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Abstract

Association studies have linked microbiome alterations with many human diseases, but not always
reported consistent results, which necessitates cross-study comparisons. Here, a meta-analysis of
eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal
cancer (CRC, N = 768), which was controlled for several confounders, identified a core set of 29
species significantly enriched in CRC metagenomes (FDR < 1E-5). CRC signatures derived from
single studies maintained accuracy in other studies. By training on multiple studies we improved
detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes
revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation
genes. Moreover we inferred elevated production of secondary bile acids from CRC metagenomes
suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet.
Through extensive validations, this meta-analysis firmly establishes globally generalizable,
predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.

INTRODUCTION

Studying microbial communities colonizing the human body in a culture-independent
manner has been enabled by metagenomic sequencing technologies [1]. These have yielded
glimpses into the complex yet incompletely understood interactions between the gut
microbiome — the microbial ecosystem residing primarily in the large intestine — and its host
[2]. To explore microbiome-host interactions in a disease context, metagenome-wide
association studies (MWAS) have begun to map gut microbiome alterations in diabetes,
inflammatory bowel disease, colorectal cancer and many other conditions [3-12]. However,
due to the many biological factors possibly influencing gut microbiome composition in
addition to the condition studied, a current challenge for MWAS is confounding, which can
cause false associations [13, 14]. This issue is further aggravated by a lack of standards in
metagenomic data generation and processing, making it difficult to disentangle technical
from biological effects [15].
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Robustness of microbiome-disease associations can be assessed through comparisons across
multiple metagenomic case-control studies, i.e. meta-analyses. These aim at identifying
associations that are consistent across studies and thus less likely attributable to biological or
technical confounders. Most informative are meta-analyses of populations from diverse
geographic and cultural regions. Previous microbiome meta-analyses based on 16S rRNA
gene amplicon data found stark technical differences between studies and the reported
taxonomic disease associations were either of low effect size or not well resolved [16-18].

In contrast, shotgun metagenomics enables analyses with higher taxonomic resolution and of
gene functions to improve statistical power for fine-mapping disease-associated strains and
aid in the interpretation of host-microbial co-metabolism. Thus far however, meta-analyses
of shotgun metagenomic data have either reported on features of general dysbiosis in
comparisons across multiple diseases [19], or have left it unclear how well microbiome
signatures generalize across studies of the same disease when data are rigorously separated
to avoid over-optimistic evaluations of their prediction accuracy [20].

Here, we present a meta-analysis of a total of eight studies of CRC including fecal
metagenomic data from 386 cancer cases and 392 tumor-free controls. After consistent data
reprocessing, we examined an initial set of five studies for CRC-associated changes in the
gut microbiome. Firstly, we investigated potential confounders, followed by identifying
(univariate) microbial species associations, and inferring species co-occurrence patterns in
CRC. Secondly, we trained multivariable classification models for recognition of CRC
status, from both taxonomic and functional microbiome profiles and tested how accurately
these models generalized to data from studies not used for training. Moreover, we evaluated
performance improvements achieved by pooling data across studies and the disease-
specificity of the resulting classification models. Thirdly, targeted investigation of virulence
and toxicity genes as candidate functional biomarkers for CRC revealed several of these to
be enriched in CRC metagenomes indicative of their prevalence and potential relevance in
CRC patients. Three additional, more recent studies were finally used to independently
validate these taxonomic and functional CRC signatures.

Consistent processing of published and new data for meta-analysis of CRC metagenomes

In this meta-analysis we included four published studies which used fecal shotgun
metagenomics to characterize CRC patients compared to healthy controls (referred to by the
country codes FR, AT, CN, and US, corresponding to the respective main study population;
see Table 1, Supplementary Table S1, and Methods for inclusion criteria). For an additional
fifth study population, we generated new fecal metagenomic data from samples collected in
Germany (herein abbreviated as DE); a subset of samples from this patient collective were
published previously (Table 1, Methods, [8]). These five studies were conducted on three
continents and differed in sampling procedures, sample storage, and DNA extraction
protocols. Notably, the fecal specimen of the US study were freeze-dried and stored at
—80°C for more than 25 years before DNA extraction and sequencing [10]. In all studies,
however, samples were collected prior to treatment, thus excluding cancer therapy as a
potential confounding effect [14, 21]. Most samples were even taken before bowel
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preparation for colonoscopy, with some exceptions in the DE, CN and US studies
(Supplementary Table S2). To ensure consistency in bioinformatic analyses, all raw
sequencing data were (re-)processed using mOTUs2 for taxonomic profiling [22] and
MOCAT2 for functional profiling [23].

Univariate meta-analysis of species associated with CRC

The first aim of the meta-analysis was to determine gut microbial species that are enriched
or depleted in CRC metagenomes in a consistent manner across the five study populations.
However, as these studies differed from one another in many biological and technical
aspects, we first quantified the effect of study-associated heterogeneity on microbiome
composition. We contrasted this with other potential confounders (*patient age’, ‘BMI’,
‘sex’, ‘sampling after colonoscopy’, and ‘library size’; additionally, ‘smoking status’, ‘type
Il diabetes comorbidity’, and ‘vegetarian diet” where available Extended Data 1,
Supplementary Table S3). This analysis revealed the factor ‘study’ to have a predominant
impact on species composition, which is supported by a recent comparison of DNA
extraction protocols, as these typically differ between studies [15]. An analysis of microbial
alpha and beta diversity showed study heterogeneity to also have a larger effect on overall
microbiome composition than CRC in our data (Extended Data 2).

For the identification of microbial taxa significantly differing in abundance in CRC,
parametric effect size measures are not well established, because microbiome data is
characterized by non-Gaussian distributions with extreme dispersion; we thus used a
generalisation of the fold change (Extended Data 3) and non-parametric significance testing.
In this permutation test framework [24] (herein referred to as blocked univariate Wilcoxon
tests) differential abundance in CRC can be assessed while accounting for ‘study’ as a
nuisance effect that is treated as a blocking factor; additionally, motivated by our confounder
analysis, we also blocked for ‘colonoscopy’ in all analyses (Methods, Extended Data 1). To
rule out spurious associations due to the compositional nature of microbial relative
abundance data, we additionally compared the results of this test with a method [25]
employing log-ratio transformation (and found highly correlated results, Supplementary Fig.
1, Supplementary Table S4).

At a meta-analysis false discovery rate (FDR) of 0.005, we identified 94 microbial species to
be differentially abundant in the CRC microbiome, out of 849 species consistently detected
across studies (Supplementary Table S4, Methods). Among these, we focused on a core set
of the 29 most significant markers (FDR < 1E-5, Fig. 1a) for further analysis. The latter
included members of several genera previously associated with CRC, such as
Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus, Gemella, Prevotella, and
Solobacterium (Fig. 1b, [8-11]), and 8 additional species without genomic reference
sequences (meta-mOTUs, Methods, [22]) mostly from the Porphyromonas and Dialister
genera and the Clostridiales order (see Extended Data 4 and Supplementary Table S4 for
genus-level associations). Collectively, these 29 core CRC-associated species show a
previously underappreciated diversity of 11 Clostridiales species to be enriched in CRC (Fig.
1b). In contrast to the majority of species that are more strongly affected by study
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heterogeneity than by CRC status, 26 out of the 29 CRC-associated species varied more by
disease status (Fig. 1d).

All of the core CRC-associated species were enriched in patients and were often
undetectable in metagenomes from non-neoplastic controls. While previous studies were
contradictory in the reported proportion of positive versus negative associations [8, 9, 17,
20], our meta-analysis results are more easily reconciled with a model in which — potentially
many — gut microbes contribute to or benefit from tumorigenesis than with the opposing
model in which a lack of protective microbes contributes to CRC development (Fig. 1b).
Although these core taxonomic CRC associations were highly significant and consistent,
individual studies showed marked discrepancies in the species identified as significant (Fig.
1a). Retrospective examination of the precision and sensitivity with which individual studies
detected this core of CRC-associated species showed relatively low sensitivity for the US
study (consistent with the original report [10]) and low precision of the AT study due to
associations that were not replicated in other studies (Supplementary Fig. 2).

