miRNAs and the target genes. Eight morbidly obese fe-
male patients (including the 3 obese patients in the microarray 
group) aged 34.88 ± 3.42 years (BMI 45.45 ± 2.40) and 9 normal-
weight females (including 2 of the normal-weight patients in the 
microarray group) aged 42.11 ± 2.23 years (BMI: 22.42 ± 0.54) 
were enrolled. A comprehensive nutritional assessment was per-
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formed before surgery. All participants were in approximately the 
middle of their menstrual cycle and reported that their body weight 
had been stable for at least 3 months. Baseline anthropometric and 
blood pressure were measured. After an overnight fast, blood sam-
ples were obtained from all participants and then measured using 
routine automated methods in our clinical laboratory. All enrolled 
subjects were required to have relatively normal hepatic-renal 
functions (aspartate transaminase < 80 U/L, creatinine < 132 
µmol/L, and blood urea nitrogen < 7.14 mmol/L). No history of 
cancer, no acute inflammatory diseases, and no chronic diseases 
other than obesity and its comorbidities were allowed. Subjects 
reporting intake of continuous medication were excluded. All en-
rolled patients also fasted overnight before surgery. 

Preparation of SAT Samples
Abdominal SAT samples (approx. 1–2 cm3 of fat) were extract-

ed from all subjects by experienced surgeons. These fresh SAT 
specimens were washed with cold saline solution, and then imme-
diately frozen in liquid nitrogen and stored at –80  ° C until analysis.

RNA Extraction
Total RNAs, including miRNAs, were extracted from SAT us-

ing the miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) accord-
ing to the manufacturer’s protocol. The purity and quantity of 
RNA were assessed with the NanoDrop2000 instrument (Thermo 
Fisher Scientific, Boston, MA, USA).

RNA Profiling
Experiments of microarray chips were conducted by Shanghai 

Qiming Information Technology Co., Ltd. The steps were as fol-
lows: RNA was labeled with the flash tag biotin HSR kit (Geni-
sphere, Hatfield, PA, USA) according to the manufacturer’s in-
structions for poly(A)-tailing. Labeled samples were then hybrid-
ized with Affymetrix GeneChip miRNA 4.0 Array (Affymetrix, 
Santa Clara, CA, USA). This microarray contains 30,424 total ma-
ture miRNA probe sets, including 2,578 mature human miRNAs 
and miRNAs from 202 other organisms [23]. Samples were washed 
and stained with the Affymetrix GeneChip2 hybridization wash 
and stain kit, and then scanned with the Affymetrix GeneChip 
Scanner 3000 7G to generate fluorescent images, as described in 
the manufacturer’s protocol [24].

For miRNA array analysis, CEL-files of the raw data were pro-
duced with Affymetrix GeneChip command console software v4.0. 
Partek Genomics Suite software (St. Louis, MO, USA) was used for 
further analysis. The RVM t test was used to filter the differential-
ly expressed miRNAs because this test can raise degrees of freedom 
effectively in the cases of small samples [25]. p values were adjust-
ed for multiple testing using Benjamini-Hochberg method with a 
false discovery rate (FDR) of 0.05 [26]. Fold changes were calcu-
lated by comparing gene expression levels between morbidly obese 
and normal-weight samples, and then expressed as the ratio be-
tween the averages of normalized intensities of the 2 groups. Mi
RNAs with a fold-change threshold > 4 were considered differen-
tially expressed [27].

Target Gene Prediction
Target genes of differential miRNAs were predicted by 2 algo-

rithms: miRanda (http://www.microrna.org/microrna/home.do) 
and TargetScan (http://www.targetscan.org/). The parameters of 
miRanda were set as alignment score ≥140 and free energy ≤–20 

[28]. The parameters of TargetScan were set as context score per-
centile > 90 [29].

Gene Ontology Category
Gene ontology (GO) analysis was employed to analyze the 

functional enrichment of the differentially expressed miRNAs 
(http://geneontology.org/). Fisher’s exact test and the χ2 test were 
used to classify the GO categories. GO enrichment calculation 
helped to provide a measure of the functional significance. p < 
0.001 with an FDR < 0.05 was used as the threshold of significance.

Pathway Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis was employed to analyze the significant pathways associ-
ated with the differential miRNAs (http://www.genome.jp/kegg/). 
Fisher’s exact test and the χ2 test were used to classify the signifi-
cant pathways. KEGG enrichment calculation helped to provide a 
measure of the pathway significance. p < 0.001 with an FDR < 0.05 
was used as the threshold of significance.

