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Abstract

Biobanks linked to electronic health records provide rich resources for health-related research. 

With improvements in administrative and informatics infrastructure, the availability and utility of 

data from biobanks have dramatically increased. In this paper, we first aim to characterize the 

current landscape of available biobanks and to describe specific biobanks, including their place of 

origin, size, and data types.

The development and accessibility of large-scale biorepositories provide the opportunity to 

accelerate agnostic searches, expedite discoveries, and conduct hypothesis-generating studies of 

disease-treatment, disease-exposure, and disease-gene associations. Rather than designing and 

implementing a single study focused on a few targeted hypotheses, researchers can potentially use 

biobanks’ existing resources to answer an expanded selection of exploratory questions as quickly 

as they can analyze them. However, there are many obvious and subtle challenges with design and 

analysis of biobank-based studies. Our second aim is to discuss statistical issues related to biobank 

research such as study design, sampling strategy, phenotype identification, and missing data. We 

focus our discussion on biobanks that are linked to electronic health records. Some of the analytic 

issues are illustrated using data from the Michigan Genomics Initiative and UK Biobank, two 

biobanks with two different recruitment mechanisms. We summarize the current body of literature 

for addressing some of these challenges and discuss some standing open problems. This work 
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complements and extends recent reviews about biobank-based research and serves as a resource 

catalog with analytical and practical guidance for statisticians, epidemiologists, and other medical 

researchers pursuing research using biobanks.
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Section 1: Introduction

Biobanks linked to detailed disease phenotype information such as electronic health records 

(EHR) provide rich data resources for health-related research. Biobanks, loosely defined, are 

biorepositories that accept, process, store and distribute biospecimen and/or associated data 

for use in research and clinical care.1 The rise in the number and size of biobanks across the 

world in recent years can be explained by improvements in biospecimen analysis and the 

need for large and holistic datasets to address complex diseases and conditions.1,2 Many 

types of biobanks exist, including commercial, single medical center, health system-based, 

and population-based biobanks. Some biobanks are disease- or organ-specific, while others 

encompass an extensive breadth of diseases.

Biospecimens are increasingly being linked with their donor’s EHR. An individual’s EHR 

contains basic demographic characteristics as well as data on symptoms, medical history, 

behavior and lifestyle factors, physical examinations, diagnoses, tests, procedures, 

treatments, medications, referrals, admissions, and discharges.3 In addition to the structured 

data, there exists clinical notes, images, and other unstructured components of an EHR. An 

EHR is maintained by a health care provider to primarily plan and document care and assess 

patient outcomes.3 EHR are distinct from medical and pharmacy claims data, which are 

maintained by insurance companies. Pharmacy and claims data include billing codes 

assigned during visits, diagnoses, tests and procedures administered (but usually not test 

results) from any provider an insured individual interacts with along with prescription data, 

including dates of when prescriptions are filled or refilled. There are ongoing efforts to link 

claims data with EHR data to have both a “broad” as well as “deep” view of an individual’s 

encounters with the health system. The possibility to link EHR with biospecimen, insurance 

and prescription claims, national disease registries, and death indices, creates the potential 

for generating an incredibly rich, longitudinal database for health researchers.

Access to such integrated data frames enables researchers to bypass expensive data 

collection and provide a quick, cost-effective option to explore associations related to 

diagnosis, patient-reported outcomes, prognosis, treatment response, and survival. While 

some of the questions answered using biobanks have been driven by a priori biological 

hypotheses, such biorepositories also allow for agnostic (“hypothesis-free”) interrogations, 

new discoveries, and hypothesis-generating studies. Phenome-wide association studies 

(PheWAS), first introduced in Denny et al. (2010), which explore the associations between a 

single genetic variant of interest and many EHR-derived phenotypes, are one example that 

highlights the power of phenotype-linked biobank data. PheWAS can be used to replicate 
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known associations and has the potential to discover novel and previously unknown 

associations for further research.4

The growth and evolution of research around biobanks have led to thoughtful and accessible 

literature on the topic. Recent reviews briefly discuss statistical and computational 

considerations for studies involving genetic data,5 limitations of traditional study designs, 

identifying real-world phenotypes,6,7 and EHR enabled database linkages in making 

pharmacogenetic discoveries.8 These reviews are limited in their discussion of statistical 

methods related to biobank and EHR-based research and, in particular, their exploration of 

critical concepts such as study design, sampling, missing data, and other analytic issues.

In this paper, we complement and extend recent reviews about biobank-based research with 

the ultimate goal of providing an extensive catalog of resources with analytical, conceptual 

and practical guidance to statisticians, epidemiologists, and other medical researchers 

pursuing biobank-based research. We will focus on EHR-linked biobanks, but many of the 

topics covered are relevant to other biobanks with detailed self-reported disease history 

information instead of medical records.9 In Section 2, we characterize different types of 

biobanks and provide descriptions of specific biobanks, including their geographic location, 

size, data access and availability, data linkages, and more. In Section 3, we discuss general 

statistical issues related to EHR-linked biobank research, including study design, sampling 

strategy, phenotype identification, and missing data. We illustrate some of these issues using 

data from two biobanks: the Michigan Genomics Initiative (MGI)10,11 and the UK Biobank 

(UKB).12,13 In Section 4, we mention potential opportunities and promising future 

directions for expanded and principled biobank-based research through a discussion of novel 

and emerging uses of EHR data, creation of improved analytic infrastructure, and the 

integration of EHR with external data sources.

Section 2: A Characterization of Major Biobanks

In this section, we describe the types of biobanks that are frequently discussed in the 

literature and provide detailed descriptions for several existing biobanks. An in-depth 

discussion of the literature search algorithm used to conduct this review is in Supplementary 

Section S1. To get a sense of the existing landscape, Supplementary Section S2 enumerates 

the common health outcomes receiving attention in the biobank literature. A table 

summarizing the differences in target populations, potential biases, EHR quality, and 

inferential goals between population-based and medical center/health care system-based 

biobanks can be found in Supplementary Section S3. The rationale for providing this 

detailed supplementary material is to create a comprehensive set of resources describing 

features of various biobanks for a researcher interested in pursuing new lines of inquiry 

using such data.

Existing Biobanks

Table 1 describes some notable major biobanks with detailed disease phenotype data in 

terms of their size, location, type, and data access. This table extends the biobank 

descriptions in Wolford et al. (2018) to include additional information about data linkages 

and cohort characteristics, and it includes information for a broader set of biobanks.5 Many 
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of the biobanks listed in Table 1 provide access to data for outside researchers, while some 

offer linkages to additional data sources, such as death registries and detailed prescription 

information. The biobanks in Table 1 often fall into two general categories: population-based 

biobanks and medical/health care system-based biobanks. While we attempt to categorize 

biobanks that share important characteristics, there is substantial heterogeneity within each 

category. As with any data source, researchers should understand who the participants are, 

whom the data represents, how the data were collected, and how these factors impact the 

breadth, depth, quality, and quantity of data.

Population-based biobanks—Population-based biobanks are large-scale biorepositories 

that aim to recruit subjects reasonably representative of the source population. Population-

based biobanks recruit directly from the general population (e.g., China Kadoorie Biobank), 

and subjects are eligible for enrollment irrespective of their disease status or healthcare 

utilization. Estonia,14,15 Denmark,16 Sweden,17 Saudi Arabia,18 China,19 the Republic of 

Korea,20,21 Qatar,22,23 and Taiwan24,25 are some of the countries that have invested in 

establishing population-based (or reasonably representative) biobanks. Their sampling 

strategy may include active recruitment for particular subpopulations; for example, BioBank 

Japan26 recruits patients with particular current or past disease status, and the NIH All of 
Us27 program targets enriched recruitment of underrepresented minorities.

