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Gambling disorder (GD) is a behavioral addiction associated with impairments in value-based decision-making and behavioral
flexibility and might be linked to changes in the dopamine system. Maximizing long-term rewards requires a flexible trade-
off between the exploitation of known options and the exploration of novel options for information gain. This exploration-
exploitation trade-off is thought to depend on dopamine neurotransmission. We hypothesized that human gamblers would
show a reduction in directed (uncertainty-based) exploration, accompanied by changes in brain activity in a fronto-parietal
exploration-related network. Twenty-three frequent, non-treatment seeking gamblers and twenty-three healthy matched con-
trols (all male) performed a four-armed bandit task during functional magnetic resonance imaging (fMRI). Computational
modeling using hierarchical Bayesian parameter estimation revealed signatures of directed exploration, random exploration,
and perseveration in both groups. Gamblers showed a reduction in directed exploration, whereas random exploration and
perseveration were similar between groups. Neuroimaging revealed no evidence for group differences in neural representa-
tions of basic task variables (expected value, prediction errors). Our hypothesis of reduced frontal pole (FP) recruitment in
gamblers was not supported. Exploratory analyses showed that during directed exploration, gamblers showed reduced parietal
cortex and substantia-nigra/ventral-tegmental-area activity. Cross-validated classification analyses revealed that connectivity in
an exploration-related network was predictive of group status, suggesting that connectivity patterns might be more predictive
of problem gambling than univariate effects. Findings reveal specific reductions of strategic exploration in gamblers that
might be linked to altered processing in a fronto-parietal network and/or changes in dopamine neurotransmission implicated
in GD.
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Significance Statement

Wiehler et al. (2021) report that gamblers rely less on the strategic exploration of unknown, but potentially better rewards
during reward learning. This is reflected in a related network of brain activity. Parameters of this network can be used to pre-
dict the presence of problem gambling behavior in participants.

correlates with substance-based addictions (Goudriaan et al.,
2019). For example, activity in reward-related brain regions,
including the ventral striatum (VS) and medial prefrontal cortex
(mPFC), has repeatedly been found to differ between healthy
controls and participants with GD (Balodis et al., 2012; Leyton
and Vezina, 2012; Miedl et al., 2012), although with inconsistent
directionality (Clark et al., 2019).

In addition to increased temporal discounting and risk-taking
(Wiehler and Peters, 2015), gamblers also exhibit cognitive

Introduction

Gambling disorder (GD) has a lifetime prevalence of around 1%
(Kessler et al., 2008; Lorains et al., 2011). In the DSM-5, it is clas-
sified in the category of substance use and addictive disorders,
reflecting the considerable overlap in behavioral and neural
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impairments reflected in reduced behavioral flexibility. This
includes impaired performance in the Stroop task and increased
perseveration following rule changes in the Wisconsin Card
Sorting Task (van Timmeren et al., 2018). State-dependent mod-
ulations of risk-attitude have been found impaired in problem
gambling (Fujimoto et al, 2017). Similar impairments are
observed in reversal learning, where gamblers make more
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perseveration errors following contingency reversals (de Ruiter
et al., 2009; Boog et al., 2014), an effect that has been linked to
maladaptive control beliefs about gambling outcomes, which
might interfere with decision-making (Lim et al., 2015).

More generally, reward-learning entails a trade-off between
exploitation of options with known value, and exploration of
novel options for information gain (Wilson et al., 2021). One of
the most widely used tasks to examine exploration behavior is
the multi-armed-bandit task (Daw et al., 2006). Here, partici-
pants make repeated choices between multiple choice options
(“bandits”) to obtain rewards. Exploitation involves tracking each
bandit’s expected value and choosing the best. In contrast, explora-
tion can be undirected because of stochastic selection of bandits
(“random exploration”; Daw et al., 2006; Schulz and Gershman,
2019). Additionally, exploration might entail a goal-directed com-
ponent and depend on the bandit’s estimated uncertainty (“directed
exploration”; Speekenbrink and Konstantinidis, 2015; Schulz and
Gershman, 2019; Chakroun et al., 2020).

A bilateral fronto-parietal network supports exploration,
including intra-parietal sulcus and fronto-polar cortex (Daw et
al., 2006; Raja Beharelle et al., 2015; Chakroun et al., 2020).
Although initially characterized in the context of random explo-
ration (Daw et al., 2006), fronto-polar cortex may more specifi-
cally support directed exploration (Boorman et al., 2009, 2011;
Badre et al., 2012; Zajkowski et al., 2017).