The Validation of Differential miRNA Levels by qRT-PCR 
Methods
Differential miRNAs were validated using qRT-PCR after 

RNA-tailing. Reverse transcription was performed using the Mir-
XTM miRNA first-strand synthesis kit (Clontech, Dalian, China) 
according to the user manual. U6 was used as an endogenous con-
trol. It was previously used as internal reference in the studies of 
abdominal adipose-derived MSCs [30] and human visceral tissue 
and SAT [31, 32]. cDNA was amplified in a single reaction with the 
forward primers, reverse primers, and QuantiTect SYBR Green 
PCR Master Mix (Qiagen, Valencia, CA, USA). The primer se-
quences used in our experiment are shown in online supplemen-
tary Table S1 (for all online suppl. material, see www.karger.com/
doi/10.1159/000511772). PCR amplification was performed on the 
ABI ViiA 7 real-time PCR system (Applied Biosystems, Carlsbad, 
CA, USA). The 2-ΔΔCT method was applied to determine the rela-
tive abundance of each miRNA. The specificity of SYBR Green 
RT-PCR was determined by monitoring the amplification profile 
and the dissociation curve of the target amplicons [33].

The Validation of Differential miRNA Target Gene Levels by 
qRT-PCR Methods
Total RNAs in SAT were reverse-transcripted by using the 

PrimeScriptTM RT reagent kit (Takara, Bio, Inc., Shiga, Japan). 
GAPDH was used as the endogenous control gene. cDNA was am-
plified in a single reaction with the forward primers, reverse prim-
ers, and QuantiTect SYBR Green PCR Master Mix (Qiagen). Prim-
er sequences used in our experiment are shown in online supple-
mentary Table S2. PCR amplification was performed on the 
Applied Biosystems ABI ViiA 7 real-time PCR system. The 2-ΔΔCT 
method was applied to determine the relative abundance of each 
mRNA. The specificity of amplification was also analyzed by using 
the amplification profile and the dissociation curve of the target 
genes [33].

Statistical Analysis
Patients’ anthropometric data, laboratory measurements, qRT-

PCR results, and Pearson’s correlation were analyzed using SPSS 
v22.0 (SPSS Inc. Chicago, IL, USA). Sample sizes in microarray 
and qRT-PCR analysis were determined using R statistical soft-
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ware v4.0.2 and the statistical power was 0.75 [34, 35]. The Student 
t test or Mann-Whitney U test was used for group comparison. 
Normally distributed data are presented as mean ± SEM. Nonnor-
mally distributed parameters are reported as medians (range). p < 
0.05 was considered statistically significant.

Results

Anthropometric and Laboratory Measurements
Anthropometric measurements and biochemical 

characteristics of the 3 morbidly obese and 5 normal-
weight individuals are listed in Table 1. As expected, 
obese women had significantly greater body weight, BMI, 
and waist circumference (p all < 0.001). Fasting blood glu-
cose (FBG) and triglyceride (TG) levels of morbidly obese 
patients were markedly higher than those of normal-
weight controls (both p < 0.05). There was no consider-
able difference in age, height, and blood pressure between 
the 2 groups. Serum levels of total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and low-densi-
ty lipoprotein cholesterol (LDL-C) were also not signifi-
cantly different. As an inflammatory marker, the level of 
circulating high-sensitivity C-reactive protein (hs-CRP) 
in morbidly obese subjects was much higher than the up-
per normal limit (3 mg/L). The hs-CRP level was not 
available for the normal-weight controls.

Table 1. Anthropometric characteristics of the study groups

Normal-weight 
(n = 5)

Morbidly obese 
(n = 3)

p value

Age, years 47.20±2.58 42.00±7.57 0.455
Height, m 1.63±0.02 1.66±0.04 0.454
Weight, kg 58.30±1.87 131.33±4.38 <0.001
BMI 22.03±0.78 47.53±1.53 <0.001
WC, cm 74.40±1.21 138.83±4.85 <0.001
SBP, mm Hg 110 (103–160) 160 (160–220) 0.071
DBP, mm Hg
FBG, mmol/L
TC, mmol/L
TG, mmol/L
HDL-C, mmol/L
LDL-C, mmol/L

72.40±7.62
5.34±0.13
5.21±0.20
0.61±0.03
2.14±0.33
2.63±0.21

115.0±22.55
7.47±0.24
5.93±0.83
2.47±0.10
0.99±0.25
4.06±0.58

0.070
<0.001

0.555
0.001
0.065
0.158

hs-CRP, mg/L – 10.00 (4.81–10.00) –

BMI, body mass index; WC, waist circumference; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; FBG, fasting blood 
glucose; TC, total cholesterol; TG, triglyceride; HDL-C, high-den-
sity lipoprotein cholesterol; LDL-C, low-density lipoprotein cho-
lesterol; hs-CRP, high-sensitivity C-reactive protein.