Perhaps the most well-known population-based biobank is the UKB (used in illustrative 

examples in this paper).12 With approximately 500,000 subjects, it is one of the largest 

biobanks in the world. All residents aged 40–69 who lived within 25 miles of one of their 22 

assessment centers (~9.2 million people) were invited to participate.13 UKB takes advantage 

of the UK National Health Service to obtain follow-up data (e.g., mortality, cancer 

registrations, hospital admissions, primary care data) and actively collect and verify 

conditions that are typically under-reported (e.g., cognitive function, depression).13 These 

data are linked with genetic, biomarker, and, for some, imaging data, all of which are 

accessible for research use.

Health care system or medical center-based biobanks—Another class of biobank 

is based on a particular medical center or health care system. In general, health system-based 

biobanks, such as Vanderbilt’s BioVU biobank or Geisinger Health’s MyCode Community 

Health and DiscovEHR initiatives, contain EHR and genotype data while others, like 

Partners HealthCare Biobank, also collect supplemental survey data. Some, like the large 

Kaiser Permanente Research Bank (KPRB), have additional linkages with detailed 

prescription information and feature-specific sub-cohorts (e.g., pregnancy and cancer 

cohorts in the case of KPRB). A notable health-system based biobank is the Million Veteran 

Program. With already more than 600,000 enrolled, it is one of the world’s largest genomic 

biobanks and also allows for the investigation of military-related diseases and conditions. 

Other such biobanks recruit patients from a distributed network of health centers throughout 

the country.

MGI (used in illustrative examples) is an academic medical center-based biobank that started 

at the University of Michigan in 2012. It recruits surgical patients over the age of 18 using 

opt-in consent (allowing re-contact for future research purposes), collects and stores blood 
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samples, genotypes DNA samples, collects brief survey data related to pain, and is linked to 

EHR. This biobank can connect patient data to other data sources, including the cancer 

registry, prescription data, insurance claims, and the national death index. A very appealing 

feature of MGI is the consent of patients for future re-contact. The biobank is also 

undergoing an effort to implement an extensive epidemiologic questionnaire designed to be 

comparable to other biobank survey data, namely the UKB.

For medical center and health system-based biobanks, it is crucial to understand how the 

participants are recruited and what type of services the health center/system provides. 

Participants recruited as surgical patients in a specialized medical center will often have very 

different breadth and depth of data available compared to those recruited from a general 

clinic at an integrated health system that serves as the patient’s primary provider and offers a 

wide array of preventive services.

Other types of biobanks—Initially planning to become the first nationwide biobank, 

deCODE Genetics is now a privately-owned commercial biobank. Launched in 2007 and 

funded by the National Human Genome Research Institute (NHGRI), the Electronic Medical 

Records and Genomics (eMERGE) Network combines a network of DNA biorepositories 

linked with EHR as a resource for genetic analyses. Disease-specific biobanks are also 

common, and these biobanks may focus on rarer conditions. Two examples are PcBaSe 

Sweden,28 a prostate cancer cohort, and the Mayo Clinic Biobank for bipolar disorder.29 

While disease-specific biobanks may be better powered than other biobank types to study 

certain diseases, they are typically smaller in size and do not allow us to examine the 

associations and disease pathways across the medical phenome.

‘Biobank’ is a broad term that includes biobanks that are not linked to EHR. Many biobanks 

obtain disease and phenotype status through other means (usually self-reported through 

surveys).9 Many of the analytic challenges discussed in this paper also apply to these non-

EHR-linked biobanks that contain disease status and other behavioral and genotype data. We 

restrict our attention to solely EHR-linked biobanks.

In this section, we introduced the concept of biobanks, described some key characteristics of 

different types of biobanks while providing detail on some major biobanks, and provided 

summary information regarding data access and availability (Table 1). These are critical 

considerations for downstream statistical analysis

Section 3: Statistical Issues Related to Biobank Research

In this section, we discuss statistical issues and strategies for EHR-linked biobank data 

analysis following a general workflow for a well-designed research study. In Figure 1, we 

provide a flowchart describing the steps researchers generally take while conducting a study. 

The development of the research question, clarification of study goals, selection of study 

sample, and definition of the target population are critical stages of this process. With vast 

amounts of data becoming increasingly available, there is a tendency for researchers to try a 

large number of analyses and broadly define their research question based on an analysis 

that shows something interesting. This strategy is at odds with good statistical practice. We 
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make a distinction between this strategy and large-scale agnostic hypothesis-generating 

studies such as PheWAS, where the research goal itself is to generate hypotheses or potential 

associations for future study.

Given our research question and data availability, the next step is generally to identify 

potential sources of bias. In this section, we describe several particular concerns of 

confounding bias, selection bias, and misclassification of EHR-derived phenotype variables. 

We then describe challenges and strategies for study design and discuss methods for data 

analysis, including modeling, correction for multiple testing, and handling of missing data.

Section 3.1: Potential Sources of Bias

Selection Bias due to Non-Probability Sampling—One challenge for research using 

EHR-linked biobank data is that the mechanism by which a patient from the population 

enters the biobank and when a visit appears in the EHR is often unknown and inherently 

patient-driven.30,31 This phenomenon, called non-probability sampling, has been studied 

extensively in the statistical literature, and certain mechanisms governing self-selected 

patient recruitment can introduce bias.32 The extent to which the selection mechanism 

impacts study results depends on the estimand of interest and remains an open question.

The selection mechanism by which patient data are collected may vary widely across 

biobanks. Population-based biobanks are often large and obtain participants from a network 

of health or administrative centers across each country with the goal of being reasonably 

representative of the entire population. However, individual characteristics such as living 

near an assessment center (e.g., UKB) or living in a specific region of interest (e.g., China 

Kadoorie) may still impact inclusion. In contrast, medical center and health system-based 

biobanks attempt to recruit all patients meeting specific criteria within the center/health 

system, often through selected clinics. Generally, participation in these biobanks requires 

patients to use healthcare, which is indicative both of ability to access healthcare (e.g., 

ability to overcome barriers to access including transportation and insurance) and health 

(i.e., people with diseases and chronic conditions are more frequent users of healthcare). 

Compared to population-based biobanks, academic medical center-based biobanks tend to 

see more patients with rare or complicated diseases due to the availability of specialty care 

and, thus, are often useful for investigating rare conditions. For example, MGI10,11 is 

enriched for analyses of some cancer types, most notably melanoma of the skin, since 

Michigan Medicine is known for its skin cancer treatment and care. In all cases, the data 

generating mechanisms have the potential to induce selection and participation biases into 

the analysis. These biases can have implications on the generalizability of the results and 

impact measures of association.33 For guidelines and suggestions for diagnosing and 

handling non-probability sampled data, we refer the reader to AAPOR task force report on 

non-probability sampling.34

As a simple demonstration of the impact of different selection mechanisms, we consider 

prevalence rates for different disease phenotypes in two biobanks: MGI and UKB. As 

mentioned previously, MGI is a biobank of over 60,000 patients treated at an academic 

medical center. Patients in MGI were most commonly recruited through the Anesthesiology 

department as patients were preparing to have a surgical procedure. The UKB is a 
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population-based collection of over 500,000 patients. Table 2 provides comparisons of the 

patients in MGI and UKB in terms of demographics. Disease statuses were defined for MGI 

and UKB using aggregated versions of ICD codes, called PheWAS codes or phecodes.35 

This method of phenotype classification resulted in 1,681 phecodes that are present in both 

MGI and UKB. A description of the phenotype generation process can be found in 

Supplementary Section S5.