There is substantial evidence implicating the neurotransmit-
ter dopamine (DA) in the pathophysiology of GD (Kayser,
2019). Likewise, a contribution of DA to the regulation of the ex-
ploration-exploitation trade-off is suggested both by theory
(Beeler, 2012) and empirical data (Frank et al., 2009; Kayser et
al,, 2015; Gershman and Tzovaras, 2018; Cinotti et al., 2019;
Chakroun et al,, 2020). The most prominent empirical observa-
tion implicating DA in gambling comes from patients suffering
from Parkinson’s disease, where higher rates of problem gam-
bling behavior haven been liked to pharmacological DA replace-
ment therapy (Driver-Dunckley et al., 2003; Voon et al., 2006).
Gamblers may also exhibit increased presynaptic striatal DA lev-
els (Boileau et al., 2014; van Holst et al., 2018), although this is
controversially discussed (Majuri et al., 2017; Potenza, 2018).

We have recently shown that an elevation of DA levels via L-
Dopa attenuates directed exploration in healthy controls
(Chakroun et al., 2020). If one conceptualizes GD as a hyperdo-
paminergic state (Boileau et al., 2014; van Holst et al., 2018), this
entails the prediction that GD might likewise be associated with
reduced directed exploration. This hypothesis resonates with the
discussed impairments in behavioral flexibility in GD. In line
with the critical role of frontal pole (FP) regions (Daw et al.,
2006; Raja Beharelle et al., 2015; Zajkowski et al., 2017) and pre-
frontal dopamine (Frank et al., 2009) in exploration, we further
hypothesized that reduced FP recruitment might contribute to
reduced exploration in GD. We addressed these hypotheses in a
group of frequent gamblers (with sixteen out of twenty-three
meeting the diagnostic criteria for GD) and healthy matched
controls using an established four-armed bandit task during
functional magnetic resonance imaging (fMRL; Daw et al., 2006).

Materials and Methods

Sample

We investigated a sample of n =23 frequent gamblers [age mean (SD) =
2591 (6.47), all male]. Sixteen gamblers fulfilled four or more DSM-5
criteria of gambling disorder [mean (SD) = 6.31 (1.45), previously
defined as pathologic gamblers]. Seven gamblers fulfilled one to three
criteria [mean (SD) = 2.43 (0.77), previously defined as problem
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Table 1. Summary of demographics and group matching statistics

Gamblers Controls

(n=23) (n=23)

Mean  SD Mean  SD t i p
Age 2591 6.47 26.52 592 —033 43.65 0.74
School years 11.64 177 11.91 135 —0.60 41.04 0.55
Monthly income in Euros 1439.86 835.84 1093.76 460.07 172 3481  0.09
FIND 214 258 183 215 044 4258  0.66
AUDIT 6.09 7.4 6.52 457 —0.24 37.44 0.81
DSM-5 score 513 222 0.09 029 1080 2274 <0.01
KFG 2591 14.15 048 112 859 2228 <0.01
S0GS 8.64 446 0.22 0.52 9.00 22.60 <<0.01
BDI-II 1541 11.41 761 794 269 3927  0.01

FTND, Fagerstrom test of nicotine dependence; AUDIT, alcohol use disorders identification test; KFG,
Kurzfragebogen zum gliicksspielverhalten; SOGS, South Oaks gambling screen; BDI-II: Beck depression inven-
tory-Il.

gamblers]. All participants reported no other addiction except for nico-
tine. Current drug abstinence was verified via urine drug screening. All
participants reported no history of other psychiatric or neurologic diag-
noses except depression. No participant was undergoing any psychiatric
treatment. Current psychopathology was controlled using the Symptom
Checklist 90 Revised (SCL-90-R) questionnaire (Schmitz et al., 2000) and
depression symptoms were assessed via the Beck Depression Inventory-II
(BDI-IL, Osman et al.,, 2004). To characterize gambling behavior, we con-
ducted the German gambling questionnaire Kurzfragebogen zum
Gliicksspielverhalten (KFG; Petry, 1996), the German version of the South
Oaks Gambling Screen (SOGS, Lesieur and Blume, 1987) and the
Gambling Related Cognitions Scale (GRCS; Raylu and Oei, 2004).
Participants were recruited via advertisements placed on local Internet
boards but were not searching for treatment.

We recruited n =23 healthy control participants, matched for age, gen-
der, education, income, alcohol [Alcohol Use Disorders Identification
Test (AUDIT); Saunders et al, 1993], and nicotine consumption
[Fagerstrom Test of Nicotine Dependence (FTND); Heatherton et al.,
1991; see Table 1]. Four of these control participants were included from
an earlier study that used the exact same task and imaging protocol
(Chakroun et al., 2020). To rule out drug or order effects, we included the
first imaging session of participants who completed the placebo condition
first. Furthermore, these four participants were selected to maximize
matching to the gamblers group in terms of age, education and income.
All results were significant without these four additional participants.

All participants provided informed written consent before participa-
tion and the study procedure was approved by the local institutional
review board (Hamburg Board of Physicians).