Table 2. The differentially expressed miRNAs in the SAT of the 
study groups

miRNA O/N p value FDR Style

miR-195-5p 0.014 0.0027633 0.0291 Down
let-7a-5p 0.014 0.0068512 0.0412 Down
let-7i-5p 0.017 0.0052647 0.0353 Down
miR-378a-5p 0.033 0.0000367 0.0147 Down
miR-497-5p 0.034 0.0010554 0.0236 Down
miR-27a-3p 0.034 0.0032048 0.0311 Down
miR-29a-3p 0.037 0.0022679 0.0266 Down
miR-30a-5p 0.037 0.0033689 0.0315 Down
miR-152-3p 0.040 0.0034639 0.0315 Down
miR-28-5p 0.041 0.0004003 0.0211 Down
miR-342-3p 0.041 0.0029938 0.0306 Down
miR-28-3p 0.042 0.0030938 0.0311 Down
miR-27b-3p 0.045 0.0010409 0.0236 Down
miR-361-5p 0.048 0.0091530 0.0470 Down
miR-151a-5p 0.049 0.0091041 0.0470 Down
miR-150-5p 0.051 0.0041417 0.0326 Down
miR-10a-5p 0.052 0.0008831 0.0236 Down
miR-345-5p 0.056 0.0001748 0.0147 Down
miR-181b-5p 0.056 0.0085548 0.0470 Down
miR-30c-5p 0.060 0.0055179 0.0358 Down
miR-146a-5p 0.063 0.0089737 0.0470 Down
miR-339-3p 0.070 0.0009224 0.0236 Down
miR-34a-5p 0.071 0.0046445 0.0330 Down
miR-224-3p 0.071 0.0092876 0.0472 Down
miR-30d-5p 0.074 0.0043428 0.0330 Down
miR-132-3p 0.075 0.0050523 0.0343 Down
miR-362-5p 0.078 0.0005181 0.0211 Down
miR-409-3p 0.084 0.0039087 0.0324 Down
miR-7977 0.087 0.0002723 0.0170 Down
miR-378e 0.089 0.0069746 0.0412 Down
miR-664a-5p 0.091 0.0047292 0.0333 Down
miR-193a-3p 0.095 0.0027373 0.0291 Down
miR-143-3p 0.096 0.0042270 0.0326 Down
miR-29b-2-5p 0.097 0.0025800 0.0288 Down
miR-324-3p 0.098 0.0055162 0.0358 Down
miR-130a-3p 0.099 0.0002611 0.0170 Down
miR-30a-3p 0.099 0.0021607 0.0266 Down
miR-19b-3p 0.100 0.0049551 0.0340 Down
miR-143-5p 0.110 0.0023759 0.0273 Down
miR-382-5p 0.110 0.0081096 0.0455 Down
miR-501-3p 0.120 0.0000513 0.0147 Down
miR-339-5p 0.130 0.0031182 0.0311 Down
miR-30c-2-3p 0.150 0.0000695 0.0147 Down
miR-99b-3p 0.150 0.0071791 0.0419 Down
miR-145-5p 0.150 0.0080244 0.0454 Down
miR-29c-5p 0.150 0.0087899 0.0470 Down
miR-502-3p 0.160 0.0089931 0.0470 Down
miR-584-5p 0.170 0.0025082 0.0284 Down
miR-93-3p 0.170 0.0037939 0.0324 Down
miR-1271-5p 0.190 0.0091395 0.0470 Down
miR-324-5p 0.210 0.0001372 0.0147 Down
miR-140-3p 0.210 0.0044805 0.0330 Down
miR-191-5p 0.220 0.0086791 0.0470 Down
miR-17-3p 0.230 0.0041569 0.0326 Down
miR-3679-5p 4.050 0.0016929 0.0236 Up
miR-1224-5p 4.260 0.0044494 0.0330 Up
miR-5196-5p 4.710 0.0086927 0.0470 Up
miR-6086 4.810 0.0041345 0.0326 Up