Analyzing patient metagenomes for co-occurrences among the core set of 29 species that are
strongly enriched in the CRC microbiome revealed four species clusters with distinct
taxonomic composition (Fig. 2a, Extended Data 5, Methods). Two of them showed strong
taxonomic consistency: Cluster 1 exclusively comprised Porphyromonas spp., and cluster 4
only contained members of the Clostridiales order. In contrast, the other two clusters were
taxonomically more heterogeneous with cluster 3 grouping together the species with highest
prevalence in CRC cases (all among the ten most highly significant markers), consistent with
a co-occurrence analysis of one of the data sets included here [11]. Cluster 2 contained
species with intermediate prevalence.

Investigating whether these four clusters were associated with different tumor
characteristics, we found the Porphyromonas cluster 1 to be significantly enriched in rectal
tumors (Fig. 2b), consistent with the presence of superoxide dismutase genes in
Porphyromonas genomes possibly conferring tolerance to a more aerobic milieu in the
rectum (Extended Data 5). The Clostridiales cluster 4 was significantly more prevalent in
female CRC patients. All species clusters showed a slight tendency towards latestage CRC
(i.e. AJCC stages Il and 1V), but this was only significant for cluster 3. Associations with
patient age and BMI were weaker and not significant (Extended Data 5). To rule out
secondary effects due to differences in patient composition among studies, all of these tests
were corrected for study effects (by blocking for ‘study’ and ‘colonoscopy’, see Methods).
At the level of individual species, significant stage-specific enrichments could not be
detected suggesting CRC-associated microbiome changes to be less dynamic during cancer
progression than previously postulated [26], although fecal material may be less suitable to
address this question than tissue samples.

Metagenomic CRC classification models

To establish metagenomic signatures for CRC detection across studies in face of geographic
and technical heterogeneity, we developed multivariable statistical modeling workflows with
rigorous external validation to avoid prevailing issues of overfitting and over-optimistic
reports of model accuracy [19]. As a precaution against over-optimistic evaluation, these
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workflows are independent of the above-described differential abundance analysis. Instead,
LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression classifiers
were employed to select predictive microbial features and eliminated uninformative ones
(Methods).

In a first step, we used abundance profiles from five studies including the 849 most abundant
microbial species and assessed how well classifiers trained in cross validation (CV) on one
study generalize in evaluations on the other four studies (study-to-study transfer of
classifiers) (Fig. 3a). Within-study cross-validation performance, as quantified by the Area
Under the Receiver Operating Characteristics (AUROC) curve, ranged between 0.69 and
0.92 and was generally maintained in study-to-study transfer (AUROC dropping by
0.07+0.12 on average) with two notable exceptions. First, in line with the univariate analysis
of species associations, CRC detection accuracy on the US study was lower than for the
other studies, both in cross-validation and in study-to-study transfer. This could potentially
be explained by the US fecal specimen, unlike in the other studies, being freeze-archived for
>25 years before metagenomic sequencing [10]. Second, classifiers trained on the AT study
did not generalize as well to the other studies, consistent with low study precision seen in
univariate meta-analysis (Supplementary Fig. 2). Given the microbial co-occurrence clusters
described above, we wondered whether species-species interactions would provide
additional information relevant for CRC recognition that is not contained in species
abundance profiles. However, nonlinear classifiers able to exploit such interactions did not
yield significantly better accuracies (Supplementary Fig. 3, see also [27]), suggesting that
the linear model based on few biomarkers (on average 17 species account for more than 80%
of the classifier weight, Extended Data 6) is near optimal for CRC prediction.

We further assessed if including data from all but one study in model training improves
prediction on the remaining held-out study (leave-one-study-out validation, LOSO). LOSO
performance of species-level models ranged between 0.71 and 0.91, and when disregarding
the US study as an outlier was =0.83 (Fig. 3b). This corresponds to a LOSO accuracy
increase of 0.076+0.03 compared to study-to-study transfer. These results suggest that one
can expect a CRC detection accuracy =0.8 (AUROC) for any new CRC study using similarly
generated metagenomic data. WWe moreover verified that metagenomic CRC classification
models trained on species compaosition were not biased for clinical subgroups. With the
exception of slightly more sensitive detection of late stage CRC (P = 0.03, mostly
originating from the US study, Extended Data 7), we did not observe any classification bias
by patient age, sex, BMI, or localization. Together this suggests that these metagenomic
classifiers are unlikely to be strongly confounded by the clinical parameters recorded.

Several previous studies comparing microbiome changes across multiple diseases reported
primarily general dysbiotic alterations and highlighted the need to examine the disease
specificity of microbiome signatures [17, 19]. Therefore, we assessed false positive (FP)
predictions of our metagenomic CRC classifiers on fecal metagenomes of type 2 diabetes [4,
5], Parkinson’s disease [12], ulcerative colitis and Crohn’s disease [6, 7] patients, reasoning
that classifiers relying on biomarkers for general dysbiosis would yield an excess of FPs on
these cohorts. However, our LOSO classification models calibrated to have a false-positive
rate (FPR) of 0.1 on CRC datasets in fact maintained similarly low FPRs on other disease
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datasets ranging from 0.09 to 0.13 (Fig. 3c). Interestingly, disease specificity of LOSO
models was significantly improved over that observed for classifiers trained on a single
study, indicating that inclusion of multiple studies in the training set of a classifier can

substantially improve its specificity for a given disease.

Functional metagenomic signatures for CRC

As shotgun metagenomics data, in contrast to 16S rRNA gene amplicon data, allow for a
direct analysis of the functional potential of the gut microbiome, we examined how
predictive metabolic pathways and orthologous gene families differing in abundance
between CRC patients and controls would be of CRC status. When applying the same
classification workflow as above to eggNOG orthologous gene family abundances [28],
CRC detection accuracy was very similar to that observed for taxonomic models (Fig. 3de).
AUROC values ranged from 0.70 to 0.81 for study-to-study transfer (per-study averages,
Fig. 3e) and from 0.78 to 0.89 in LOSO validation with a pattern of generalization across
studies resembling that for taxonomic classifiers. The accuracy of functional signatures did
not strongly depend on eggNOG as an annotation source, but was similar when based on
other comprehensive functional databases, such as KEGG [29] (Extended Data 8). When
using individual gene abundances from metagenomic gene catalogues as a classifier input
[30], we observed higher within-study cross-validation AUROC values of >0.96 in all
studies, but lower generalization to other studies (AUROC between 0.60 and 0.79)
(Extended Data 8).

To explore changes in metabolic capacity of gut microbiomes from CRC patients more
broadly, we quantified gut metabolic modules (defined in [31]) and subjected these to the
same differential abundance analysis developed for microbial species. Gut metabolic
modules with significantly higher abundance (FDR < 0.01, Wilcoxon test blocked for study
and colonoscopy) in CRC metagenomes predominantly belonged to pathways for the
degradation of amino acids, mucins (glycoproteins) and organic acids. This clear trend was
accompanied by a depletion of genes from carbohydrate degradation modules (Fig. 4ab).
Differences in all four high-level categories were highly significant (P < 1E-6 in all cases,
blocked Wilcoxon tests) and consistent across studies (Fig. 4b). Overall these results
establish a clear shift from dietary carbohydrate utilization in a healthy gut microbiome to
amino acid degradation in CRC consistent with an earlier report based on a subset of the
data [8]. Correlation analysis suggests that increased capacity for amino acid degradation is
mostly contributed by CRC-associated Clostridiales (cf. cluster 4 in Fig. 2, Supplementary
Fig. 4). About one half of these metagenomic pathway enrichments are also in agreement
with independent metabolomics data suggesting increased availability of amino acids in
epithelial cells or feces of CRC patients (Supplementary Table S5, [32-36]). While the
observed pathway enrichments could potentially result from many factors, including
unmeasured ones [13], they are consistent with established dietary risk factors for CRC,
which include red and processed meat consumption [37] and low fiber intake [38].