Task and procedure

Participants completed two sessions of testing on separate days. The first
session included all questionnaires and an assessment of the spontane-
ous eye-blink rate, that was published previously (Mathar et al., 2018).
The second session started with a training session of the task, followed
by fMRI and structural MRI. Subsequently, they performed an addi-
tional task in the MRI that will be reported elsewhere.

We used a previously described four-armed bandit task (Daw et al.,
2006). We applied the same task as in the original publication, with the
exception that we replaced slot machine images for each bandit with col-
ored boxes (Fig. 1A). On each trial, participants selected one of four ban-
dits. They received a payout between 0 and 100 points for the chosen
bandit, which was added to a total score. The points that could be won
on each trial were determined by Gaussian random walks, leading to
payouts fluctuating slowly throughout the experiment (Fig. 1B; for
mathematical details, see below). Participants completed 300 trials in
total that were split into four blocks separated by short breaks. We
instructed participants to gain as many points as possible during the
experiment. Reimbursement was a fixed baseline amount plus a bonus
that depended on the number of points won in the bandit task. In total,
participants received between 70 and 100 Euros for participation.
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Task. A, One trial of the bandit task. On each trial, participants choose between four bandits on the screen and received a payout in reward points. B, Payouts fluctuated across

the 300 trials of the experiment according to Gaussian random walks. Here, one example set of random walks is shown. Colors correspond to bandits in A.

Computational modeling

To quantify exploration behavior, participants’ choices were fitted with
several reinforcement learning models of varying complexity. We first
implemented a Q-learning model (Sutton and Barto, 1998). Here, partic-
ipants update the expected value (Q-value) of the ith bandit on trial ¢ via
a prediction error 6 ;:

Qiy+1 = Qi+ ad, (1)

with

O =1 — Qi (2)

Here, Q is the expected value of the ith bandit on trial ¢, « is a con-
stant learning rate, that determines the proportion of the prediction
error &, that is used for the value update, and r, is the reward outcome
on trial . In this model unchosen bandits are not updated but retain
their previous Q values.

Q values are transformed into action probabilities, using a softmax
choice rule:

P(Ct — 1) _ exp(IBQi.I)

_—— - 3
Zjexp(ﬂ Q) ®

Here, p is the probability of choice ¢, of bandit i in trial ¢, given the
estimated values Q from Equation 1 for all j bandits. 8 denotes an
inverse temperature parameter, that models choice stochasticity: for
greater values of 8, choices become more dependent on the learned Q val-
ues. Conversely, as 3 approaches 0, choices become more random. In this
model, B controls the exploration-exploitation trade-off such that for
higher values of 3, exploitation dominates, whereas exploration increases
as 3 approaches 0. Note, however, that this model does not incorporate
uncertainty about Q values, as only mean Q values are tracked.

We next examined a Bayesian learner model (Kalman filter) that was
also applied by Daw et al. (2006). This model assumes that participants
use a representation of the Gaussian random walks that constitute the
task’s payout structure. Thus, regardless of the choice, mean and var-
iance of each bandit i are updated on each trial t as follows:

Iai.t+1:/\lai.t+(1_/\)0 4)

A2 y242
01 =2 Tt

+ o’ (5)

Here, u is the mean expected value, o is the SD of the expected value,
A is a decay rate (fixed to 0.9836), 6 is the decay center (fixed to 50),
and o is the SD of the diffusion noise (fixed to 2.8). Note that these
equations are used to generate the Gaussian walks (see Daw et al., 2006).
That is, without sampling, each bandits’ mean value slowly decayed to-
ward 6, and SDs increased o, units per trial.

The bandit chosen on trial ¢ (¢,) is additionally updated using a &
rule similar to Equation 2:

Bepien = Prep + keds (6)
with
Oy =1,— I&‘c(_t (7)
and
oo
k= m. (8)

Equation 6 is analogous to Equation 1, with one important excep-
tion: while the Q-learning model assumes that the learning rate is
constant, in the Kalman filter model, the learning rate is uncer-
tainty-dependent. The trial-wise learning rate k, (Kalman gain)
depends on the current estimate of the uncertainty of the bandit
that is sampled (as per Eq. 8) such that the mean expected value is
updated more when bandits with higher uncertainty are sampled.
Specifically, ¢, refers to the estimated uncertainty of the expected
value of the chosen bandit, and o, is the observation SD, that is, the
variance of the normal distribution from which payouts are drawn
(fixed to 4). The uncertainty of the expected value of the chosen
bandit is then updated according to

&:,,zﬂ = (1 - kf)é—i,t' ©)]

Taken together, this model gives rise to the following intuitions.
First, participants not only track the expected mean payoff (u) but
also the uncertainty about the expected mean payoff (o). The mean
expected value of unsampled bandits is gradually moving toward the
decay center and uncertainty about the value increases. Sampling of a
bandit leads to a reduction in uncertainty (Eq. 9) that is proportional
to the uncertainty before sampling. Additionally, the bandit’s mean
value is updated via the prediction error (Eq. 7) weighted by the trial-
wise learning rate (Eq. 8) such that updating is substantially higher
when sampling from uncertain bandits.