O/N, obese/normal-weight; FDR, false discovery rate.
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Fig. 1. Hierarchical clustering of the differential miRNAs in the SAT of the study groups. Fifty-eight differen-
tially regulated miRNAs of morbidly obese (n = 3) and normal-weight (n = 5) subjects were hierarchically clus-
tered and represented using TreeView. In the SAT of morbidly obese subjects, 54 miRNAs were downregulated 
and 4 were upregulated. Red, high expression; green, low expression. The intensity represents the magnitude of 
the expression difference. The 2 closest remaining items (those with the smallest distance) are joined by a node/
branch of a tree, with the length of the branch set to the distance between the joined items.
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Microarray Analysis
As presented in Table 2, 58 miRNAs were differen-

tially expressed (> 4-fold, p < 0.01, FDR < 0.05) in the SAT 
of obese patients and normal-weight controls as per the 
Affymetrix GeneChip miRNA 4.0 Array. Of these, 54 
miRNAs were downregulated and 4 were upregulated in 
the morbidly obese group. The range of differential down-
regulation was 0.014–0.23, while that of upregulation was 
4.05–4.81. A hierarchical clustering algorithm was used 
to cluster the differentially expressed miRNAs, and the 
results showed that the hierarchical clustering of all cov-
ered human miRNAs could clearly separate the SAT of 
morbidly obese patients from that of controls (Fig. 1).

Biological Analysis of the Differential miRNAs
Target Gene Prediction
The miRanda and TargetScan computational methods 

were combined to predict the target genes of the 58 dif-
ferentially expressed miRNAs. As presented in Figure 2 
and online supplementary Table S3, miRanda predicted 
14,743 and TargetScan predicted 4,335 target genes. A to-
tal of 1,333 target genes were jointly predicted by miRan-
da and TargetScan.

The miRNA-Gene-Network
The differential miRNAs and predicted target genes 

form a regulatory network. In Figure 3, the circles repre-
sent target genes and the squares represent miRNAs. The 
relationships between them were represented by one 
edge. The network was denoted by degree. Degree refers 

to the contribution of 1 miRNA to the genes around or 
the contribution of 1 gene to the miRNAs around. The 
key miRNAs and genes were in the network and had the 
most significant degrees. In this miRNA-gene-network, 
miRNA-34a-5p, miRNA-27b-3p, miRNA-324-3p, mi
RNA-143-5p, miRNA-497-5p, let-7a-5p, miRNA-7977, 
and miRNA-145-5p were the key miRNAs with strong 
regulatory capacities, and were located at the center of the 
regulatory network. Some predicted target genes, namely 
ABL2, CBL, COL21A1, DDX3X, DYNC1LI2, NTRK2, and 
PPP2CA, had the highest regulatory degrees.

GO Analysis of the Differential miRNAs
GO analysis indicated that 269 GO terms were en-

riched (p < 0.001 and FDR < 0.05). The top 20 significant 
GO categories by the differential miRNAs were transcrip-
tion (DNA-dependent), regulation of transcription 
(DNA-dependent), positive regulation of transcription 
from RNA polymerase II promoter, axon guidance, signal 
transduction, negative regulation of transcription from 
RNA polymerase II promoter, positive regulation of tran-
scription (DNA-dependent), negative regulation of tran-
scription (DNA-dependent), cell adhesion, small-mole-
cule metabolic processes, synaptic transmission, protein 
phosphorylation, intracellular signal transduction, vesi-
cle-mediated transport, transmembrane transport, the 
transforming growth factor (TFG)-β receptor signaling 
pathway, the neurotrophin TRK receptor signaling path-
way, gene expression, cellular lipid metabolic process, 
and protein transport (Fig. 4; online suppl. Table S4).

The miRNA-GO-Network
The differential miRNAs and GO functions formed a 

regulatory network. In online supplementary Figure S1, 
the circles represent GO functions and the squares repre-
sent miRNAs. The relationships between them were rep-
resented by one edge. The key miRNAs and GO functions 
were in the network and had the most significant degrees. 
In the miRNA-GO-network, 15 miRNA including mi
RNA-34a-5p, miRNA-27b-3p, miRNA-150-5p, let-7a-5p, 
miRNA-7977, miRNA-143-5p, miRNA-664a-5p, let-7i-
5p, miRNA-132-3p, miRNA-497-5p, miRNA-324-3p, 
miRNA-29b-2-5p, miRNA-143-3p, miRNA-146a-5p, and 
miRNA-145-5p were involved in most biological func-
tions. They were located at the network center with larg-
er representative areas and more network lines. Five GO 
categories including small-molecule metabolic processes, 
negative regulation of the apoptotic process, the epider-
mal growth factor (EGF) receptor signaling pathway, 
protein phosphorylation, and the fibroblast growth factor 

1,333Miranda
14,743

Targetscan
4,335

Co-predicted target genes

Fig. 2. Target gene prediction of the differential miRNAs. Venn 
diagrams show the number of target genes predicted by the mi-
Randa and TargetScan algorithms.
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(FGF) receptor signaling pathway were the ones with the 
highest regulatory degrees.