The different selection mechanisms in the various biobanks have implications for the 

observed disease prevalences across disease categories. Figure 2 shows the ratios of 

prevalences of various phenotype codes in MGI and UKB within different disease 

categories. We see that the majority of the prevalences are higher in MGI. In particular, 

prevalences for neoplasms, symptoms, endocrine/metabolic disorders, infectious diseases, 

and congenital anomalies are uniformly higher for MGI compared to UKB. Table 3 presents 

prevalences of some particular diseases in MGI and UKB along with published prevalences 

for their corresponding nationwide populations. MGI often captures subjects with many 

conditions at a higher rate than is observed in the general US population. The UKB has 

higher case counts than MGI for several conditions due to its size. The UKB is also often 

more representative of the rates observed in the population (at least for conditions common 

among ages 40–69, the age range of participants in UKB), with exceptions discussed in 

Supplementary Section S6.

Confounding Bias—Measured and unmeasured confounding are common sources of bias 

in observational data. Careful use of existing analytical tools can help reduce or eliminate 

biases resulting from confounding. Here, we define a confounder as a variable that impacts 

both our outcome and our predictor(s). Failure to adjust for the confounder may result in 

biased inference regarding the association between the predictor and the outcome. 

Confounding is of particular concern for EHR data as some well-established measures 

routinely collected in population-based studies may not be available. In the EHR setting, 

confounders of interest (e.g., comorbidities) may also often be crudely measured, 

incomplete, or not measured at all. On the other hand, many potential confounders may be 

extracted from an EHR database, and variable selection to identify important confounders or 

adjusting for a high dimensional confounder set in the analysis model are issues specific to 

EHR studies.36,37

There are many analytical strategies in the statistical literature for dealing with confounding. 

Popular methods for general observation studies include adjusting for or stratifying analyses 

by confounders,38 selection propensity weighting, and adjustment and matching on known 

confounders. Because of the large sample sizes, matching or stratification with respect to 

levels of confounders still may entail adequate power for a specific hypothesis, leading to 

new design issues to consider in such studies. Techniques in causal inference such as 

instrumental variable analysis can also be used to address issues of confounding in EHR.
39,40 Recently, researchers have used particular genetic variants as instrumental variables in 

analyses relating variables such as hormone levels to phenotypes of interest.41 Mendelian 

randomization analysis is then used to explore potential causal relationships.42 Marginal 

structural models can be used to address confounding by time-dependent variables and has 

recently been applied to EHR in Sperrin et al. (2018).43,44 Techniques for reducing and 
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eliminating confounding often assume that the potential confounders are measured. When 

key confounders are not measured, sensitivity analyses and related statistical methods can be 

used to explore the impact of and to correct for potential unmeasured confounding.45–48

Defining the Phenome—A central challenge for research involving EHRs is in defining 

phenotypes. The data available falls into two broad categories: structured and unstructured. 

Some examples of structured data are billing and procedure codes, numeric lab and test 

results, and prescription information. Some examples of unstructured data are narrative notes 

made by physicians/nurses, radiological/pathological notes, and images.

ICD9 and ICD10 diagnosis codes are the most common source for defining phenomes. They 

are universally defined, which make them appealing (although there may be differential 

usage across institutions).49 Incorporating other structured data, such as continuous lab 

values, is more challenging and may require pre-processing. The development and use of 

automated algorithms for making these data useful for phenotyping are essential.50 

Additional expert input (e.g., through a consortium) can be used to create phenotype 

definitions, however, establishing a well-accepted definition requires time, careful thought, 

and discussion. The eMERGE Phenotype Knowledgebase51 (PheKB) details existing 

phenotyping algorithms for individual phenotypes that incorporate additional patient 

information. Due to the complexity of these phenotyping algorithms, the simpler ICD-based 

phenotyping method is common for PheWAS studies, but the incorporation of these external 

phenotyping resources may help improve phenotype definitions in the future.

Unstructured data have also been used to define phenotypes, particularly for diseases with 

unreliable ICD9 classifications such as some psychiatric diseases, using natural language 

processing methods.52–60 Such methods can also be used to obtain patient measures such as 

smoking status.52 Natural language processing methods mine free text such as narrative 

doctor’s notes for words or phrases to develop a model combining structured and 

unstructured data to classify each patient as having or not having the phenotype of interest.
52,53 Some challenges include dealing with misspellings, tenses, alternative phrasing, 

negation, and defining a trained dictionary of words and phrases that may correspond to a 

particular phenotype. Algorithms are usually trained using expert annotations, but new 

methods have attempted to automate this step as well.58,59 Additional machine learning 

methods have also been used to define phenotypes (e.g., imaging analytics from medical 

imaging datasets) using a broad spectrum of patient information.61–63

Recent works propose phenotyping strategies to overcome hurdles using multiple data 

sources to more accurately ascertain disease status.64–72 However, future work is needed to 

provide statistical methods for incorporating data of different types for phenome generation. 

For a detailed review of phenotyping procedures, see Bush et al. (2016).7 Figure S8 provides 

some examples of the types of structured and unstructured EHR information that can be 

used to construct phenotypes.

Misclassification and Information Bias—While we have discussed methods for the 

assignment of phenotype status, there exist many nuanced challenges to consider when 

before analyzing these data. Disease status determination is usually performed across 
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subjects who have different lengths of follow-up time, who have different numbers of visits, 

and who are being seen in different types of medical clinics. The EHR cannot capture future 

diagnoses, and information on past medical history and treatment by external providers may 

be incomplete. Generally, the observation process can be complicated and may be related to 

patient- and provider-specific information such as gender and underlying disease status 

(Figures S3–5).73,74 Misclassification of the disease status may depend on this observation 

process, where subjects followed for a longer period of time or more often may be more 

likely to have their disease recorded in the medical record. Some statistical tools have been 

developed to try to deal with outcome misclassification and related issues, but computational 

restrictions may make these methods difficult to apply to large-scale biobank data.57,75 

Additionally, symptoms occurring between visits may not always be reported, and the use of 

diagnostic guidelines and assessment of the phenotype may vary from doctor to doctor.76,77 

These underlying patient- and provider-specific properties are often ignored when 

classifying subjects as cases and controls for a particular disease.

ICD-based phenotype misclassification is common for psychiatric disorders, where a 

diagnosis can be particularly challenging.55,76 For diseases with burdensome treatments 

such as cancer, we may expect that all subjects receiving a cancer diagnosis truly do have 

cancer, and there may be only a few cancer cases without a corresponding ICD code. In 

contrast, ICD codes for psychiatric disorders such as anxiety may be sometimes attributed to 

some subjects that do not meet the ICD definitions for the disorder. There may also be a 

tendency for patients to receive ICD classifications that result in reimbursement from the 

insurance provider. Additionally, disease ICD codes are sometimes assigned when a disease 

is suspected prior to further diagnostic testing, so it may be unclear whether a given ICD 

code refers to the final diagnosis.7,78

Figure 3 provides a visualization of the relationship between phecode-based diagnosis and 

the length of follow-up in MGI within age strata for anxiety and heart attack. We observe a 

greater rate of anxiety diagnoses among subjects followed for a longer period of time. Many 

factors may contribute to this, but one explanation is that more anxiety diagnoses are missed 

in subjects followed for a shorter period of time. In contrast, the proportion of subjects with 

a heart attack phecode was not appreciably related to the length of follow-up, and these 

acute events are captured when they happen.