We next combined this algorithm for value updating with three dif-
ferent choice rules for action selection. First, we used a standard softmax
model (see Eq. 3). Here, choices are only based on the mean value esti-
mates of the bandits u;,, such that exploration occurs in inverse propor-
tion to the softmax parameter 8 and the differences in value estimates:

. exP(Bﬂi.r)
plo=i)==—""—. (10)
' >_exp(Biv;,)

Second, we added an “exploration bonus” parameter ¢ that scales a
bandit’s uncertainty &;; and adds this scaled uncertainty as a value
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bonus for each bandit, as first described by Daw et al. (2006). This term
implements directed exploration so that choices are specifically biased
toward uncertain bandits.

o exp(Bli,ted])
pla=19= Zjexp(ﬂ [ﬂj,[—i_qp&j.t}) . a

Following a similar logic, we next included a parameter p modeling
choice perseveration. p models a value bonus for the bandit chosen on
the previous trial:

N Jlifi=cy
L, (1) = {Oifi £ ¢ (12)

exp(B[itplLe (1))

=S ep (Bl oL, ) (13)

ple =)

Finally, we set up a full model including both directed exploration
(¢) and perseveration (p) terms:

ol = i) = exp(B [+ @it pla, (i)])
t > exp(B iy + ot ple, ()]

(14)

In total, our model space therefore consisted of five models: (1) Q-
learning model with softmax, (2) Bayesian learner with softmax, (3)
Bayesian learner with softmax and exploration bonus, (4) Bayesian
learner with softmax and perseveration bonus, and (5) Bayesian learner
with softmax, exploration bonus and perseveration bonus. All models
were fitted using hierarchical Bayesian parameter estimation in Stan ver-
sion 2.18.1 (Carpenter et al., 2017) with separate group-level normal dis-
tributions for gamblers and controls for each choice parameter (3, ¢,
and p), from which individual-participant parameters were drawn. We
ran four chains with 5k warmup samples and retained 10k samples for
analysis. Group-level priors for means were set to uniform distributions
over sensible ranges (8 = [0,3]; ¢ = [—20,20]; p = [—20,20]). Group
level priors for variance parameters were set to half-Cauchy with mode 0
and scale 3.

To verify that group differences in the choice parameters (83, ¢, and
p) were not confounded by group differences in the walk parameters,
we estimated supplementary models were the random walk parameters
were allowed to vary. Parameters were estimated one at a time because
of convergence issues, and in a non-hierarchical fashion (i.e., one param-
eter per group) with the following uniform priors: A = [0,1]; = [0,100],
oy =[0,20].

Model comparison was performed using the Watanabe-Akaike
Information Criterion (WAIC; Watanabe, 2010; Vehtari et al.,, 2017)
where smaller values indicate a better fit. To examine group differences
in the parameters of interest (8, ¢, and p) we examined the posterior
distributions of the group-level parameter means. Specifically, we report
mean posterior group differences, standardized effect sizes for group dif-
ferences and Bayes factors testing for directional effects (Marsman and
Wagenmakers, 2017; Pedersen et al, 2017). Directional Bayes factors
(dBFs) were computed as dBF = i/1-i where i is the integral of the poste-
rior distribution of the group difference from 0 to + oo, which we esti-
mated via non-parametric density estimation.

fMRI setup

MRI data were collected with a Siemens Trio 3T system using a 32-chan-
nel head coil. fMRI was recorded in four blocks. Each volume consisted
of 40 slices (2 x 2 x 2 mm in-plane resolution and 1 mm gap, repetition
time =2.47 s, echo time 26 ms). We tilted volumes by 30° from the ante-
rior and posterior commissures connection line to avoid distortions in
the frontal cortex (Deichmann et al., 2003). Participants viewed the
screen via a head-coil mounted mirror. High-resolution T1 and MT
weighted structural images were acquired after functional scanning was
completed.
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fMRI preprocessing

MRI data preprocessing and analysis was done using SPM12 (Wellcome
Department of Cognitive Neurology, London, United Kingdom). First,
volumes were realigned and unwarped to account for head movement
and distortion during scanning. Second, slice time correction to the
onset of the middle slice was performed to account for the shifted acqui-
sition time of slices within a volume. Third, structural images were co-
registered to the functional images. Finally, all images were smoothed (8
mm FWHM) and normalized to MNI-space using DARTEL tools and
the VBM8 template.

fMRI analysis

On the first level, we used general linear models (GLMs) implemented
in SPM12. GLM 1 included the following regressors: (1) trial onset, (2)
trial onset modulated by a binary parametric modulator coding whether
the trial was a random exploration trial, (3) trial onset modulated by a
binary parametric modulator coding whether the trial was a directed ex-
ploration trial, (4) outcome onset, (5) outcome onset modulated by
model-based prediction error, and (6) outcome onset modulated by
model-based expected value of the chosen bandit. Missing responses
were modeled separately.