Pathway Analysis of the Differential miRNAs
As per the KEGG pathway analysis of predicted target 

genes, 89 signaling pathways were enriched (p < 0.001 
and FDR < 0.05). As presented in Figure 5 and online sup-
plementary Table S5, the top 10 ranked significant path-
ways were the MAPK signaling pathway, pathways in 
cancer, the PI3K-Akt signaling pathway, the Ras signal-

ing pathway, axon guidance, proteoglycans in cancer, mi-
croRNAs in cancer, the neurotrophin signaling pathway, 
the GnRH signaling pathway, and the Rap1 signaling 
pathway.

The Validation of the Differential miRNA and Target 
Gene Levels in the SAT of the Validation Groups
Anthropometric and Laboratory Measurements
The sample sizes were expanded to 8 morbidly obese 

and 9 normal-weight women for validation. Anthropo-

Fig. 3. The miRNA-gene-network. The network generated by Cytoscape displays the interactions between the 
key differential miRNAs and predicted target genes. Blue, downregulated miRNAs; red, upregulated miRNAs. 
The miRNAs are depicted by squares and the predicted genes as circles. Their interaction is represented by one 
edge.
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metric measurements and biochemical characteristics are 
listed in online supplementary Table S6. Body weight, 
BMI, and waist circumference of morbidly obese women 
were significantly greater (p all < 0.001). Serum TG level 
was significantly higher, but HDL-C level was significant-
ly lower in morbidly obese women (both p < 0.05). There 
was no difference in age, height, blood pressure, FBG, TC, 
or LDL-C. The circulating hs-CRP level in morbidly 
obese subjects was also much higher than the upper nor-
mal limit (3 mg/L).

qRT-PCR Validation of Differential miRNA Levels in 
the SAT of the Validation Groups
To validate the differential miRNAs, 4 differentially 

expressed miRNAs, namely miRNA-143-5p, miRNA-
143-3p, miRNA-145-5p, and let-7a-5p were validated by 
qRT-PCR. MiRNA-143-5p, miRNA-143-3p, miRNA-
145-5p, and let-7a-5p were significantly downregulated in 

the SAT of morbidly obese women, and their expression 
levels were, respectively, 68% (p = 0.046), 61% (p = 0.016), 
73% (p = 0.042), and 66% (p = 0.006) of those of normal-
weight controls (Fig. 6a). These results were consistent 
with the findings from the Affymetrix GeneChip miRNA 
4.0 Array.

The Validation of Predicted Target Gene Levels in 
the SAT of the Validation Groups
Five predicted target genes, namely THY1 (Thy-1 cell 

surface antigen, a predicted target gene of miRNA-
143-5p), TARDBP (TAR DNA-binding protein, a pre-
dicted target gene of miRNA-143-3p), APPL1 (adaptor 
protein, phosphotyrosine interacting with PH domain 
and leucine zipper 1, a predicted target gene of miRNA-
145-5p), PGM3 (phosphoglucomutase 3, a predicted tar-
get gene of miRNA-145-5p), and HMGA2 (high-mobility 
group A2, a predicted target gene of let-7a-5p), were vali-
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Fig.  6. Validation of differential miRNAs 
and predicted target genes. a Expression of 
4 differential miRNAs, miR-143-5p, miR-
143-3p, miR-145-5p, and let-7a-5p, was 
validated using qRT-PCR. b Expression of 
5 predicted target genes, THY1, TARDBP, 
APPL1, PGM3, and HMGA2, was con-
firmed using qRT-PCR. Error bars indicate 
SEM (Student’s t test, * p < 0.05 vs. normal-
weight group).
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dated using qRT-PCR. Our results showed that HMGA2, 
a target gene of let-7a-5p, was 3.19-fold higher in the SAT 
of morbidly obese women than that of normal-weight 
controls (p = 0.025). Other predicted target genes, includ-
ing THY1, TARDBP, APPL1 and PGM3, were not signif-
icantly different between the 2 groups (Fig. 6b). The rela-
tive expression levels and Pearson’s correlation of the val-
idated miRNAs and their predicted target genes were 
analyzed (online suppl. Fig. S2). The relative expression 
levels of let-7a-5p and HMGA2 presented a tendency of 
inverse correlation (r = –0.2) with no significant differ-
ence (p = 0.441) (online suppl. Fig. S2E), and there was 
no correlation between other microRNAs and predicted 
target genes.

Discussion

Our study first showed that 58 miRNAs were differen-
tially expressed in the SAT of morbidly obese Chinese 
women, with 54 (93%) of them downregulated and 4 (7%) 
upregulated. Further analysis demonstrated that these 
differential miRNAs were related to 269 biological func-
tions and 89 signaling pathways. The validation experi-
ment showed that the expression levels of miRNA-143- 
5p, miRNA-143-3p, miRNA-145-5p, and let-7a-5p were 
downregulated in morbidly obese subjects, consistent 
with the microarray detection. HMGA2, a target gene of 
let-7a-5p, was first found to be 3.19-fold upregulated in 
the SAT of morbidly obese Chinese women.