The large metagenomic data set analyzed here allowed us to quantify the prevalence of gut
microbial virulence and toxicity mechanisms thought to play a role in colorectal
carcinogenesis. Prominent examples include the Fusobacterium nucleatum adhesion protein
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A (encoded by the 7adA gene), the Bacteroides fragilis enterotoxin (b7t gene) and colibactin
produced by some Escherichia coli strains (pks genomic island) [39, 40]. Moreover,
intestinal Clostridium spp. are known to contribute to the conversion of primary to
secondary bile acids using several metabolic pathways including 7a-dehydroxylation,
encoded in the bai operon [41]. The products of this 7a-dehydroxylation pathway,
deoxycholate and lithocholate, are known hepatotoxins associated with liver cancer [42] and
hypothesized to also promote CRC [43]. Although intensely studied at a mechanistic level,
these factors are not (well) represented in general databases that can be used for
metagenome annotation (Supplementary Fig. 5). Thus, we built a targeted metagenome
annotation workflow based on Hidden Markov Models to identify and quantify virulence
factors and toxicity pathways of interest in CRC. Additionally, we used co-abundance
clustering to infer operon completeness for factors encoded by multiple genes (Methods,
Extended Data 9, Supplementary Fig. 5). While 7adA, bft, the pksisland and the ba/ operon
were clearly detectable in deeply sequenced fecal metagenomes, they varied broadly with
respect to abundance, significance and cross-study consistency of enrichment (Fig. 4c): fadA
and pks were significantly enriched in CRC metagenomes (P = 5.3E-10 and 4.1E-4
respectively), whereas no significant abundance difference could be detected for 67¢in fecal
metagenomes, despite reports on its enrichment in the mucosa of CRC patients [44], its
carcinogenic effect in mouse models [45], and synergistic action with pks [46]. Our
quantification of the ba/ operon showed a highly significant enrichment in CRC
metagenomes (P = 1.6E-9) observed across all five studies (Fig. 4d) at an average abundance
that exceeded fadA and pks copy numbers (Fig. 4c). Metagenome analysis indicated that at
least four Clostridiales species (including the well characterized C. scindensand C.
hylemonae [47, 48]) have a (near) complete 7a-dehydroxylation pathway contributing to the
observed enrichment of ba/operon copies (Extended Data 9). To validate this finding and
further explore its value towards diagnostic application, we developed a targeted
quantification assay for the baiF gene based on quantitative PCR (gPCR, see Methods).
Quantification of baiFby gPCR using genomic DNA from 47 fecal samples of the DE study
population was found to be similar to, yet more sensitive than by metagenomics (Fig. 4e).
Gut microbial ba/F copy numbers clearly distinguished CRC patients from controls (P =
0.001) at an AUROC of 0.77, which in this subset of samples is surpassed by only a single
species marker for CRC (Extended Data 9). Although consistent with increased
deoxycholate metabolite levels reported for serum and stool samples of CRC patients [49],
this finding does not imply 7a.-dehydroxylation pathway activity. We therefore quantified
baiF expression using RNA extracts from the same set of fecal samples, and found also
transcript levels to be elevated in CRC patients (Fig. 4f). The observed weak correlation of
baiF expression with genomic abundance (Fig. 4f) might be explained by dynamic
transcriptional regulation [47] and bar expression in feces might not accurately reflect the
tumor microenvironment. Taken together, these data suggest gut microbial metabolic
markers to be meaningful and highly predictive of CRC status.

Validation of CRC signatures in independent study populations

Even though CRC classification accuracy for both species and functions were evaluated on
independent data, we nonetheless sought to confirm it using two additional study
populations from Italy (IT1 and IT2, combined N = 61 CRC, N = 62 CTR, [27], see
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Methods, Table 1) and one from Japan (JP, N = 40 CRC, N = 40 CTR, see Methods, Table
1). The overlap of single species associations detected in the IT2 study and those from the
meta-analysis was found to vary within the range seen for the other studies, whereas for IT1
and JP the overlap was slightly lower (cf. study precision in Supplementary Fig. 2, Extended
Data 10). Nonetheless, the AUROC of LOSO classification models based on species ranged
between 0.79 and 0.81 and that for the classifiers based on eggNOG from 0.71 to 0.92 (Fig.
5ab). We also validated CRC enrichment of fadA, pksand bai genes in these three study
populations (Fig. 5¢). Altogether these results highlight consistent alterations in the gut
microbiome of CRC patients across eight study populations from seven countries in three
continents.

DISCUSSION

Through extensive and statistically rigorous validation, in which data from studies used for
training is strictly separated from that for testing, our meta-analysis firmly establishes that
gut microbial signatures are highly predictive of CRC (see also [27]). In particular
metagenomic classifiers trained on species profiles from multiple studies maintained an
AUROC of at least 0.8 in seven out of eight data sets and achieved an accuracy similar to the
fecal occult blood test, a standard non-invasive clinical test for CRC (Supplementary Fig. 6,
cf. [8]). These results thus suggest that polymicrobial CRC classifiers are globally applicable
and can overcome technical and geographical study differences, which we found to
generally impact observed microbiome composition more than the disease itself (Fig. 1c,
Extended Data 1, 2). The generalization accuracy of classifiers across studies seen here is
higher than that reported in 16S rRNA gene amplicon sequencing studies, which are
characterized by even larger heterogeneity across studies [16, 18] (Supplementary Fig. 7).

Previous microbiome meta-analyses suggested that the majority of gut microbial taxa
differing in any given case-control study reflect general dysbiosis rather than disease-
specific alterations illustrating the difficulty of establishing disease-specific microbiome
signatures [17, 19]. Here, by combining data across studies for training (LOSO), we were
able to develop disease-specific signatures that maintained false positive control on diabetes
and IBD metagenomes at a very similar level as for CRC (Fig. 3c) despite these diseases
having shared effects on the gut microbiome [17, 50] and an increased comorbidity risk [51].

Although for diagnostic purposes, unresolved causality between microbial and host
processes during CRC development are not a central concern, elucidating the underlying
mechanisms would greatly enhance our understanding of colorectal tumorigenesis. Towards
this goal, we developed both broad and targeted annotation workflows for functional
metagenome analysis. First, we found functional signatures based on the abundances of
orthologous groups of microbial genes to yield accuracies as high as taxonomic signatures
(Fig. 3), which raises the hope for future improvements in metagenome annotation to
translate into microbiome signature refinements. Second, by investigating potentially
carcinogenic bacterial virulence and toxicity mechanisms taking a targeted metagenome
annotation approach, we confirmed highly significant enrichments of the colibactin-
producing pks gene cluster and the Fusobacterium nucleatum adhesin FadA in CRC
metagenomes (Fig. 4c). Our results support the clinical relevance of these factors adding to
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the experimental evidence for their carcinogenic potential [46, 52-54]. We further examined
the bai operon, encoding enzymes that produce secondary bile acids via 7a-
dehydroxylation, as an example of toxic host-microbial co-metabolism (see [27] for another
intriguing example). While a.-dehydroxylated bile acids are established liver carcinogens
[42], their contribution to CRC is less clear [43]. Here, we have, for the first time, shown ba/
to be highly enriched in stool from CRC patients (Fig. 4cd) and confirmed this finding at
both the genomic and the transcriptomic level using gPCR (Fig. 4ef). As basenrichment
(and expression) is likely a consequence of a diet rich in fat and meat [55], it is intriguing to
explore whether bai could be used as a surrogate microbiome marker for such difficult-to-
measure dietary CRC risk factors. To further unravel the molecular underpinning of these
dietary CRC risk factors, molecular pathological epidemiology studies that investigate the
mucosal microbiome as part of the tumor microenvironment, hold great potential [56, 57].
However, they will require more comprehensive diet questionnaires, medical records, and
molecular tumor characterizations than are available for the study populations analyzed here.
In this context, carcinogens possibly contained in the virome also warrant further
investigation [58, 59], but for this goal, metagenomic data needs to be generated with
protocols optimized for virus enrichment [60].

Taken together, our results and those by Thomas, Manghi et al. [27], strongly support the
promise of microbiome-based CRC diagnostics. Both taxonomic and metabolic gut
microbial marker genes established in these meta-analyses could form the basis of future
diagnostic assays that are sufficiently robust, sensitive, and cost-effective for clinical
application. The targeted qPCR-based quantification of the ba/F gene is a first step in this
direction. Our metagenomic analysis of this and other virulence and toxicity markers bridge
to existing mechanistic work in preclinical models and could enable future work aiming to
precisely determine the contribution of gut microbiota to CRC development.