Phenotype misclassification can result in bias (“information bias”) and negatively impact the 

statistical power to detect associations. Differential misclassification of disease status can 

also result in inflated type I error.79 The extent of misclassification can be described using 

quantities such as sensitivity, specificity, and negative and positive predictive values 

(provided a gold standard exists for comparison). Researchers have explored methods for 

incorporating external information about sensitivity/specificity to account for outcome 

misclassification.80–82 However, these quantities can vary from population to population and 

from phenotype to phenotype, and it is difficult to know the extent of phenotype 

misclassification in a particular population without performing further phenotype validation.
82,83 Among other examples,57,82,84–86 Beesley et al. (2018) proposed a sensitivity analysis 

approach for exploring the potential impact of phenotype misclassification and disease-

dependent patient selection on logistic regression effect estimates simultaneously.33
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We demonstrate the potential bias induced by phenotype misclassification and disease-

dependent patient selection using data from MGI in Figure 4. We consider a logistic 

regression model for whether the patient was diagnosed with cancer and the association of 

having cancer with gender. On the entire sample, we estimate the gender odds ratio as 0.89 

(95% CI: 0.85, 0.93). We suppose the observed cancer diagnosis status is the truth and 

artificially induce misclassification and disease-dependent selection of the MGI patients. We 

then calculate the corresponding association between gender and the misclassified outcome 

in the selected patients. We impose misclassification under 90% specificity and ~70% 

sensitivity, and subsampling was imposed under an average 50% sampling rate for the entire 

cohort. If we compare the three analyses without any outcome misclassification, we see that 

sub-sampling dependent only on disease status does not induce bias in the association 

estimate (OR 0.89, 95% CI: 0.82, 0.94), but it does result in a less efficient estimate due to 

the smaller sample size. However, we do see bias when sub-sampling depends on both 
disease status and gender (OR 1.01, 95% CI: 0.95, 1.08). This provides a demonstration of 

biases expected under different sampling mechanisms. Additionally, when we compare the 

odds ratio estimates for a particular sub-sampling setting, we see that outcome 

misclassification is associated with bias in all settings, and this bias is not always towards 

the null.

Section 3.2: Study Design

Defining the Study Sample—A vital issue to consider when performing a biobank-

based investigation is study design. Design choices can have implications for the analysis 

and interpretation of the study results. In this section, we describe several approaches for 

study design used in biobank research and describe some design-based strategies for dealing 

with common sources of bias.

Within pre-existing biobanks, researchers seek to sample patients for inclusion in a 

particular study. A common study design involves phenotype-specific case-control sampling, 

where all observed cases for a particular phenotype are selected and some subset of 

(possibly matched) controls for that phenotype are sampled from the biobank (e.g., Fritsche 

et al. 2018, Abana et al. 2017).10,87 Cases are often defined as subjects receiving a particular 

diagnosis code a prespecified number of times, e.g., twice. An advantage of case-control 

sampling is that it does not require additional longitudinal information and instead relies on 

dichotomized phenotypes, but it is heavily dependent on the “case” and “control” 

definitions. One crucial aspect of case-control sampled data is the validity of secondary 

analyses of related outcomes, and many methods exist for addressing this issue.88–91 

Additionally, the choice of controls should be considered carefully. Controls might be 

defined as all patients without the primary phenotype, or we may exclude patients with 

related diseases from being included as controls. Another common practice is to restrict the 

analysis to patients with a certain amount of follow-up, which can bias sampling toward 

sicker patients.92 In the presence of many competing control definitions, one strategy is to 

evaluate internal validity by performing inference using many different control group 

definitions to “bracket” the association of interest.93,94 Another common study design is 

cohort sampling, where all biobank patients with available data meeting the inclusion criteria 

are included in the analysis (e.g., Au Yeung et al. 2014, Hall et al. 2018).38,95
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Self-controlled designs in which each patient serves as his/her own control are emerging as 

an appealing design paradigm for some scientific problems (e.g., Kuhnert et al. 2011, Zhou 

et al. 2018).96,97 Two variations of self-controlled designs are the self-controlled case series 

design and the case-crossover design. Recently, Schuemie et al. (2016) developed an adapted 

self-controlled case series design that uses the notion of accumulated exposure to study 

long-term drug effects.98 A detailed comparison of the self-controlled case series and case 

cross-over designs can be found in MacClure et al. (2012),99 and additional exploration of 

self-controlled case series can be found in Petersen et al. (2016) and Simpson et al. (2013).
100,101 An advantage of this design is that it controls for confounding due to time-invariant 

variables. Unlike cohort and case-control designs, however, this method requires 

longitudinal data to be available for all patients, which may be missing, incomplete, or 

insufficient in some EHR-linked databases.

Due to finite resources, some biobanks may collect data, e.g., genotype data, on a subset of 

their cohort. The strategy of collecting data on a subset of patients enriched for certain 

characteristics and related issues are explored in detail in Sun et al. (2017)102 and 

Schildcrout et al. (2015) and (2018).103,104 Two-phase designs also result in missing data by 

design, where more expensive assays or time-consuming surveys may be administered to a 

subset of the patients determined based on results from the first phase. Exposure-dependent 

(e.g., when we have rare exposures of interest) and other stratified trait-dependent sampling 

designs can also be used. For example, extreme phenotype sampling designs collect 

additional data only for patients with extreme values of a continuous variable.105,106

Another critical concept to consider when defining the study sample is the independence 

between patients. Longitudinal outcomes are expected to be correlated within patients, and 

outcomes may be correlated between patients due to relatedness, nesting within doctor or 

clinic, belonging to a common social network, or other reasons. The software KING 

(Kinship-based Inference for GWAS) uses genotype data to determine pairwise kinship 

between patients.107 We might then define the study sample restricted to unrelated patients 

and apply methods that rely on independence between patients (e.g., Firth-corrected logistic 

regression in Fritsche et al. 2018).10 Statistical modeling approaches such as mixed 

modeling (e.g., SAIGE) can also be used to account for residual correlations between 

individuals.108

Many variations and alternative strategies for designing the study sample exist in the 

statistical literature and can also be applied in the EHR setting. For a review of many general 

study design strategies, see Modern Epidemiology: study design and data analysis.109,110

Considerations Related to Study Design—Madigan et al. (2013) compares effect 

estimates resulting from several study designs in a particular setting and demonstrates that 

the choice of study design can have substantial impacts on effect estimates.111 These study 

design choices also impact the statistical power and generalizability of the results. Therefore, 

the study design should be considered carefully. In addition to impacting power, the method 

by which the patients are included in the study sample may result in biased inference (with 

respect to the target population), called sampling bias. Haneuse et al. (2016) provide a 

general framework for exploring and dealing with design-based sampling bias for EHR 
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analyses.112 Haneuse et al. (2016) focus on characterizing the mechanism by which patients 

were included in the dataset by breaking it into smaller observation mechanisms, which may 

be impacted by different factors. Possible sources of sampling bias arising from each 

mechanism can be explored in detail in a sensitivity analysis framework.

There is a belief in the literature that GWAS/PheWAS study results may be less susceptible 

to bias resulting from the patient sampling mechanism, since the opt-in consent is not likely 

to depend on the value of a single genetic marker. However, bias due to genotype 

relationships with the sampling mechanism can still arise in certain settings.33,113,114 

Additional work may help clarify settings in which bias is and is not expected in GWAS and 

PheWAS studies. In general, issues of sampling bias are not unique to EHR data, and many 

authors have explored the impact of sampling on inference. Some works exploring selection/

observation biases in the EHR setting include Zheng et al. (2017), Phelan et al. (2017), 

Goldstein et al. (2016), and Rusanov et al. (2014).30,31,92,115 However, additional 

characterizations of the mechanisms by which we can have sampling bias in biobank and 

EHR research may help guide study design in the future.

