Skip to main content
. 2020 Aug 30;56(3):1160–1170. doi: 10.1111/ijfs.14765

Table 5.

Prediction of texture sensory texture with instrumental parameters measured at 50 °C

Attributes Regression equation Performance of calibration Validation robustness Sensitivity analysis
R 2 RMSEC RMSEV
Firmness

Y = 1.48 + 1.10*Fp

Y = 1.85 + 6.06*Hardness

0.80

0.72

0.9

1.0

0.8

0.9

2.05 N

0.41 N mm−2

Chewiness

Y = 1.36 + 0.74*Fp

Y = 1.39 + 4.52*Hardness

0.77

0.84

0.6

0.5

0.6

0.6

2.08 N

0.30 N mm−2

Stickiness Y = 6.87 + 59.01*Adhesiveness – 4.92*Springiness 0.32 0.7 1.0
Mealiness Y = −11.28 + 4.46*Hardness + 17.64*Springiness 0.82 1.0 1.2 0.56 N mm−2
Moist Y = 7.53–6.48*Hardness 0.76 1.0 0.6 0.39 N mm−2

Calibration samples = 27; Validation samples = 8; Fp: puncture force. The sensitivity analysis provided the minimum instrumental difference required to ensure a perceptible sensory difference (P < 0.1). The table lists the difference only for the first prediction parameter and only for the best predictions.