Based on the best-fitting computational model, trials were classified.
Exploitation trials are trials with choices of the bandit with the highest
sum of expected value, uncertainty bonus and perseveration bonus (i.e.,
the highest softmax probability). Exploration trials are all other trials.
These were further subdivided into trials on which participants selected
the bandit with the highest exploration bonus (directed exploration tri-
als) and all other trials (random exploration trials). Please note that the
trial classification in GLM 1 leads to exploitation trials to be the baseline
and exploration as activation relative to this baseline.

GLM 2 included the following regressors: (1) trial onset, (2) outcome
onset, and (3) outcome onset modulated by the number of points
earned. Missing responses were modeled separately.

GLM 3 is following GLM 1 but replaced the trial classification by the
summed uncertainty of all four choice options. Thus, it included the fol-
lowing regressors: (1) trial onset, (2) trial onset modulated by the
summed uncertainty of all choice options, (3) outcome onset, (4) out-
come onset modulated by model-based prediction error, and (5) out-
come onset modulated by the model-based expected value of the chosen
bandit. Missing responses were modeled separately.

Group differences were assessed by a second-level random-effects
analysis (two-sample  test). Here, we included covariates for depression
(BDI-II score), alcohol consumption (AUDIT score), smoking (FTND
score), and age. Covariates were z-scored across both groups.

Dynamic causal modeling (DCM)

DCM (Stephan et al., 2008) is a method to formally test and compare
different causal connectivity models underlying the BOLD signal. First,
we extracted the BOLD time course of regions of interest (ROIs).
Following our previous approach (Chakroun et al., 2020), we defined
four ROISs of the right hemisphere based on previous research (Daw et
al., 2006; Blanchard and Gershman, 2018): Frontal pole (FP), intraparie-
tal sulcus (IPS), anterior insula (alns), and dorsal anterior cingulate cor-
tex (dAcc; for coordinates, see Table 2). Time courses were extracted
from 5-mm spheres around the single-participant peak within the ROL
See Results for more details on the tested models.

Classification analysis

To examine whether connectivity dynamics in an exploration-related
network was associated with group status (see the previous paragraph),
we used an unbiased, leave-one-pair-out approach for group member-
ship classification. We trained a support vector machine (SVM) classifier
(Chang and Lin, 2011; C=1) on all participants except one patient and
one control. The prediction accuracy was computed based on the left-
out pair. We repeated this for all possible pairs of controls and gamblers
and averaged accuracies across left-out pairs. Finally, we repeated this
procedure 500 times with randomly shuffled labels to build a null-distri-
bution, which allows assessing the significance of the observed accuracy.
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Main effect Controls > Gamblers

Reference Location Coordinates (x/y/z) Directed exploration > exploitation Directed exploration > exploitation
Daw et al. (2006) R FP 27,57, 6 p=0.012 No cluster

Daw et al. (2006) LFP —28,48, 4 p < 0.001 No cluster

Daw et al. (2006) R IPS 39, —36, 42 p < 0.001 p=0223

Daw et al. (2006) LIPS —29, —33,45 p < 0.001 No cluster

Blanchard and Gershman (2018) R alns 32,22, -8 p=10.003 p=0.14

Blanchard and Gershman (2018) L alns —30, 16, —8 p=0.002 p=0.05

Blanchard and Gershman (2018) R dAcc 8, 16, 46 p < 0.001 p=0.048

Ten-millimeter spheres were placed around the coordinates of exploration related activations of previous studies; p values are small volume corrected. See also Chakroun et al. (2020; their Appendix 1 and Table 5).

Daw et al. (n=20)
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Results of the model comparison based on the WAIC. Plotted are WAIC differences between each model and the best-fitting model, such that smaller values indicate a superior fit.

Across a re-analysis of behavioral data from Daw et al. (2006; n = 20), gamblers (GD, n=23), and matched healthy controls (HC; n = 23) a Kalman filter model with uncertainty bonus (¢)

and perseveration bonus (p) accounted for the data best.

Data availability statement

The data that support the findings of this study are available on Zenodo
(long format matrix for the behavioral data and t-maps for the fMRI
data at https://doi.org/10.5281/zenodo.4271604).