According to our findings, the vast majority (93%) of 
the differential miRNAs were downregulated in the SAT 
of morbidly obese Chinese women. Likewise, other stud-
ies focusing on human abdominal SAT in insulin-resis-
tant patients versus an insulin-sensitive population 
showed that 94% of the differentially expressed miRNAs 
were downregulated in the nanoString nCounter human 
v1 microRNA expression assay [36]. The studies per-
formed by Zhao et al. [37] found that many more mi
RNAs were decreased than increased in mouser adipose 
tissue in response to obesity. Xie et al. [38] revealed that 
functionally important adipocyte miRNAs were down-
regulated in obesity because of the inflammatory envi-
ronment, especially the tumor-necrosis factor (TNF)-α 
secreted by macrophages. MiRNAs induced during adi-
pogenesis that accelerate fat cell development are down-
regulated in adipocytes from obese mice and in blood 
samples from obese patients [38, 39]. Some other studies 
also found the decreased expression of genes normally 
involved in adipogenesis in the fat pads of mice with obe-

sity, although these genes normally increase during adi-
pogenesis [40]. Our study was able to compare miRNA 
expression in the SAT of morbidly obese and normal-
weight subjects. We found that most of the miRNAs, in-
cluding the 4 validated miRNAs, were downregulated. 
These results suggest that obesity leads to a loss of mi
RNAs in the SAT, which may characterize fully differen-
tiated and metabolically active adipose tissue [38].

Four of the differential miRNAs, namely miRNA-
143-5p, miRNA-143-3p, miRNA-145-5p, and let-7a-5p, 
were selected to be verified in the expanded samples by 
the qRT-PCR method. These miRNAs are all highly 
abundant in adipose tissue [41, 42]. Our results demon-
strated that these 4 miRNAs were all downregulated in 
morbidly obese women, consistent with the microarray 
detection. The selection of verified miRNAs was based on 
both our study and previous research [39, 43, 44]. On the 
one hand, our bioinformative analysis showed that mi
RNA-143-5p, miRNA-145-5p, and let-7a-5p were key 
miRNAs with strong regulatory capacities in the miRNA-
gene-network, and that miRNA-143-5p, miRNA-143-3p, 
miRNA-145-5p, and let-7a-5p were located at the network 
center and involved in most biological functions in the 
miRNA-GO-network. On the other hand, previous re-
search has proved that these 4 miRNAs participate in ad-
ipocyte differentiation, metabolic disorders, and cancer 
pathways [45–49].

It has been reported that miRNA-143 is one of the regu-
lators of white adipocyte differentiation [46]. MiRNA-143 
levels were increased in human and mouse 3T3-L1 differ-
entiating preadipocytes, and the inhibition of miRNA-143 
effectively inhibited the preadipocyte differentiation [46, 
50, 51]. Takanabe et al. [52] demonstrated that the expres-
sion of miRNA-143 was upregulated in the mesenteric fat 
of high-fat diet (HFD)-induced obese mice, and that in-
creased miRNA-143 expression was associated with elevat-
ed body weight and mesenteric fat mass. According to our 
analysis using human SAT, miRNA-143 was downregulat-
ed in morbidly obese Chinses women. Further studies 
showed that free fatty acids, leptin, and resistin could in-
hibit miRNA-143 expression in human adipocytes [53]. 
Likewise, Viesti et al. [43] showed that miRNA-143 dis-
played a reduced tendency in intact SAT in obese patients. 
As for plasma miRNA levels, Kilic et al. [39] found lower 
levels of plasma miRNA-143 in obese and morbidly obese 
patients compared to normal or overweight subjects. Be-
sides, low levels of circulating miRNA-143 may be respon-
sible for dyslipidemia in obesity [54].

Another miRNA related to cell differentiation and 
proliferation is miRNA-145. La Rocca et al. [47] demon-
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strated that miRNA-145 expression was increased during 
cell differentiation. A study to determine miRNA expres-
sion by microarray demonstrated that miRNA-145 ex-
pression was increased in differentiating human fat cells 
[20]. However, miRNA-145 expression is downregulated 
in human adipose tissue in insulin-resistant patients ver-
sus insulin-sensitive patients by the microarray method 
[36]. Viesti et al. [43] also found that miRNA-145 had a 
reduced tendency in the SAT in obese patients. There was 
a negative correlation between the expression of mi
RNA-145 and leptin receptors in the omentum of obese 
patients, indicating the metabolic dysregulation potential 
of miRNA-145 [43].