Data and Code Availability

The raw sequencing data for the samples in the DE study that had not been published before
(see Methods), are made available in the European Nucleotide Archive (ENA) under the
study identifier PRJEB27928. Metadata for these samples are available as Supplementary
Table S6.

For the other studies included here, the raw sequencing data can be found under the
following ENA identifiers: PRJEB10878 for [11], PRIEB12449 for [10], ERP008729 for
[9], and ERP005534 for [8]. The independent validation cohorts can be found in SRA under
the identifier SRP136711 for [27] and in the DDBJ database under the ID DRA006684.

Filtered taxonomic and functional profiles used as input for the statistical modeling pipeline
are available in Supplementary Data 1.

The code and all analysis results can be found under https://github.com/zellerlab/crc_meta.
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Methods

Study inclusion and data acquisition

We used PubMed to search for studies that published fecal shotgun metagenomic data of
human colorectal cancer patients and healthy controls. The search term, all hits, and the
justification for exclusion or inclusion are available in Supplementary Table S1. Raw fastq
files were downloaded for the four included studies from the European Nucleotide Archive,
using the following ENA identifiers: PRIEB10878 for [11], PRIEB12449 for [10],
ERPO008729 for [9], and ERP005534 for [8].

DE study recruitment and sequencing

The German (DE) study population data consist of 60 fecal CRC metagenomes, 38 of which
were sequenced and published in [8] under ENA accession ERP005534. The fecal
metagenomes from additional 22 CRC patients recruited for the same ColoCare study
(DKFZ, Heidelberg, [61, 62]) were sequenced later as part of this work. All fecal samples
were collected after colonoscopy. Sixty gender- and age-matched participants of the
PRAVENT study run by the same clinical investigators were included as healthy controls; as
these were not subjected to colonoscopy, the presence of undiagnosed colorectal carcinomas
cannot be completely ruled out but is expected to be unlikely due to low prevalence of
preclinical CRC in the general population [63].

Written informed consent was obtained from all additional 22 CRC patients and 60 controls.
The study protocol was approved by the institutional review board (EMBL Bioethics
Internal Advisory Board) and the ethics committee of the Medical Faculty at the University
of Heidelberg. The study is in agreement with the WMA Declaration of Helsinki and the
Department of Health and Human Services Belmont Report.

Genomic DNA was extracted from the fecal samples (preserved in RNALater) and libraries
were prepared as previously described [8]. Whole-genome shotgun sequencing was
performed by using Illumina HiSeq 2000 / 2500 / 4000 (Illumina, San Diego, USA)
platforms at the Genomics Core Facility, European Molecular Biology Laboratory,
Heidelberg.

Independent validation cohorts

During the revision of this manuscript, we included three independent study populations for
external validation. Two of them were recruited in Italy (IT1 and 1T2) with informed consent
from all participants and ethical approval by the Ethics committee of Azienda Ospedaliera of
Alessandria and that of the European Institute of Oncology of Milan. Shotgun fecal
metagenomic data was generated as described in [27].

The third study population was recruited in Japan (JP) with informed consent and ethical
approval of the institutional review boards of the National Cancer Center Japan - Research
Institute and the Tokyo Institute of Technology. DNA was extracted from frozen fecal
samples using a GNOME DNA Isolation Kit (MP Biomedicals, Santa Ana, CA) with an
additional bead-beating step as previously described [64]. DNA quality was assessed with an
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Agilent 4200 TapeStation (Agilent Technologies, Santa Clara CA). After final precipitation,
the DNA samples were resuspended in TE buffer and stored at —80°C before further
analysis. Sequencing libraries were generated with the Nextera XT DNA Sample
Preparation Kit (Illumina, San Diego, CA). Library quality was confirmed with an Agilent
4200 TapeStation. Whole-genome shotgun sequencing was carried out on the HiSeq2500
platform (lllumina). All samples were paired-end sequenced with a 150-bp read length to a
targeted data set size of 5.0 Gb.

Taxonomic profiling and data preprocessing

The metagenomic samples were quality controlled using MOCAT2’s -rtf procedure, which
is based on the ‘solexaga’ algorithm [23]. In particular, reads that map with at least 95%
sequence identity and alignment length of at least 45 bp to the human genome hgl19 were
removed. In a second step, taxonomic profiles were generated with the mOTU profiler
version 2.0.0 ([22, 65, 66] — see motu-tool.org and GitHub version tag 2.0.0) using the
following parameters: -1 75, -g 2 and -c. Briefly, this profiler is based on ten universal single-
copy marker-gene families (COG0012, COG0016, COG0018, COG0172, COG0215,
COG0495, COG0525, COG0533, COG0541 and COGO0552) [66]. These marker-genes were
extracted from >25,000 reference genomes and >3,000 metagenomic samples allowing to
profile prokaryotic species with a sequenced reference genome (ref-mOTUs) and ones
without (meta-mOTUSs). The read count for a mOTU was calculated as median of the read
count of the genes that belonged to that mOTU.

mOTU profiles were first converted to relative abundances to account for library size. Then,
profiles were filtered to focus on a set of species that are confidently detectable in multiple
studies. Specifically, microbial species that did not exceed a maximum relative abundance of
1E-03 in at least 3 of the studies were excluded from further analysis, together with the
fraction of unmapped metagenomic reads.

Functional metagenome profiling and data preprocessing

High-quality reads (same quality filtering as for taxonomic profiling) were aligned against a
combined database (IGChg38 hereafter) consisting of the hg38 release of the human
reference genome and the integrated gene catalog (IGC) containing 9.9 million non-
redundant microbial genes [30] using BWA mem [67] (Version: 0.7.15-r1140) with default
parameters. The purpose of adding the human genome to the reference database was to filter
out reads that mapped as well or better to some human sequence than to any bacterial gene.
Alignments were computed separately for paired-end and single read libraries (single reads
could result from read pairs where one read was filtered out in the quality filtering procedure
described above). Alignments were then filtered to only retain those longer than 50bp with
>95% sequence identity. Then the highest scoring alignment(s) was/were kept for each read.
As IGChg38 is a database of predominantly genes and not genomes, there will be a
substantial proportion of read-pairs where one end maps within the gene while the other end
does not — it either maps to an adjacent gene or remains unmapped due to intergenic regions
not contained in the database. Therefore, we counted a whole read-pair aligning to a gene
when (i) both ends from a read pair map to the same gene, (ii) only one end from a read-pair
maps to the gene, or (iii) a read from the single read library maps to the gene. We then
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counted only the read-pairs that map uniquely to one gene in the IGC, thus excluding
ambiguous read pairs mapping with similarly high scores to multiple genes in the database.
For a given metagenomic sample, we further normalized the abundance of each IGC gene by
the length of that gene. We then estimated relative abundance of IGC genes by dividing gene
abundances by the total abundance of all genes in IGC (excluding the human chromosomes).

Because metagenomes from CRC patients were not included when the IGC was constructed,
we analyzed how well CRC-associated species as identified in this meta-analysis were
represented in the IGC. Using a phylogenetic marker gene (COG0533), which is also used
by the species profiling workflow on which the meta-analysis is based, for 24 out of the 29
core CRC-associated species we found a match in the IGC with at least 90% nucleotide
identity, indicating that a sequence from the same species (above 93.1% identity) or a
slightly more distant relative is present in the IGC (Supplementary Fig. 8). The relative
abundance of eggNOG orthologous groups [28] was estimated by summing relative
abundances of genes annotated to belong to the same eggNOG orthologous group as of the
most recent annotations provided by MOCAT?2 [23]. To obtain KEGG orthologous groups
(KO) and pathway abundances, we applied the same procedure, but using KEGG
annotations for IGC provided by MOCAT?2 [29].

Overview over statistical analyses

For univariate association testing between the abundances of microbial taxa or gene
functions we used nonparametric tests throughout; all of these were two-sided Wilcoxon
tests except were otherwise noted. To account for potential confounding and heterogeneity
between data sets we employed a stratified version of the Wilcoxon test [24] (see below for
details). ANOVA was conducted on rank-transformed data. Significance of binary co-
occurrence patterns was assessed using (stratified) Cochrane-Mantel-Haenszel tests.