In terms of methods designed for large-scale EHR-based studies, Schuemie et al. (2014) and 

Schuemie et al. (2018) propose a p-value calibration method that may be able to account for 

both random and systematic (e.g. confounding, sampling biases) sources of error using 

distributions of effect estimates believed to be null effects.116,117 Modern causal inference 

methods using the potential outcome/counterfactual framework are also being integrated in 

biobank analysis.118–120

Section 3.3: Data Analysis and Modeling

In performing statistical analysis, researchers may have a variety of goals, such as 

developing a prediction model, estimation (e.g., finding candidate biomarkers, hypothesis-

generating studies), causal inference, or hypothesis testing (e.g., is drug A better than drug 

B). The analysis strategy and concerns will depend on the research goal and the data 

considered. In this section, we describe several common modeling challenges encountered in 

EHR-based data analysis, and we address specific issues, including multiple testing, 

handling of missing data, and comparison across different EHRs.

Modeling—EHR data present many challenges concerning modeling and inference. For 

example, correlation structures between variables can be complicated, the number of 

adjustment factors can be large, and events of interest can be rare. In this section, we 

describe some popular and emergent modeling strategies.

A common goal of EHR-based analyses is to study the associations between specific 

phenotypes and variants at a particular gene region or across the genome, and this analysis is 

often performed using linear or logistic regression or using mixed linear model association 

(MLMA) analysis.38,41,121–123 Firth-corrected logistic regression may prove useful for 

modeling rare binary outcomes or settings in which there is strong covariate separation, and 

its application to PheWAS is demonstrated in Fritsche et al. (2018).124 Recently, Dey et al. 

(2017) proposed a fast alternative to Firth-penalized regression to stabilize estimation for 

PheWAS studies using saddle-point approximation (SPA) that is useful for handling 
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extremely unbalanced case-control data.125 These methods can be applied in many other 

modeling settings as well. A saddle-point approximation approach for estimating mixed 

models (called SAIGE) was proposed for handling highly unbalanced case-control data with 

additional sample relatedness, which is typical for biobank data.108 Another common target 

for these studies is to identify the proportion of variation in a particular phenotype that can 

be attributed to genetic variation, called heritability. Some popular statistical methods 

include polygenic profile scoring, univariate linkage disequilibrium regression, and genomic 

relatedness-matrix restricted maximum likelihood (GREML).38,126–130

A popular strategy for studying the aggregate association between genetic information and 

disease development is through polygenic risk scores (PRS). PRS involve summing the 

contributions of a potentially large number of genetic loci and can be used to stratify patients 

with respect to disease risk.131 Many strategies exist for determining the genetic loci to 

include in the PRS and their relative contributions. Many PRS construction strategies and 

software packages exist, and we will not detail these various methods here.
124,132,141–143,133–140 For a recent exploration of PRS construction, we refer the reader to 

Choi et al. (2018).144 Recently, statistical methods have been developed to leverage 

published GWAS and other omics summary statistics to improve the performance of 

prediction algorithms and perform analyses adjusting for many genetic loci simultaneously.
145–149

Researchers may also be interested in studying relationships between phenotypes or joint 

relationships between phenotypes and other patient-level factors such as treatments or 

genotypes. Existing statistical methods for dealing with correlated outcomes such as mixed 

modeling and generalized estimating equations (when the model coefficients are of primary 

interest) can often be applied. Shaddox et al. (2016) and Xue et al. (2017) propose strategies 

for modeling correlated rare outcomes.150,151 Recently, Bastarache et al. (2018) developed a 

phenotype risk score-based method to study rare genetic variants associated with Mendelian 

diseases.152 More generally, phenotype-based risk scores could be used to describe the 

combined association between secondary phenotypes and the primary phenotype and may 

prove useful for risk stratification in combination with PRS. However, construction of 

phenotype-based risk scores would involve modeling the relationship between many 

phenotypes, either pairwise or jointly, and this modeling would be complicated by 

phenotype misclassification. Additional statistical development is needed to handle many 

correlated, misclassified binary phenotypes.

In probabilistic phenotyping models, risk prediction models, and other modeling using EHR 

data, we are often interested in incorporating a broad spectrum of patient information. 

Variable selection and penalization methods along with sparse estimation strategies allow 

many predictors to be incorporated into statistical models, and there is an excellent 

opportunity for the use of such methods in the setting of EHR. Automated feature selection 

algorithms are often used within machine learning algorithms to determine which predictors 

to include, and this can also be combined with expert preprocessing of the candidate 

predictors.153,154 Regularization techniques, including LASSO, ridge regression, and elastic 

net, have been applied in the EHR setting.155,156
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Machine learning algorithms have also gained popularity in EHR data analysis, particularly 

in the development of risk prediction models. Traditional machine learning methods such as 

support vector machines and random forests with boosting are often used.157,158 Deep 

learning, neural networks, and ensemble methods have emerged as attractive approaches to 

prediction using EHR data.158–161 For a review of deep learning methods for EHR data, see 

Schickel et al. (2018).158 Care must be taken when applying these machine learning 

techniques in the setting of rare outcomes, and additional model calibration may be needed. 

A disadvantage of machine learning algorithms is the difficulty in estimating prediction 

uncertainty. Some work has been done exploring uncertainty estimation in particular 

settings, but additional work is needed.162 Machine learning algorithms can have excellent 

performance for prediction in some settings. When the goal of the analysis is to develop a 

prediction model for making predictions for new patients in the same EHR, challenges such 

as sampling bias and confounding, may be of less concern. However, the resulting model 

may be susceptible to overfitting and may not always have good properties in terms of 

transportability to other EHRs and generalizability to other populations.

While we may conceive of many elegant modeling strategies for dealing with statistical 

issues for EHR data, these methods may not always scale well with respect to large samples, 

large numbers of variables, or a large number of repeated analyses (e.g., in a PheWAS or 

GWAS). Computational feasibility will be an important factor to consider for applying 

statistical tools at scale. While computational efficiency strategies are outside the scope of 

this paper, we refer the reader to Thompson and Charnigo (2015) and Prive et al. (2018) for 

more information on phenome-wide computing for GWAS.163–165

Missing Data—Missing data is a common issue for biobank analyses, and data may be 

missing for a variety of reasons. A common source of missingness in GWAS/PheWAS 

studies is missingness in the genotypes. This can be handled by first excluding patients with 

missingness rates above a particular threshold (say, 2%) and then imputing missing values 

for patients with lower missingness rates.38,128 Genotype imputation has improved over time 

due to larger and more diverse reference panels. While many of these biobank analyses 

reported their treatment of missing genotype data, missing information in the phenotype 

information or demographics is rarely discussed. Additionally, many studies define their 

analytical sample based on some subset of biobank participants, and it is sometimes unclear 

how these participants were chosen. A more transparent description of how the study sample 

was derived and the treatment of missing data may shed some light on the generalizability of 

study results.