Results

Model-free results

The group difference in the number of points earned was not sig-
nificant [controls mean (SD) = 18,204.83 (1435.37), gamblers
mean (SD) = 18,489.69 (1520.32), fus56 = —0.54, p=0.51].
Median response times tended to be shorter in gamblers [con-
trols mean (SD) = 0.44 s (0.05), gamblers mean (SD) = 0.40 s
(0.07), tzo413) = 1.59, p=0.11]. As a model-free measure of ex-
ploration, we computed the sequential exploration index
(Ligneul, 2019). This index tracks whether in each quadruple of
trials all choices are unique, which might reflect a systematic ex-
ploration of options. Although this index was numerically higher
in controls versus gamblers [controls mean (SD) = 0.065 (0.067),
gamblers mean (SD) = 0.057 (0.034)], the difference was not stat-
istically significant (¢33 = —0.48, p=0.6).

Model comparison

Next, we used model comparison based on the WAIC (where
lower values indicate a better fit; Gelman et al., 2014) to examine
the behavioral data for signatures of directed exploration and
perseveration. In both groups, the Bayesian learning model
(Kalman filter) with softmax, exploration bonus, and persevera-
tion bonus accounted for the data best (Fig. 2). This model

ranking was also observed when the original behavioral data
from the Daw et al. (2006) study was re-analyzed using our hier-
archical Bayesian estimation approach (Fig. 2).

The best-fitting model gives rise to the following intuitions.
First, participants not only track the expected mean payoff (w)
but also the uncertainty about the expected mean payoff (o) of
the four bandits. The mean expected value of unsampled bandits
is gradually moving toward a decay center and uncertainty about
the mean value increases. Sampling of a bandit leads to a reduc-
tion in uncertainty that is proportional to the uncertainty before
sampling. Additionally, the bandit’s mean value is updated via a
prediction error weighted by a trial-wise learning rate (Kalman
gain k) such that sampling from uncertain bandits leads to more
substantial updating compared with sampling from a bandit
with lower uncertainty. Second, action selection is then a func-
tion of the mean expected value of the bandits, an uncertainty
bonus (which favors selecting bandits which high uncertainty)
and a perseveration bonus (which favors repeating the choice
made on the previous trial).

Parameters of the best-fitting model

Next, we analyzed the parameters of the best-fitting model in
detail, focusing on choice stochasticity (softmax slope ), explo-
ration bonus (directed, uncertainty-based exploration ¢), and
perseveration bonus (p; see Fig. 3). There was evidence for a
decrease in ¢ in the gamblers (Fig. 3D), such that a decrease in
directed exploration in gamblers was ~12 times more likely than
an increase, given the data (dBF =12.15). Choice stochasticity 8
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B B group difference Group differences in random walk
parameters
C D The observed changes in ¢ could have
0754 been affected by differences in the rep-
> 1.0 > resentations of the random walks
@ . GD '@ 0501 between groups. Because the corre-
8 05+ . HC 3 sponding parameters (A, 6, and o)
0.251 BFToE were fixed in our initial analysis, we
001 0.001 : ran additional models in which these
. 1 2 3 -1 0 1 2 parameters were free to vary. Because
¢ ¢ group difference of convergence problems, these pa-
rameters were estimated one at a time,
E F and in a non-hierarchical fashion.
0.44 0.201 Still, o4 could not be estimated reli-
> 031 >0.15- ably because of convergence issues,
i ‘@ but allowing 6 to vary between groups
g 027 & 010 still revealed a difference in
9 9 group di ®
0.11 0.05 - (dBF=13.18), and the same was true
004 0.004 when A was allowed to vary (dBF =
1o 5 0 5 9.05). While 6 was similar between
P p group difference groups (dBF= 0.44), there was evi-
dence for an increase in A in gamblers
Figure 3.  Group parameters of the best-fitting model. GD, gambling disorder; HC, healthy controls. 4, €, E, Posterior distribu- versus controls (dBF =0.08).

tion of group-level parameters per group. B, D, F, Distribution of differences in posterior distributions between groups. Bottom

lines indicate the 85% and 95% highest density interval of the distribution. dBF: directed Bayes factor, the proportion of the dif-
ference distribution above 0 over the proportion of the difference distribution below 0. 4, B, 3 parameter, which represents
random exploration. ¢, D, ¢ parameter which represents directed exploration. E, F, p parameter which represents

perseveration.

and perseveration p, on the other hand, were similar between
groups such that the group difference distributions were in each
case centered at zero and of inconclusive directionality
(dBF =2.44 and dBF = 1.17; see Fig. 3B,F).

As an additional test of whether groups were statistically dis-
tinguishable based on this model, we re-fit the best fitting model
with single group-level Gaussian distributions per parameter (as
opposed to modeling separate group-level gaussians for each
group). A model comparison between this model with group-level
distributions shared between groups and the original model with
separate group-level parameters for controls and gamblers pro-
vided further evidence for a group difference: the data were bet-
ter accounted for by a model with separate versus shared
group-level distributions (WAIC;eparate: 21,045.90, WAICqpqred:
21,049.57).