Multivariable analysis was done with strict separation between training and test data. This
importantly also pertained to feature selection, which was either done via the LASSO [68] or
by nested cross-validation procedures to avoid overoptimistic performance assessment [69]
(see below for details). All samples included in this meta-analysis came from distinct
individuals to ensure that generalization across subjects — rather than across timepoints
within a given subject — is assessed.

Confounder analysis

To quantify the effect of potential confounding factors relative to that of CRC on single
microbial species, we used an ANOVA-type analysis. The total variance within the
abundance of a given microbial species was compared to the variance explained by disease
status and the variance explained by the confounding factor akin to a linear model including
both CRC status and confounding factor as explanatory variables for species abundance.
Variance calculations were performed on ranks in order to account for non-Gaussian
distribution of microbiome abundance data. Potential confounders with continuous values
were transformed into categorical data either as quartiles or for the case of body mass index
(BMI) into lean/obese/overweight according to conventional cutoffs (lean: < 25, obese: 25 —
30, overweight: > 30).
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Univariate meta-analysis for the identification of CRC-associated gut microbial species

Significance of differential abundance was tested on a per-species basis using a blocked
Wilcoxon test implemented in the R coin package [24]. Informed by the results of the
preceding confounder analysis, we blocked for “study™ and additionally “colonoscopy in the
CN study. Within this framework, significance is tested against a conditional null
distribution derived from permutations of the observed data. Notably, permutations are
performed within each block in order to control for variations in block size and composition.
To adjust for multiple hypothesis testing, P-values were adjusted using the false-discovery
rate (FDR) method [70].

As nonparametric effect size measures we used the area under the ROC curve (AUROC)
with permutation-based confidence intervals computed using the pROC package in R [71].
We further developed a generalization of the (logarithmic) fold change that is widely used
for other types of read abundance data. This generalization is designed to have better
resolution for sparse microbiome profiles (where 0 entries can render median-based fold
change estimates uninformative for the large portion of species with a prevalence below 0.5).
The generalized fold change (gFC) is computed as mean difference in a set of pre-defined
quantiles of the logarithmic CTR and CRC distributions (see Extended Data 3 for further
details; we used quantiles ranging from 0.1 to 0.9 in increments of 0.1).

For the retrospective analysis of study precision and recall for detecting microbial species
associations from the meta-analysis, the true set was defined as the species which were
associated at a given FDR in the meta-analysis. Then, we checked how well this set of
species would be recovered using the single-study significance as determined by the
Wilcoxon test. Study precision corresponds to the proportion of meta-analysis significant
species among those detected as significant in a single study. Similarly, recall (or sensitivity)
corresponds to the proportion of species out of the true set of meta-analysis significant
species that were recovered in a given study.

Species co-occurrence and cluster analysis in CRC metagenomes

For the analysis of gut bacterial species co-occurring in CRC microbiomes, relative
abundances of the core set of associated species (excluding the CRC-depleted Clostridiales
meta-mOTU [1296]) were discretized into binary values to determine whether a CRC
(metagenomic) sample is “positive” or “negative” for a given microbial marker. To
normalize for differences in prevalence (and therefore specificity) of these markers we
adjusted the threshold value, above which a sample is labeled “positive” based on the
abundance in healthy controls. For each microbial species, the 95th percentile in healthy
controls was used as threshold, which effectively results in adjusting the per-marker false
positive rate to 0.05. Based on the binarized species-by-sample matrix, species were then
clustered using the Jaccard dissimilarity as implemented in the vegan package in R [72].
Associations between species clusters and meta-variables were tested as 2-by-n (where n is
the number of categories in the meta-variable tested) contingency tables using a Cochrane-
Mantel-Haenszel test with study as blocking factor as implemented in the coin package [24].
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Multivariable statistical modeling workflow and model evaluation

As a main goal of our work is to assess the generalization accuracy of microbiome-based
CRC classifiers across technical and geographic differences in patient populations, we
extensively validated classification models across studies taking the following two
approaches.

In study-to-studly transfervalidation, metagenomic classifiers were trained on a single study
and their performance externally assessed on all other studies (off-diagonal cells in Fig.
3ac). Effectively we implemented a nested cross validation procedure on the training study
to compute within-study accuracy (cells on the diagonal in Fig. 3ac) and tune the model
hyperparameters.

In leave-one-study-out (LOSO) validation, data from one study was set aside as an external
validation set, while the data from the remaining 4 studies was pooled as a training set on
which we implemented the same nested cross validation procedure as for study-to-study
transfer (see [19] for a more detailed description of LOSO).

Data preprocessing, model building, and model evaluation was performed using the
SIAMCAT R package (https://bioconductor.org/packages/SIAMCAT, version 1.1.0).

Preprocessing of taxonomic abundance profiles for statistical modeling

Relative abundances were first filtered to remove markers with low overall abundance and
no variance (an artifact for single-study data arising from the joint data filtering described
above), log-transformed (after adding a pseudo-count of 1E-05 to avoid non-finite values
resulting from log(0), [73]) and finally standardized as z-scores. Data were split into training
and test set for 10 times repeated 10-fold stratified cross validation (balancing class
proportions across folds). For each split, a L1-regularized (LASSO) logistic regression
model [68] was trained on the training set, which was then used to predict the test set. The
lambda parameter, i.e. regularization strength was selected for each model to maximize the
area under the precision recall curve under the constraint that the model contained at least 5
non-zero coefficients. Models were then evaluated by calculating the area under the Receiver
Operating Characteristics curve (AUROC) based on the posterior probability for the CRC
class.

In model transfer to a hold-out study, the holdout data were normalized for comparability in
the same way as the training dataset by using the frozen normalization function in
SIAMCAT, which retains the same features and re-uses the same normalization parameters
(e.g. the mean of a feature for z-score standardization). Then, all 100 models derived from
the cross validation on the training dataset (10 times repeated 10-fold CV) were applied to
the holdout dataset and predictions were averaged across all models.

In the LOSO setting, data from the four training studies were jointly processed as a single
dataset in the same way as described above using 10 times repeated 10-fold stratified cross
validation.
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Preprocessing of functional abundance profiles

Functional profiles, such as eggNOG gene family or KEGG module abundance profiles were
preprocessed as described above for species profiles, but using 1E-06 as maximum
abundance cutoff and 1E-09 as a pseudo-count during log transformation. Since these
abundance tables contained several thousand input features we implemented an additional
feature selection step, which was nested properly into the cross-validation procedures as
described above. This nested approach is crucial to avoid over-optimistically biased
performance estimates ([74], Chapter 7.10). Specifically, features were filtered inside each
training fold (without using any information from the test fold) by selecting the 1600
features with highest single-feature AUROC values (for features depleted in CRC, 1 -
AUROC was used for feature selection).

Preprocessing of gene abundance profiles

To ascertain the predictive power of a classifiers based on IGC gene abundances [30] we
applied a series of filters to the abundance tables to reduce the number of genes that would
be the input of the LASSO modelling. These filters where applied once on a per-study level
and once in a leave-one-study-out (LOSO) mode, where they were applied jointly to all
studies in the training set, with the remaining one being held out for external validation.

The following filters were applied in this order:

1 All genes with 0 abundance in 215% of samples (regardless of CRC status) were
discarded.

2. The remaining data was discretized using the equal frequencies method
implemented in the ‘discretize’ function of the sideChannelAttack R package
(version 1.0-6) as a preparation to the minimal-redundancy-maximal-relevance
(mRMR) algorithm [75].

3. As a feature selection procedure, mMRMR (code version from 20 April 2009
downloaded from http://home.penglab.com/proj/mRMR/ on 3 Dec 2016) was run
on the gene abundance table to retain the 100 top genes as output.

LASSO models were then built on log10-transformed abundances (pseudo-count of 10E-09,
centered and scaled) of the sets of 100 top genes returned by mRMR. The whole process
was repeated 10 times in a 5-fold stratified cross-validation scheme to allow for an
estimation of the confidence of the AUROCS of the resulting models. We used the LiblineaR
package (version 2.10-8) to build the LASSO models in R and tested a sequence of 20 cost
parameters (equivalent or the lambda parameter controlling regularization strength) evenly
spaced from 0.0012 to 0.22. The cost parameter was selected to maximize the AUROC
within the training set.