Statistical methods for dealing with missing data in the EHR often rely on multiple 

imputation, a statistical approach in which the missing data is “filled in” using information 

from patients with observed values.166–169 Such approaches can prove extremely valuable to 

EHR-based research, but implicit assumptions about the missingness mechanisms should be 

carefully considered. A common assumption behind many statistical methods for dealing 

with missing data is that data are missing at random, meaning that missingness depends only 

on fully observed information.170 However, missingness in EHR data may often be related 

to a patient’s underlying health state and other unmeasured individual or facility 

characteristics.171 For example, healthier patients may be more likely to drop out of the 
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EHR. Additionally, lab tests are only ordered for patients with suspected disease. This 

setting, called missing not at random, is more challenging to address in the statistical 

analysis. For a discussion of dealing with missing not at random data, see Little and Rubin 

(2002).170 In general, we cannot tell from the data what mechanisms generate the 

missingness, but additional data and subject matter experts can provide insight into the 

drivers of missingness. For example, Haneuse (2016) describes a survey-based strategy to 

explore the reasons for missingness in EHR data, which may help shed light on the validity 

of missingness assumptions.172 McCullough and Neuhaus (2018) proposes a strategy for 

exploring outcome dependence in the mechanism by which patients visit the clinic.171

A common type of “missing” data is the true phenotype state of each patient. We can view 

the sampling mechanism that gave rise to our study population and the mechanism behind 

phenotype misclassifications (which we might call the observation mechanism) in a missing 

data framework, as discussed in Supplementary Section S7 and Beesley et al. (2018).33 

Further work should be done to explore the impact of different sampling and phenotyping 

mechanisms on statistical inference.

Multiple Testing of Hypotheses—GWAS/PheWAS studies and many other types of 

EHR-based research often involve the simultaneous testing of many hypotheses. Failure to 

account for multiple testing can result in inflated type I error. Some methods for controlling 

the type I error include Bonferroni adjustment, false discovery rate-controlling thresholds 

(e.g., Li et al. 2018),41,173 and Benjamini-Hochberg thresholds (e.g., Liao et al. 2017).84 

However, many of these methods (in particular, the simple Bonferroni adjustment) are overly 

conservative when the many statistical tests are not independent. This is often the case in 

large-scale GWAS/PheWAS studies, where associations are explored for many related 

characteristics. In this setting, the goal may be to control for the effective number of 

independent tests rather than the number of correlated tests being performed. Such an 

approach may improve statistical power to detect significant associations while still 

controlling the type I error rate.

Several methods have been proposed to estimate the effective number of tests (e.g. Li 2012) 

or control for correlated tests. Good (2005) describes resampling-based testing via 

permutation or bootstrap to correct the p-values for multiple testing.174 Gao et al. (2008) 

propose the simple M method to estimate the effective number of tests, which uses a 

combination of principal components analysis and Bonferroni correction.175 For a PheWAS 

study presented in Ge et al. (2017), the effective number of tests is estimated using principal 

components analysis of a matrix of pairwise correlations between pairs of phenotypes.129

Similarly, heuristic approaches have been suggested to identify a maximal independent set of 

uncorrelated phenotypes among pairwise correlations between pairs of phenotypes.10,176 A 

popular method for identifying phenotypes is to aggregate ICD codes into a set of phenotype 

codes called “phecodes.” For example, using 1,578 phecodes in MGI, we identified a 

maximal set of 981 phenotypes with no pairwise Pearson correlation above 0.1. However, no 

general guidelines exist for multiple testing correction in the PheWAS setting. Alternative 

methods adjust for multiple testing using multivariate normal assumptions for the correlated 

test statistics (e.g., Han et al. 2009, Lin 2005, Seaman et al. 2005).177–179 In the context of 
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correlated SNPs, some methods correct for multiple testing via analysis of the underlying 

linkage disequilibrium structure of the genetic data (e.g., Duggal et al. 2008).180 Johnson et 

al. (2010), Zhang et al. (2012) and Li et al. (2012) provide some simulations comparing the 

performance of different methods.181–183

An emerging challenge is the correction of multiple testing across the medical phenome × 

genome two-dimensional landscape. With recent work regarding phenotype risk scores, 

there is increasing interest in studying phenotype-phenotype associations across the 

phenome.184 As such, there is a need to develop a corresponding statistical methodology to 

correctly account for potentially strong cross-phenotype correlations, which are particularly 

common with hierarchically structured phenotypes.

Ultimately, the best strategy for correcting for multiple testing may depend on whether the 

goal is hypothesis generation/discovery or validation/hypothesis testing. In the former, we 

may be more willing to accept false-positive results for individual tests in exchange for 

higher power, while in the latter case, we may want to control the rate of false positives 

better.

Heterogeneity between Biobanks—Researchers often attempt to validate statistical 

findings from their data analysis using an independent dataset from a different population. 

For example, we may wish to validate results obtained using data from one biobank (e.g., 

MGI) by performing the same analysis for another biobank (often, UKB). Here, we make a 

distinction between validation and replication, where replication involves comparing results 

in samples drawn with few systematic differences from the same population and validation 

involves comparing results in samples drawn from different populations or using different 

sampling approaches.185 Systematic differences between the population characteristics or 

sampling mechanisms, however, could impact the generalizability of results between 

populations and impact our ability to validate findings.

In the meta-analysis literature, heterogeneity between studies is broadly grouped into three 

categories: clinical heterogeneity (differences in patients, interventions, and effects), 

methodological heterogeneity (differences in study design and sampling), and statistical 
heterogeneity (when the observed effects are more variable across studies than we would 

expect from random chance). Statistical heterogeneity may be a result of clinical and/or 

methodological heterogeneity.

Some analyses may be more impacted by differences between biobanks. As a demonstrative 

example, we compare the results of different data analyses using data from MGI and UKB. 

These biobanks exhibit substantial methodological heterogeneity concerning their sampling 

mechanisms, where MGI is based on an academic medical center and UKB is population-

based. Suppose we are interested in comparing the odds ratio for having a particular 

phenotype based on the status of another phenotype, called phenotype co-occurrences. 

While prevalences will be impacted by the different sampling designs between MGI and 

UKB (see Figure 2), it is not clear how phenotype-phenotype associations will compare.
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Figure S6 presents the estimated log-odds ratios of having a phecode diagnosis of melanoma 

regressed on other diagnoses in the phenome. See Supplementary Section S5 for details on 

the phenotype generation procedure. The estimated odds ratios from the UKB data tend to 

be larger in magnitude compared to the odds ratios in MGI (for 70% of diagnoses). One 

possible explanation for this phenomenon is that in order for patients to get a phecode in 

UKB, they must visit a health care provider, during which time they may get multiple codes. 

When we compare UKB patients who did and did not receive a particular phecode (perhaps 

they did not visit a health care provider or did not visit as often), we may obtain inflated 

odds ratios. The patients in MGI are enriched with phecodes across the board, but patients 

with and without a particular phenotype may have many opportunities to collect other 

diagnoses through their interactions with the health care provider. In this melanoma 

example, the odds ratios for other neoplasms did not exhibit the same differences in MGI 

and UKB as seen for other classes of diseases. This may be due to enhanced screening of 

these diseases after diagnosis of melanoma in both MGI and UKB.

We predict the heterogeneity of the sampling mechanisms may not appreciably impact some 

associations; for example, GWAS results. In Figure 5, we compare GWAS results in MGI 

and UKB for several cancers. In this figure, points represent SNPs identified as being related 

to the corresponding phenotype in the NHGRI-EBI GWAS catalog.186 See Supplementary 

Section S8 for details. While MGI and UKB have very different sampling mechanisms, the 

GWAS results generally appear similar.