Let-7 is a well-conserved miRNA across species [55] 
and is upregulated during mouse adipocyte differentia-
tion [45]. It proved to be a negative regulator of adipose 
tissue development by suppressing the adipogenesis of 
MSCs [56]. Let-7 transgenic mice were found to be thin 
and small with little white adipose tissue [57]. Let-7 also 
has substantial potential as a biomarker of metabolic dis-
ease. It is a potent regulator of glucose metabolism and 
peripheral insulin resistance [55]. When comparing plas-
ma exosomes from obese diabetic patients naive to treat-
ment and normal patients, let-7a was found to be lower 
in the obese cohort. Interestingly, after receiving antidia-
betic treatment, let-7 levels increased in the diabetic pa-
tients to levels not significantly different from those of 
normal controls [58]. For the first time, we proved that 
the let-7a-5p expression level in the SAT of obese Chinese 
patients was decreased, which indicated that the dysregu-
lation of let-7a-5p in the SAT may participate in the de-
velopment of obesity and its comorbidities.

We also validated the expression of 5 predicted target 
genes using qRT-PCR. Our study proved, for the first 
time, that HMGA2, a target gene of let-7a-5p, was 3.19-
fold upregulated in the SAT of morbidly obese Chinese 
women. In previous studies, HMGA2 was confirmed to 
be a target gene of let-7a-5p, and the expression of 
HMGA2 was upregulated by arresting endogenous let-
7a-5p [59]. In addition, the transfection of let-7 into 3T3-
L1 cells could lead to a > 3-fold decreased expression of 
HMGA2 [45]. Let-7 regulates adipogenesis through the 
repression of HMGA2 expression [56]. HMGA2 is a tran-
scription factor which can colocalize with STAT3 and co-
operatively promote adipogenesis [60]. Once HMGA2 is 
knocked down, the differentiation of 3T3-L1 preadipo-
cytes would be inhibited [45]. Investigations have dem-
onstrated that HMGA2 knockout mice have fewer fat 
cells, lower fat content, and are not susceptible to HFD-
related secondary obesity [61]. In contrast, HMGA2-

overexpressing mice are associated with increased body 
weight and a high level of body fat [62]. In overweight 
dogs, an elevated level of HMGA2 in SAT was noted [63]. 
Markowski et al. [64] found significantly higher HMGA2 
expression in the SAT of obese Germany individuals than 
in nonobese patients. Furthermore, HMGA2 expression 
in patients with type 2 diabetes is significantly higher than 
in nondiabetic patients [64]. Obesity is not only a meta-
bolic problem, but also a chronic inflammatory disease 
[65]. HMGA2 overexpression is accompanied by inflam-
matory changes in adipose tissues [62]. Previous litera-
ture has shown that adipose tissue macrophages are the 
primary sources of obesity-associated inflammation [66]. 
HMGA2 plays an essential role in macrophage activation, 
and it could enhance the expression of many proinflam-
matory cytokines, including TNF-α, interleukin (IL)-6, 
and IL-1β [67]. According to our laboratory findings, the 
level of circulating hs-CRP, a hepatic-derived acute-phase 
reactant stimulated by inflammation, was elevated to 
above the upper normal limit in obese subjects (Table 1; 
online suppl. Table S6), indicating that an inflammatory 
state existed in our obese patient cohort. Gentile et al. [68] 
also proved that high (> 1.5 mg/L, median) hs-CRP is a 
major biochemical counterpart of increased adipose tis-
sue mass. Taken together, our study proved that let-7a-5p 
decreased and its target gene HMGA2 increased in the 
SAT of obese patients; this might be what promotes adi-
pogenesis in the early phase and contribute to a chronic 
low-grade inflammatory state in mature adipose tissue.

The MAPK pathway was, as a result, proven to be the 
most significantly changed one. Shi et al. [44] revealed 
that the MAPK pathway particularly contained meta-sig-
nature and adipogenic miRNAs. As an intracellular sig-
naling pathway, the MAPK pathway, including the ERK, 
p38, and JNK pathways, plays a pivotal role in many es-
sential cellular processes [44, 69]. It can regulate adipo-
genesis at each step of the process, from stem cells to adi-
pocytes [69]. The inhibition of MAPK phosphorylation 
led to reduced weight gain in the mice with HFD-induced 
obesity, and this phenomenon was most evident by the 
suppression of fat accumulation in the abdomen [70]. Re-
search into human obesity has drawn a similar conclu-
sion. Childhood obesity has been proved to be associated 
with the MAPK signaling pathway [71]. The MAPK path-
way can also regulate glucose metabolism, and its activa-
tion could lead to a high level of blood glucose [8]. By 
inhibiting the ERK/MAPK pathway, HFD-induced obe-
sity, adipose tissue inflammation, metabolic abnormali-
ties, and insulin resistance would be improved [72]. Due 
to its pleiotropic functions, the MAPK pathway (in this 
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case, the most significantly changed pathway) represents 
a potential therapeutic target for morbid obesity and the 
resulting metabolic problems encountered by obese pa-
tients.