External evaluation of disease-specificity of the metagenomic classifiers

To assess how disease-specific the predictions of the CRC models are, we applied these to
data from case-control studies investigating other human diseases. Fecal metagenomic data
of patients with Parkinson’s disease [12], type 2 diabetes [4, 5], and inflammatory bowel
disease [6, 7] were taxonomically profiled as described above. The parameters for quality
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control with MOCAT?2 and for the mOTU profiler were the same as described above, except
for the data from [6], where we used -1 50 (to set the threshold for minimum alignment
length to 50) as the read length is shorter (average read length 71) compared to the other
more recently generated Illumina shotgun metagenomic data.

Relative abundance data were treated exactly as another holdout dataset for each model, i.e.
applying the frozen normalization prediction routines as described above. For each CRC
model applied to the external datasets, a cutoff on its prediction output was adjusted to yield
a false positive rate (FPR) of 0.1 on the controls of its respective (CRC) training set.
Subsequently its FPR on metagenomes from patients suffering from the above-mentioned
(non-CRC) conditions was assessed to evaluate its disease specificity. The rationale behind
this is that a metagenomic classifier recognizing general features of dysbiosis would be
expected to predict CRC patients and those suffering from other conditions at a similar rate;
such a classifier would thus in the above-described evaluation display a much higher FPR
than on the controls of its training set. In contrast maintaining a low FPR in this evaluation
indicates that the classification model is based on CRC-specific features rather than
hallmarks of general dysbiosis or nonspecific inflammation.

Functional profiling of gut metabolic modules (GMMs)

Gut metabolic modules were computed as originally proposed [31], using the KEGG KO
profiles based on the IGC (see Functional metagenome profiling above) as input. Statistical
analysis and generalized fold change calculations were performed analogously to species
profiles (see above). Gut metabolic modules were summarized across functional groups (e.g.
amino acid degradation) as geometric mean of all modules within the respective group.

Targeted functional analysis of virulence and toxicity pathways of potential relevance in

CRC

To investigate toxins and virulence mechanisms that have previously been implicated with
CRC [40], we constructed for each gene belonging to the respective virulence or toxicity
pathway a hidden Markov model (HMM). Each HMM was built from a multiple sequence
alignment generated by MUSCLE [76], containing the respective reference sequences and
close homologs identified using PSI-Blast [77]. Multiple sequence alignments are available
together with the code for this paper (https://github.com/zellerlab/crc_meta). Then, we
screened the IGC metagenomic gene catalogue [30] with each HMM using the HMMER
software (version 3.1b2) [78]. Genes with an E-value below 1E-10 were filtered for
uniqueness, since in some cases the HMMs would call different regions in the same gene.
For single gene virulence factors (i.e. fadA and b)), potential IGC hits were aligned against
the reference sequence using the Needleman-Wunsch algorithm in the EMBOSS package
[79]. Hits were then filtered based on percentage of sequence identity (cutoff: 40%) and
sequence similarly to the species relative abundance profiles based on maximum relative
abundance (cutoff: 1E-07) in order to exclude genes with limited relevance. Statistical
analysis was performed on the sum of all genes.

For virulence pathways containing more than one gene, the IGC hits of each functional
group within the pathway were aligned against the respective reference sequence and filtered
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for percentage of sequence identity and maximum abundance. Then, all hits were clustered
based on the Pearson correlation of the log-abundances across all samples using the Ward
algorithm as implemented in the Ac/ust function in R. The gene clusters were filtered based
on operon completeness (how many genes of the operon were present in the cluster) and
average correlation within the cluster (Extended Data 9). For statistical analysis, the genes in
the selected gene clusters were summed up within each group or all together for the overall
analysis.

Quantitative PCR for baiF

Real-time quantitative PCR to quantify the abundance and expression of baiFwas performed
on a subset of samples in the DE cohort (20 control and 24 colorectal cancer samples, see
Supplementary Table S6). For these samples, DNA and RNA extraction was done with the
Allprep PowerFecal DNA/RNA kit (Qiagen, Cat No: 80244) with additional RNAse and
DNAse digestion steps, respectively, as described by the manufacturer. DNA and RNA
concentrations were determined by Qubit Fluorometer (Invitrogen) and quality control of all
RNA samples was done using an Agilent 2100 Bioanalyzer in combination with RNA 6000
Nano and Pico LabChip kits.

First-strand cDNA was synthesized by SuperScript IV VILO Master Mix with ezDNAse
enzyme and random hexamer primers (Invitrogen, catalogue number 11766500) as
recommended by the manufacturer. Reaction were performed as described in the protocol
with one minor change of temperature (incubation for the reverse transcription step at 55°C).

To quantify baiF relative to the total bacterial RNA/DNA in a sample, gPCR was performed
in triplicates for 16S rRNA and the baiF genes, using both cDNA and genomic DNA
(gDNA) as template. We used the following primers for baiF;, TTCAGYTTCTACACCTG
(forward), GGTTRTCCATRCCGAACAGCG (reverse), and standard primers F515 and
R806 for 16S [80]. RT-PCR reactions were prepared with a final primer concentration of 0.5
1M, including 5 ng of genomic DNA or 10 ng of cDNA in 20  final reaction volume, and
reactions were performed with SYBR Green qPCR mix on StepOne Real-Time PCR system
(Thermo Fisler Scientific). Cycling conditions were as follows; initial denaturation of 95°C
for 10 min, then 40 cycles of denaturing at 95°C for 15 s, annealing at 60°C for 60 s
followed by melt curve analysis.

Delta-Ct values were calculated as difference between baiF and 16S Ct values. Significance
of the comparison between control and colorectal cancer samples was tested on the delta-Ct
values using a one-sided Wilcoxon test as a confirmation of metagenomic enrichment.
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Extended Data
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Extended Data Figure 1: Potential confounder of individual microbial species associations by
patient demographics and technical factors

Variance explained by disease status (CRC vs control) is plotted against variance explained
by different putative confounding factors for individual microbial species. Each species is
represented by a dot proportional in size to its abundance (see legend and Methods); core
microbial markers identified in meta-analysis (tested by two-sided blocked Wilcoxon test,
n=574 independent observations) are highlighted in red. For the confounder analysis, factors
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with continuous values were discretized into quartiles and BMI was split into lean/
overweight/obese according to conventional cutoffs. The variance explained by disease
status was computed all data; accordingly, the x-values are the same in all panels and also in
Fig. 1d. Variance explained by different confounding factors was computed using all
samples for which data were available (indicated by insets).
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Extended Data Figure 2: Study shows a strong influence on alpha and beta diver sity
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(a) Alpha diversity as measured by the Shannon index was computed for all gut microbial
species (n=849), reference mOTUs (n=246), and meta mOTUs (n=603) separately. P-values
were computed using two-sided Wilcoxon test, while the overall p-value (on top) was
calculated using a two-sided blocked Wilcoxon test (n=575 independent observations, see
Methods). Anova F statistics below the panel were computed using the R function aov. (b)
Principal coordinate analysis of samples from all five included studies based on Bray-Curtis
distance; study is color-coded and disease status (CRC vs control) indicated by filled/
unfilled circles. The boxplots on the side and below show samples projected onto the first
two principle coordinates broken down by study and disease status, respectively. P-values
were computed using a two-sided Wilcoxon test for disease status and a Kruskal-Wallis test
for study, (n=575 independent observations). For all boxplots, boxes denote the interquartile
ranges (IQR) with the median as thick black line and whiskers extending up to the most
extreme points within 1.5-fold IQR.
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Extended Data Figure 3: The generalized fold change extends the established (median-based)
fold changeto provide higher resolution in spar se microbiome data