In addition to methodological heterogeneity, clinical heterogeneity could impact validation 

of results across biobanks. Some examples of clinical heterogeneity include differences in 

patient demographics, or the kinds of treatments prescribed, screening practices, and 

whether health care is public or private. An example of clinical heterogeneity for MGI and 

UKB is age, where MGI consists of patients aged 18 and up, while UKB consists of patients 

aged 40–69. If the association of interest depends on age, we would have different marginal 

associations in MGI and UKB. Another notable difference between biobanks/EHRs is how 

physicians encode diagnoses within the ICD framework. For a given patient, physicians in 

one EHR may tend to enter diagnosis A, while physicians in another EHR may enter related 

diagnosis B. This presents a problem for researchers seeking to validate diagnosis code-

based phenotype associations across biobanks. Additionally, we may be interested in using 

biomarker or lab value measurements across biobank datasets, and these may be measured 

with different degrees of error.187 When comparing this association overall between two 

different populations, a failure to adjust for the clinical heterogeneity across the two 

populations could result in biased inference.

In the presence of this heterogeneity between study populations, we may explore statistical 

methods to improve our ability to compare between different populations. There is a body of 

statistical literature for quantifying and handling between-study heterogeneity via meta-

analysis.188–191 Weighting-based and resampling-based methods for dealing with 

heterogeneity have also been explored.192–194 The large number of subjects and the large 

number of available adjustment factors in EHR data provide an opportunity to effectively 

address more refined questions such as the relationship between treatment and molecular 

subgroups of disease (inherently a question of interactions) directly, potentially allowing 
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clinical heterogeneity to be handled directly through a redefinition of the quantity of interest.
195 Recently, Shi et al. (2018) developed a spherical regression-based method for handling 

heterogeneity in ICD code designation across different EHR systems.196 Methodology in the 

data integration literature may also prove useful for addressing these challenges.197 Future 

work may explore resampling-based methods to make studies more comparable in the 

presence of heterogeneity with respect to the sampling mechanism.

Section 4: Emerging Uses of Electronic Health Record Data and 

Combination with External Data

There is a tremendous opportunity to incorporate additional data to enrich EHR and enhance 

the scope of research. For example, we may link cancer and death registry information to the 

EHR to study survival and disease-related outcomes after clinical diagnosis. Local and 

national surgical registries offer opportunities for studying more granular health-related 

outcomes. When registry data is not available, claims data may also provide some insight for 

survival and disease-related research.198 Recent work has developed methods for defining 

the exposome based on clinical narrative information or additional patient-level 

measurements.199,200 Geo-coded data can provide a wealth of exposure information 

including social determinants of health, neighborhood characteristics, socioeconomic status, 

and pollution information.201–206 Freely available resources like the eICU Collaborative 

Research Database207 are becoming more common and increasingly accessible, allowing for 

additional exploration of data and aggregation for larger analyses.

Longitudinal data within the EHR and beyond also offer many opportunities for research. 

Mobile fitness tracking devices provide an opportunity to incorporate longitudinal health 

metrics or even use text messages or game performance to define phenotypes.208,209 Noren 

et al. (2010), Noren et al. (2013), and Boland et al. (2015) use longitudinal health data to 

discover and adjust for temporal patterns.210–212 Longitudinal EHR data has proven to be 

extremely useful in the fields of pharmacovigilance, pharmacoepidemiology, and 

pharmacogenomics.211,213–217 Additional work leverages large-scale medical data to study 

potential new indications for existing drugs, called drug repurposing or repositioning.218 

Longitudinal EHR data can also be used to develop dynamic predictions for patient 

prognosis, adverse events, etc. over time.219–222

When combining data from multiple disparate sources, several problems arise. Most notably 

are issues regarding patient privacy. Additionally, we must consider issues such as data 

processing and rules for linking records for a single patient. Many statistical methods have 

been developed for linking records corresponding to individual patients across data sources, 

and many of these methods explicitly address issues of privacy.223–227 Statistical methods 

have also been developed for combining data across distributed data sources where data 

from individual patients are not accessible.228,229 Yang et al. (2013) developed methods for 

performing meta-analysis based on existing GWAS, and similar methods should be 

developed for PheWAS studies in the future.230

Large biobank datasets also provide an opportunity to study different treatment pathways 

and their corresponding outcomes.231 Additional components such as treatment nonresponse 
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and treatment adherence can also be explored.54,232 While such studies are certainly not 

new, the wealth of information provided through EHRs provides opportunities to study 

treatment-related outcomes at scale. Additionally, these data sources provide a clearer look 

at treatment-related outcomes in practice, which may not always align with outcomes under 

more ideal settings of a clinical trial. These data can be used to analyze and/or predict 

various outcomes to treatments, medications, and/or dosages (sometimes stratified by patient 

characteristics).

EHR have also been used for disease forecasting, where researchers use electronic health 

records to determine population rates of disease and forecast future rates.233,234 Disease 

forecasting is a challenging problem, and EHR-informed forecasts can prove extremely 

useful for medical staffing, vaccine production, and policymaking.235

Section 5: Conclusion

Biobanks linked to EHR provide rich data resources for health-related research, and 

scientific interest in biobank-based research has grown dramatically in recent years. As more 

researchers become interested in using biobank data to explore a spectrum of scientific 

questions, resources guiding the data access, design, and analysis of biobank-based studies 

will be crucial. This work serves to complement and extend recent publications about 

biobank-based research (e.g., Wolford et al. 2018, Glicksberg et al. 2018, Bush et al. 2016, 

Ohno-Machado et al. 2018) and aims to provide some statistical and practical guidance to 

statisticians, epidemiologists, and other medical researchers pursuing biobank-based 

research.5–8

In this paper, we provide a detailed characterization of many of the major EHR-linked 

biobanks to facilitate researchers’ ability to obtain and investigate research-quality biobank 

data with some understanding of the associated population, sampling mechanism, and data 

linkages. This characterization provides a useful starting point for understanding the type of 

biobank data available and for requesting and accessing data. We also survey biobank-based 

papers that have been published. Future research can utilize increasingly large EHR-linked 

biobank cohorts to study a broad range of diseases. Biobank data also present an exciting 

opportunity to explore treatment and therapy schedules, drug repurposing, or gene-by-

treatment interactions in the future. Such explorations can also be used to inform dynamic, 

patient-centric predictions for monitoring and treating future patients.

When using biobank data for health-related research, it is essential that researchers 

understand the statistical and practical issues that accompany such analyses and have 

resources to address them. There is a great need for statistical developments to address the 

many varied issues that go hand in hand with EHR-based research. Our discussion is 

structured to address statistical issues and strategies that researchers encounter when 

following a typical research study structure (see Figure 1).

Given our research question and data availability, the next step is generally to identify 

potential sources of bias. In this paper, we describe several particular concerns of 

confounding bias, selection bias, and misclassification of EHR-derived phenotype variables. 
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Researchers should carefully consider issues of phenotype misclassification both in terms of 

ICD code-based phenotyping and in terms of the limitations of the EHR as a whole. A better 

understanding of the mechanisms governing misclassification (in terms of under- and over-

reporting of disease) may help shed light on the limitations of the EHR data and how to deal 

with potential information biases that result. Biases, in terms of patient selection into the 

biobank/EHR and in terms of study design using EHR data, need to be carefully considered. 

Many statistical methods exist for addressing issues of non-probability sampling in 

particular, and additional work looking into the mechanisms driving patient selection for 

EHR may help researchers better generalize results to their target populations.

Historically, a large body of statistical work has focused on studying how we can most 

efficiently use available data to estimate our quantity of interest. As the size of the data 

grows, however, efficiency becomes less and less of a concern and characterization of bias 

becomes critical.236 This is particularly important in the study of EHR, where many possible 

sources of bias can come into play and the data generation mechanisms are often difficult to 

characterize. The recent push away from p-values and dichotomization of study results in the 

statistical community reflects these changing perceptions. Increased emphasis must be 

placed on reproducibility and scientific rigor, particularly when large repositories of data are 

being made widely accessible.