We next explored whether individual differences in gambling
addiction severity were associated with exploration behavior in
the gamblers. As an index of addiction severity, we computed the
mean z score of SOGS and KFG scores. The correlation between
addiction severity and single-participant ¢ parameters was not
significant (r=0.01, p =0.95). ¢ parameters also did not correlate
with any sub-scale of the Gambling Related Cognition Scale
(GRCS, all correlations << 0.2, p > 0.38). To explore the effect of
potential covariates on ¢, we performed a regression analysis

fMRI

Group conjunctions

We first examined standard parametric
and categorical contrasts, focusing on
conjunction effects testing for consistent
effects across groups (GLM2). Ventro-
mPFC (vmPFC), VS, and posterior cin-
gulate cortex (PCC) parametrically tracked outcome value, in
line with numerous previous studies and meta-analyses (Daw et
al,, 2006; Bartra et al., 2013; Clithero and Rangel, 2014; see Fig.
4). Importantly, outcome value effects in these regions were
observed across controls and gamblers, with no evidence for a
group difference.

We computed model-based prediction errors for each trial
based on the single-participant parameter estimates of the best-
fitting model. As previously described in healthy participants
(Daw et al., 2006; Pessiglione et al., 2006), the VS bilaterally
coded these prediction errors in both groups (main effect FWE
corrected p < 0.05: peak at x = —10, y=8, z= —14, z=6.49 and
at 16, 10, —14; z=6.11; group conjunction p <0.001 uncor-
rected: —14, 10, —14, z=4.65; 16, 10, —14, z=4.32).

Based on the computational model, trials were classified as
exploitation, directed exploration or random exploration. Figure
5A,B shows the main effect of directed exploration > exploita-
tion with extensive effects in a fronto-parietal network, replicat-
ing previous findings using the same task (Daw et al., 2006;
Chakroun et al., 2020). ROI analyses using the same set of ROIs
as in our previous study (Chakroun et al., 2020) confirmed sig-
nificant main effects of directed exploration > exploitation in
bilateral FP, bilateral IPS, alns, and dAcc (10-mm spheres
around the peak coordinates; see Table 2).
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Group differences in exploration-related

effects

Next, we next tested our initial hypothe- A 15

sis of reduced FP effects during directed é

exploration in gamblers (GLM1). We £x 101

checked for group differences within ?g os] ¢
10-mm spheres around the peak activa- ‘é; ,’
tions of previous studies (see Table 2), g> 00 = ——— -
which only revealed one group differ- & o]

ence in the R dAcc (p < 0.048), which oo mo

did not survive correction for multiple
comparisons across the set of ROIs. We
next performed an exploratory whole-
brain analysis (at p<<0.001 uncor-
rected) of group differences in brain ac-
tivity during directed exploration.
Controls showed greater activation in
parietal cortex (58, —34, 42, z=3.65,
p <0.001 uncorrected) and in the sub-
stantia nigra/ventral tegmental area
(SN/VTA, —12, —18, —10, z=3.78,
p <0.001 uncorrected; Fig. 6). An ex-
ploration for effects of gambling severity on exploration-related
brain activity in the gambling group revealed no suprathreshold
effects even at an uncorrected threshold of p < 0.001.

Figure 4.

Uncertainty-related effects

Following our previous finding that dopamine is involved in the
representation of overall uncertainty (Chakroun et al., 2020) and
because of the potential involvement of dopamine in group dif-
ferences, we tested for group differences in the representation of
overall uncertainty, that is, the summed uncertainty over all four
bandits. In light of our previous findings, we restricted this analy-
sis to regions where we observed these effects before. A direct
test at the peak coordinates of Chakroun et al. (2020) with 10
mm spherical ROIs revealed a main effect cluster in the dAcc
(=3, 21, 39, z = 4.39, psyc = 0.001), but not in the anterior (42,
15, —6) or posterior (—34, —20, 8) insula. No group differences
were observed in these three ROIs.

DCM and group differences in connectivity

To examine whether group differences in network interactions
might also contribute to the observed exploration deficit in the
gambling group, we used DCM. For each participant, we
extracted the BOLD time-courses in four ROIs of the right hemi-
sphere based on previous research (Daw et al., 2006; Blanchard
and Gershman, 2018): FP, IPS, alns, and dAcc (for coordinates,
see Table 2).