(a) In the top row, the logarithmic relative abundances for Bacteroides dorei/vulgatus,
Parvimonas micra, and Fusobacterium nucleatum subsp. animalis -examples for a highly
prevalent and two low-prevalence species- are shown as swarmplot for the control (CTR)
and colorectal cancer (CRC) groups. The thick vertical lines indicate the medians in the
different groups and the black horizontal line shows the difference between the two medians,
which corresponds to the classical (median-based) fold change. Since Fusobacterium
nucleatum subsp. animalis is not detectable in more than 50% of the cancer cases, there is no
difference between the CTR and CRC median and thus the fold change is 0. The lower row
shows the same data, but instead of only the median (or 50th percentile), 9 quantiles ranging
from 10% to 90% are shown by thinner vertical lines. The generalized fold change is
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indicated by the horizontal black line again, computed as mean of the differences between
the corresponding quantiles in both groups. In the case of the sparse data (e.g.
Fusobacterium), the differences in the 70%, 80% and 90% quantiles cause the generalized
fold change to be higher than 0. (b) The median fold change is plotted against the newly
developed generalized fold change (gFC) for all microbial species (core set of microbial
CRC marker species highlighted in orange). Marginal histograms visualize the distribution
for both FC and gFC. (c) Scatter plots showing the relationship between FC and gFC and
area under the Receiver Operating Characteristics (AUROC) or shift in prevalence between
CRC and CTR, with Spearman correlations added in the top-left corners; gFC provides
higher resolution (wider distribution around 0) and better correlation with the nonparametric
AUROC effect size measure as well as prevalence shift, which captures the difference in
prevalence of a species in CRC metagenomes relative to control metagenomes.
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Extended Data Figure 4: Microbial generaidentified in meta-analysisto be associated with CRC
(a) Meta-analysis significance of microbial genera, computed using univariate two-sided

Wilcoxon test blocked for study and colonoscopy (n=574 independent observations) is given
by bar height (FDR 0.005). Underneath, significance (FDR-corrected p-value computed
from two-sided Wilcoxon test) and generalized fold changes (see Methods) within individual
studies are displayed as heatmaps in gray and color, respectively (see keys). Genera are
ordered by meta-analysis significance and direction of change. (b) For highly significant
genera (meta-analysis FDR 1E-05), association strength is quantified by the area under the
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Receiver Operating Characteristics (AUROC) across individual studies (color-coded

diamonds) and 95% confidence interval are depicted by gray lines.
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Extended Data Figure 5: The core set of CRC-enriched microbial species can be stratified into
four clustersbased on co-occurrencein CRC metagenomes

(a) The heatmap shows the Jaccard index (computed by comparing marker-positive samples,
see Methods) for the core set of microbial marker species, compute on CRC cases only.
Clustering was performed using the Ward algorithm as implemented in the R function
helust. The inset shows the distribution of Jaccard similarities within each cluster and for the
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background (all similarities between species not in the same cluster, n=841). Boxes denote
the interquartile ranges (IQR) with the median as thick black line and whiskers extending up
to the most extreme points within 1.5-fold IQR. (b) Barplots show the fraction of CRC
samples that are positive for a marker species clusters (defined as the union of positive
marker species) broken down by patient subgroups based on BMI and (c) age (see Fig. 2bcd
for other patient subgroups). Significance of the associations between CRC subgroups and
marker species clusters were tested using the Cochran-Mantel-Haenszel test blocked for
study (but no significant associations were detected). (d) For the core set of microbial
species with a genomic reference, the presence (red) or absence (white) of superoxide
dismutase, peroxidase, and catalase are shown as heatmap (see Methods).
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Extended Data Figure 6: Coefficients of leave-one-study-out L ASSO logistic regression models
compared to modelstrained on individual studies

(a) Mean coefficients (feature weights) from LASSO cross-validation models traind on
single studies (color-coded) are plotted against the single feature AUROC for each species
feature. Horizontal lines highlight microbial species that are -for at least one study- selected
in more than 50% of the models in cross-validation and account for more than 10% of the
absolute model weight in at least 10% of the cross-validation models. Similarly, (b) shows
the same for models trained in the leave-one-study-out (LOSO) setting (see Methods).
Colors indicate which study has been left out of the the training set (and is used for
validation). Since the weights of the LOSO models are spread across more species and thus
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generally lower, species are highlighted by horizontal lines if their weights explain more
than 2.5% of the absolute model in at least 10% of cross-validation models and they have
been selected in more than 50% of models in cross-validation. (c) Inset shows the
distribution of the number of non-zero coefficients across all cross-validation models. (d)
Bar height indicates the number of non-zero coefficients that are shared between the mean
models for each study or left-out study, respectively. (e) The study-to-study difference
(computed as median of all pairwise differences between model weights for a single species
across the mean models) for cross-validation (CV) single-study models are plotted against
the same measure for the LOSO models. Species with a study-to-study difference of more
than 0.02 in the cross-validation models are highlighted and annotated, showing much larger
variability between models trained on single studies compared to LOSO models.
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Extended Data Figure 7: Analysis of leave-one-study-out models for prediction bias
(a) To examine whether species and gene-family-level classification models are confounded,

i.e. biased towards certain patient subgroups, prediction scores from leave-one-study-out
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models are plotted broken down into strata for each clinical parameter (e.g. female and male
for sex). Prediction bias for each variable was tested by two-sided Wilcoxon (for sex and
BMI) or Kruskal-Wallis (all others) tests while blocking for study as confounder (n=575
independent observations). Boxes denote interquartile ranges (IQR) with the median as
horizontal black line and whiskers extending up to the most extreme point within 1.5-fold
IQR. A significant difference in prediction score was detected only for CRC stage. This
stage-bias is more pronounced for gene-family then for species models. (b) To examine
CRC stage bias further the barplots show the true positive rate (TPR) corresponding to an
overall 10% false positive rate (see also Fig. 3c) for the different CRC stages displaying
slightly higher classification sensitivity for late stage CRC for both species and gene-family
models.
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Extended Data Figure 8: Cross-study performance of statistical models based on KEGG KO
abundances, single-gene abundances from the metagenomic gene catalogue (I GC), and the
combination of taxonomic and eggNOG abundance profiles

CRC classification accuracy resulting from cross validation within each study (gray boxed
along diagonal) and study-to-study model transfer (external validations off diagonal) as
measured by AUROC for classification models trained on KEGG KO (a), models based on
the gene catalogue (b), and models based on the combination of taxonomic and eggNOG
abundance profiles (c) (see Methods for details on statistical modeling workflows). The last
column depicts the average AUROC across external validations. The barplots on the right
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show that the classification accuracy on a held-out study improves if data from all other
studies are combined for training (leave-one-study-out, LOSO validation) relative to the
mean of models trained on data from a single study (study-to-study transfer, n=4, error bars
show standard deviation) consistently across different types of input data.
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Extended Data Figure 9: I dentification of bai genesin metagenomes
Putative ba/ genes identified in the metagenomic gene catalogue (IGC) were clustered by co-

abundance in metagenomes to infer genomic linkage (see Methods) to be able to infer
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operon completeness and species of origin. (a) For each resulting cluster of putative bile acid
converting genes, the mean relative abundance is plotted against the mean percentage of
protein identity derived from global alignment against the know bile acid converting genes
from C. scindensand C. hylemonae (see Methods). Completeness, i.e. how many of the 11
different bas gene functions are represented in each cluster, and mean gene-to-gene Pearson
correlation of log-relative abundance within each cluster are encoded by dot size and color,
respectively (see legend). The four clusters with mean protein identity above 75% to know
bai operon containing genomes are included in the subsequent analysis and labeled with the
most highly correlated mOTU (see (b)). (b) Pearson correlation between gene cluster
abundances and most highly correlated species relative abundance (in logarithmic space) is
given by bar height for the four gene clusters identified in (a). The most highly correlating
species is highlighted in darker grey (see labeling of gene clusters in (a)). (c) The log-
transformed abundances of all bas genes and the four species identified in (b) are shown as
boxplots for controls (grey) and CRC cases (red). Assessing the significance of differences
between CRC and controls (by a two-sided Wilcoxon test blocked for study and
colonoscopy, n=574 independent observations) demonstrates a much more significant CRC
enrichment of aggregated metagenomic bas gene abundance than of the individual clostridial
species to which these belong. Boxes denote the interquartile ranges (IQR) with the median
as thick black line and whiskers extending up to the most extreme points within 1.5-fold
IQR. (d) Receiver operating characteristic (ROC) curve for the gPCR quantification of the
baiF gene in genomic DNA of a subset of samples in the DE study (n=47, see Methods and
Fig. 4e) is shown as black line. Shaded grey area depicts the 95% confidence interval.
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Extended Data Figure 10: Validation of meta-analysis single species associationsin three
independent cohorts

(a) Heatmap showing for the core set of CRC-associated species (see Fig. 1) the rank of the
respective species within the associations of each study (tested by two-sided Wilcoxon test),
including the three independent validation cohorts (see Table 1), compared to the rank in the
meta-analysis (meta, tested by two-sided blocked Wilcoxon test) on the left. (b) Precision-
recall curves for the different independent validation cohorts using the meta-analysis set of
associated species at FDR 0.005 (n=94, top) and 1E-05 (n=29, bottom) as “true” set (tested
by two-sided blocked Wilcoxon test, see Methods) and the naive (uncorrected) within-cohort
significance (tested by two-sided Wilcoxon test) as predictor (see Supplementary Figure

X).
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Figure 1. Despite study differences, meta-analysisidentifiesa core set of gut microbes strongly
associated with CRC.