Given a large pool of EHR and biobank data, the next step is to design our study using the 

data available. One considerable challenge involves defining the phenome, and future work 

can explore ways to incorporate a broader spectrum of EHR information into phenotype 

classification. Defining exposure and outcome variables can be particularly challenging for 

EHR-based data. For example, suppose we are interested in studying relationships between 

genetics and smoking behavior. Smoking behavior may not be directly recorded in the EHR, 

and careful thought is needed to determine how we can use EHR information to extract these 

data and the possible implications for the veracity of resulting statistical inference. We also 

need to clarify which patients we will include in our analyses. In many cases, this may 

consist of all available patients, but careful sub-sampling of the large pool of available to 

define our study dataset can also be used to help mitigate possible sources of bias, can 

reduce computational burdens of large data, and can identify subjects for additional data 

collection.

Once we have designed our study, the next general step is data analysis. Many issues need to 

be considered, including how we want to model the data, correction for multiple testing, and 

handling of missing data. The treatment of missing data in EHR-based studies is an area in 

particular need of additional statistical development. For example, analyses wishing to 

include lab values as predictors need to reconcile somehow the inherent relationship 

between missingness (whether a given test was ordered) and the test results. Data can be 

missing for a variety of reasons, and the mechanism generating the missingness can have 

serious implications on inference. Statistical methods tailored to handling issues of missing 

data in EHR could prove extremely useful. In general, reporting of how missingness was 

handled needs to be more explicit in studies using EHR. Additional statistical methods are 

also needed to handle multiple testing adjustment for studies involving many correlated 

phenotypes or studies exploring the phenome × genome landscape. In general, there is a 
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strong need for the development of statistical methods to address the many and varied 

challenges we face when analyzing EHR-linked biobank data.

The combination of genetic and phenotypic information (for example, through polygenic 

and phenotype risk scores) presents a big opportunity for improving risk prediction, and 

future work can attempt to interrogate these different types of patient-level information to 

untangle the genetic and environmental factors related to disease generation and risk. With 

an increase in the volume and variety of data becoming available, emphasis should be placed 

on methods for incorporating data from external sources and emerging data streams (for 

example, geo-coded data, longitudinal biomonitoring data, mobile data, registry data, 

genomics/metabolomics data, imaging data, ecologic data, etc.). Such analyses can widen 

the scope of scientific questions we can address, and they necessitate a new wave of related 

statistical methods.
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Figure 1: 
Flowchart of Study Planning, Design and Analysis
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Figure 2: 
Boxplots of Ratio of PheWAS Code Prevalences in MGI vs. UK Biobank Across Phenome
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Figure 3: 
Relationship between (a) Anxiety or (b) Heart Attack Diagnosis and Length of Follow-up 

within Age Strata in MGI*

* Plotted intervals indicate 95% confidence intervals for each proportion.
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Figure 4: 
Impact of Selection Mechanism and Phenotype Misclassification on Estimated Association 

between Gender and Cancer Diagnosis in MGI*

*95% confidence intervals
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Figure 5: 
Comparison of GWAS Results in MGI and UK Biobank for Selected Cancer Phenotypes*

* Each point represents a SNP identified as being related to the corresponding phenotype in 

the NHGRI-EBI GWAS catalog. The point location corresponds to the log-odds ratio 

association between the SNP and the phenotype of interest in MGI and UK Biobank. The 

two lines correspond to equality of the estimates and a fitted line to the points (excluding 

any outlying points with absolute log-OR greater than 0.6). “Spearman” indicates the 

Spearman correlation and “CCC” indicates Lin’s concordance correlation coefficient, which 

is a measure of agreement (with 1 being perfect agreement).
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Table 2.

Comparison of MGI and UKB Patient Populations

MGI (Academic Medical Center) UKB (Population-Based)

Sample Size, n 30,702 408,961

Females, n (%) 16,297 (53.1) 221,052 (54.1)

Mean Age, years (sd) 54.2 (15.9) 57.7 (8.1)

Median Number of Visits Per Participant 27 n/a*

Median Days Between First and Last Visit 1,469 n/a*

Mean Body Mass Index (sd) 29.7 (7.0) 27.4 (4.8)

Ever Smoked, n (%) 17,044 (55.5) 246,320 (60.2)

*
Data unavailable for UKB

Stat Med. Author manuscript; available in PMC 2021 March 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Beesley et al. Page 42

Table 3:

Prevalences of Selected Conditions in the Michigan Genomics Initiative and UK Biobank along with 

Estimates from their Respective National Populations
∇

MGI (Academic Medical Center) United States UKB (Population-Based) United Kingdom

N = 30,702 N = 408,961

Psychiatric/Neurologic

 Depression 21.7 (6,651) 16.9** 2.9 (11,918) 3.3†

 Alzheimer’s 0.2 (60) 1.6*** 0.1 (433) 1.3‡

 Anxiety* 22.1 (6,782) 31.2**** 1.6 (6,945) 5.9†

 Schizophrenia 0.3 (78) .7–1.5 0.1 (573)
0.2–0.59

§

 Bipolar Disorder 2.9 (886) 4.4**** 0.2 (1,064) 2.0†

Cardiovascular Disease

 Atrial fibrillation 9.5 (2,919) 2–9 3.6 (14,839) 1.2–1.3

 Coronary heart disease 14.3 (4,396) 6 5.0 (20,539) 3–4

 Myocardial infarction 5.5 (1,702) 4.7** 3.0 (12,099) .87–2.46

Obesity 33.7 (10,351) 39.8 2.6 (10,820) 26.2

Diabetes 21.4 (6,571) 12.6 5.0 (20,260) 6.2

Cancer

 Colorectal 2.6 (806) 4.2**** 1.1 (4,627) 5.3–7.1 ****

 Breast (female) 12.4 (2,025) 12.4**** 5.7 (12,680) 12.5 ****

 Lung 2.3 (707) 6.2**** 0.5 (2,243) 5.9–7.7 ****

 Pancreatic 1.0 (313) 1.6**** 0.2 (749) 1.4 ****

 Melanoma of skin 6.2 (1,896) 2.3**** 0.7 (2,724) 1.9 ****

 Prostate (male) 12.4 (1,794) 11.2**** 3.6 (6,762) 12.5 ****

 Bladder 3.7 (1,147) 2.3**** 0.6 (2,433) 0.9–2.6 ****

 Non-Hodgkins lymphoma 3.1 (937) 2.1**** 0.4 (1,827) 1.7–2.1****

∇
Phenotypes were defined using ICD-based PheWAS codes35 for MGI and UKB. A description of the phenotype definitions can be found in 

Supplementary Section S5.

*
Any anxiety disorder;

**
adults 40 and older;

***
adults 65 and older;

****
lifetime risk of developing disease/condition;

†
past week prevalence, refers to the presence of symptoms in the past week;

‡
point prevalence, refers to the prevalence measured at a particular point in time (proportion of persons with a particular disease at a point in time);

§
estimate is from England
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Notes: ranges for schizophrenia represent the minimum and maximum point estimates from several estimates included in the source material; 
ranges for myocardial infarction and cancer estimates provided indicate the range of sex-specific point estimates; lack of representativeness in UKB 
for obesity phenotype discussed in Supplementary Section S6

Sources for US and UK estimates can be found in Supplementary Table S4
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