Obesity is an established risk and progression factor 
for many types of cancers (e.g., breast, colorectal, endo-
metrial, prostate, esophageal), but the underlying mecha-
nisms are incompletely understood [73]. The possible 
mechanism linking obesity to cancer involves alterations 
in the levels of adipokines and sex hormones [74]. Re-
cently, in the literature, miRNA alterations have been 
linked to the initiation and the progression of human 
cancer, and the expression of miRNAs is being used as an 
important tool for cancer diagnosis, staging, progression, 
prognosis, and response to treatment [75, 76].

In our study, the 4 miRNAs chosen for validation all 
participate in tumor regulation. The miRNA-143/145 
cluster has been described as having tumor-suppressive 
functions in several tumor types [48]. In miRNA-
143/miRNA-145-deficient mice, active neoangiogenesis 
was reduced [77]. Let-7 miRNA was described as a nega-
tive regulator of the oncogenic family of Ras guanosine 
triphosphatases in both Caenorhabditis elegans and hu-
man tumor cell lines [49]. Let-7 expression deregulation 
was reported in several types of cancers [49]. By means of 
the KEGG analytical method, our study identified that 3 
of the top 10 significant pathways were related to cancer. 
They were pathways in cancer, proteoglycans in cancer, 
and microRNAs in cancer. The “overlap” of cancer-relat-
ed pathways and the differential pathways highlighted the 
importance of miRNA analyses in the tumor microenvi-
ronment in an obese state. Interestingly, many anticancer 
drugs are also beneficial for treating obesity, and vice ver-
sa [74]. Looking to the future, miRNA profiling might 
develop into a useful method for the assessment of and 
therapeutic approach towards obesity-linked cancers.

In addition to microarray and RT-qPCR based arrays, 
next-generation-sequencing (NGS) is the other available 
high-throughput method for miRNA profiling (mi
RNome). Compared to microarrays and PCR-based 
methods, deep-sequencing does not require predesigned 
probes, thereby allowing for the simultaneous discovery 
of new miRNAs and the confirmation of known miRNAs 
[78]. Mutations in miRNAs could also be identified by 
ultra-deep sequencing, even if these mutations occur in 
only a small fraction of the sample [79]. The NGS-based 
approach is becoming more and more popular and it has 
been used for the analysis of miRNomes in many tissues 
[80–82]. Kuryłowicz et al. [80] conducted NGS-based 
miRNome analysis in adipose tissue which characterized 

changes in miRNA profile resulting from weight loss. 
However, NGS technology applied so far to miRNA ex-
pression profiling has its limitations. Sample preparation 
involves many steps that can introduce biases and se-
quencing errors [83]. The computational tools for analy-
sis are in their infancy [84]. Some NGS library prepara-
tion methods and the sequencing technology are not de-
veloped for short (< 35 bp) sequences [78]. With the 
rapid increase in miRNAs being discovered and depos-
ited in public databases, NGS can offer another compre-
hensive view of the miRNA transcriptome and provide a 
useful complement to microarray assays [84].

Although our study can be considered exploratory, 
there are some limitations. The number of subjects was 
small, especially for correlation analysis, which needs a 
larger sample (n ≥ 84) to achieve a reasonable correlation 
coefficient [85]. The research was cross-sectional, and we 
only validated target genes at the mRNA level. In the fu-
ture, longitudinal cohort studies involving other ethnic 
populations are warranted. Nevertheless, our research 
has some strengths. First, by studying intact SAT, we were 
able to compare miRNA expression in a specific patho-
physiological microenvironment. Moreover, the func-
tional role and regulatory network of identified miRNAs 
were established by using the GO and KEGG bioinfor-
matic tools. To our knowledge, this is the first compre-
hensive study of miRNAs in the SAT of obese Chinese 
women. We found that miRNA downregulation is a hall-
mark of intact SAT in a morbidly obese state. Transcrip-
tion (DNA-dependent), small-molecule metabolic pro-
cesses, the MAPK signaling pathway, and cancer-related 
pathways may play important roles in the occurrence and 
development of obesity. Our study also extended the un-
derstanding of miRNA expression and regulatory net-
works to obesity in Easterners. We proved, for the first 
time, that HMGA2 is upregulated in the SAT of morbidly 
obese Chinese women.
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