(a) Meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests
(n=574 independent observations) is given by bar height (false discovery rate, FDR, of
0.05). (b) Underneath, species-level significance as computed by two-sided Wilcoxon test
(FDR-corrected P-value) and generalized fold change (Methods) within individual studies
are displayed as heatmaps in gray and color, respectively (see color bars and Table 1 for
details on studies included). Species are ordered by meta-analysis significance and direction
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of change. (c) For a core of highly significant species (meta-analysis FDR 1E-5), association
strength is quantified by the area under the Receiver Operating Characteristics curve
(AUROC) across individual studies (color coded diamonds) and 95% confidence intervals
are indicated by gray lines. Family-level taxonomic information is color-coded above
species names (numbers in brackets are mOTU species identifiers, see Methods). (d)
Variance explained by disease status (CRC vs controls) is plotted against variance explained
by study effects for individual microbial species with dot size proportional to abundance
(Methods); core microbial markers are highlighted in red. £ nucleatum— Fusobacterium
nucleatum.
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sample is positive for each of the core set of microbial marker species (see Methods for
samples that are positive for marker species clusters (defined as the union of positive marker

adjustment of positivity threshold). Samples are ordered according to the sum of positive
markers and marker species are clustered based on Jaccard similarity of positive samples,

Figure 2. Co-occurrence analysis of CRC-associated gut microbial speciesrevealsfour clusters
resulting in four clusters (Methods). Barplots in (b), (c)

preferentially linked to specific patient subgroups.
(a) The heatmap shows for all CRC patients (n
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species) broken down by patient subgroups based on differences in tumor location, sex, or
CRC stage, respectively. Statistically significant associations between CRC subgroups and
marker species clusters were identified using the Cochran—Mantel-Haenszel test blocked for
study effects and are indicated above bars (P < 0.1).
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Figure 3. Both taxonomic and functional metagenomic classification models gener alize across
studiesin particular when trained on data from multiple studies.

CRC classification accuracy resulting from cross validation within each study (gray boxes
along diagonal) and study-to-study model transfer (external validations off diagonal) as
measured by AUROC for classifiers trained on (a) species and (d) eggNOG gene family
abundance profiles. The last column depicts the average AUROC across external validations.
Classification accuracy, as evaluated by AUROC on a held-out study, improves if taxonomic
(b) or functional (e) data from all other studies are combined for training (leave-one-study-

Nat Med. Author manuscript; available in PMC 2021 March 22.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Wirbel et al.

Page 43

out, LOSO validation) relative to models trained on data from a single study (study-to-study
transfer, average and standard deviation shown). Bar height for study-to-study transfer
corresponds to the average of four classifiers (error bars indicate standard deviation, n=4).
(c) Combining training data across studies substantially improves CRC specificity of the
(LOSO) classification models relative to models trained on data from a single study
(depicted by bar color, as in (c) and (d)) as assessed by the false positive rate (FPR) on fecal
samples from patients with other conditions (see legend). Bar height for study-to-study
transfer corresponds to the average FPR across classifiers (n=5) with error bars indicating
the standard deviation of FPR values observed.
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(a) Meta-analysis significance of gut metabolic modules derived from blocked Wilcoxon

tests (n

Figure 4. Meta-analysisidentifies consistent functional changesin CRC metagenomes.

574 independent samples) is indicated by bar height (top panel, FDR of 0.01).

Underneath, the generalized fold change (Methods) for gut metabolic modules [31] within

individual studies is displayed as heatmap (see color key below (b)). Metabolic modules are

ordered by significance and direction of change. A higher-level classification of the modules
is color-coded below the heatmap for the four most common categories (colors as in (b),

white indicating other classes). (b) Normalized log abundances for these selected functional
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categories is compared between controls (CTR) and colorectal cancer cases (CRC).
Abundances are summarized as geometric mean of all modules in the respective category
and statistical significance determined using blocked Wilcoxon tests (n=574 independent
samples, see Methods). (c) Normalized log abundances for virulence factors and toxins
compared between metagenomes of controls (CTR) and colorectal cancer cases (CRC)
(significant differences P < 0.05 were determined by blocked Wilcoxon test, n=574
independent samples, see Methods for gene identification and quantification in
metagenomes; fadA. gene encoding Fusobacterium nucleatum adhesion protein A, bft. gene
encoding Bacteroides fragilis enterotoxin, pks. genomic island in Escherichia coli encoding
enzymes for the production of genotoxic colibactin, and bar: bile acid inducible operon
present in some Clostridiales species encoding bile acid converting enzymes). (d) Meta-
analysis significance (uncorrected P-value) as determined by blocked Wilcoxon tests (n=574
independent samples) and generalized fold change within individual studies are displayed as
bars and heatmap, respectively, for the genes contained in the ba/ operon. Due to high
sequence similarity to ba/iF, baiK was not independently detectable with our approach. (€)
Metagenomic quantification of baiF (metag. ab. — normalized relative abundance) is plotted
against gPCR quantification in genomic DNA (gDNA) extracted from a subset of DE
samples (n=47), with Pearson correlation (r) indicated (see Methods). (f) Expression of baiF
determined via gPCR on reverse-transcribed RNA from the same samples in contrast to
genomic DNA (as in €). The boxplots on the side of (), (f) show the difference between
cancer (CRC) and control (CTR) samples in the respective qPCR quantification (P-values on
top were computed using a one-sided Wilcoxon test). All boxplots show interquartile ranges
(IQR) as boxes with the median as a black horizontal line and whiskers extending up to the
most extreme points within 1.5-fold IQR.
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Figure 5. Meta-analysisresults are validated in three independent study populations
CRC classification accuracy for independent datasets, two from Italy and one from Japan

(see Supplementary Table S2), is indicated by bar height for single study (white) and leave-
one-study-out (grey) models using either (a) species or (b) eggNOG gene family abundance
profiles (cf. Fig. 3). Bar height for single study models corresponds to the average of five
classifiers (error bars indicate standard deviation, n=5). (c) Normalized log abundances for
virulence factors and toxins (cf. Figure 4c) compared between controls (CTR) and colorectal
cancer cases (CRC). P-values were determined by blocked, one-sided Wilcoxon tests (n=193
independent samples). Boxes represent interquartile ranges (IQR) with the median as a black
horizontal line and whiskers extending up to the most extreme points within 1.5-fold IQR.
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Table 1.
Fecal metagenomic studies of colorectal cancer included in this meta-analysis.

See Methods for inclusion criteria and Supplementary Table S2 for extended meta-data. For a detailed
description of patient recruitment and data generation for the DE study, see Methods. The data for 38 samples
from the DE study had been published previously as part of an independent validation cohort in [8].

Country Code | Reference No. of cases | No. of controls
FR Zeller et al., 2014 [8] 53 61
AT Feng et al., 2015 [9] 46 63
CN Yuetal., 2017 [11] 74 54
uUs Vogtmann et al., 2016 [10] 52 52
DE this study 60 60

External validation cohorts

IT1 [27] 29 24
IT2 [27] 32 28
JP Courtesy of T. Yamada etal. | 40 40
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