As driving input, we used the binary regressor coding
directed exploration trials versus other trials. Because we did not
expect structural differences between the groups, all models
included all reciprocal connections between the ROIs. We varied
the position of the input, ranging from no input to an input to all
four ROIs, resulting in 16 models. Bayesian model selection
(Stephan et al., 2009) revealed that the model with input con-
fined to the parietal cortex accounted for the data best (expected
probability = 0.46, exceedance probability = 0.99; for a graphical
depiction of the best-fitting model, see Fig. 7B). A separate model
selection in both groups revealed the same ranking, with model 5
accounting for the data best. Further analysis then proceeded in
two steps. First, we extracted single-participant coupling and
input-weight parameters (using Bayesian model averaging
(Penny et al,, 2010) which normalizes extracted parameters by
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the model evidence per participant). Parameters of the parietal
cortex to parietal cortex, FP to parietal cortex and FP to alns con-
nection showed a trend-level difference in gamblers versus con-
trols (two-sample t tests p<<0.1, FDR corrected for multiple
comparisons; Fig. 7C).

Second, we tested the hypothesis that the overall connectivity
pattern contained information predictive of group (Brodersen et
al., 2014). To this end, we used a SVM classifier to predict group
membership based on all DCM parameters via a leave-one-pair-
out, group-size balanced cross-validation scheme. The observed
classification accuracy of 73.2% was significantly above chance
level (p =0.004, permutation test). Thus, the DCM analyses con-
firmed that the pattern of functional network interactions con-
tained information about group status, although several
univariate analyses in these same ROIs did not reveal group
differences.

Discussion

Here, we used a combination of computational modeling and
fMRI to investigate exploration behavior in gamblers using a
four-armed restless bandit task. Modeling revealed attenuated
directed exploration in gamblers. FMRI showed no significant
group differences in the representation of basic task variables
such as outcome value and reward prediction errors. An explora-
tory analysis, however, revealed reduced activity during directed
exploration in the SN/VTA in gamblers. DCM showed that cou-
pling in an exploration-related network dissociated gamblers
from controls.

In the light of previous findings of reduced behavioral flexibil-
ity in GD, we hypothesized gamblers to show a specific reduction
in directed exploration. While both perseveration bonus parame-
ter (p) and random exploration (B) were similar between
groups, directed exploration (¢) was substantially reduced in
gamblers. Estimates of exploration can be confounded by choice
perseveration (Payzan-Lenestour and Bossaerts, 2012; Wilson et
al,, 2014). This is particularly important in GD where increased
perseveration has been reported (van Timmeren et al., 2018). We
addressed this issue by extending existing models of exploration
with an additional perseveration bonus term, such that final esti-
mates of directed exploration were not confounded by potential
group differences in perseveration (see also Chakroun et al., 2020
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Figure 6.  Group differences in the neuronal correlates of directed exploration versus exploitation. A, Greater activation for controls versus gamblers in the parietal cortex, p << 0.001 (uncor-
rected). B, Greater activation for healthy controls compared with gamblers in the SN/VTA, p << 0.001 (uncorrected). €, Parameter estimates per participant from the peak voxel of B. Note that
the group difference was observed for both directed and random exploration versus exploitation. Error bars denote SEM.

for a more extensive discussion). Indeed, the full model includ-
ing both directed exploration and perseveration terms accounted
for the data best in both groups. This model ranking was repli-
cated in a re-analysis of the behavioral data from Daw et al.
(2006). Notably, our re-analysis of the Daw et al. (2006) behav-
ioral data revealed a contribution of directed exploration that
was not observed in their original analysis. As discussed previ-
ously (Chakroun et al., 2020), the estimation of directed explora-
tion depends on whether perseveration is explicitly accounted
for in the model. Otherwise, the model accounts for persevera-
tion behavior by fitting a reduced (uncertainty-avoiding) explo-
ration bonus parameter.

On the neural level, we found that basic task parameters were
similarly represented in both groups. Value effects were localized
in a well-characterized network including vmPFC, VS, and PCC,
in line with previous meta-analysis (Bartra et al., 2013; Clithero
and Rangel, 2014), with no evidence for group differences.
Likewise, striatal prediction error signals were similar between
groups. Again, this replicates findings in controls (McClure et al.,
2003; Pessiglione et al., 2006). However, the nature of reward sig-
nals in gambling disorder addiction remains an issue of consider-
able debate and inconsistency (Reuter et al., 2005; Balodis et al.,
2012; Leyton and Vezina, 2012; Miedl et al.,, 2012, 2014; van
Holst et al., 2012b; Clark et al., 2019). These inconsistencies
might be because of specific differences in the implementation

and/or analysis of the different tasks. Our version of the four-
armed bandit task included neither gambling cues nor monetary
reward cues or explicit probability information. These factors
may have contributed to the null findings regarding group differ-
ences in basic parametric effects of value and prediction error.
Few participants in the present sample exhibited very high levels
of addiction severity (compared with Miedl et al., 2012). This
might have precluded us from detecting more pronounced group
differences in neural value and prediction error effects. We also
did not observe correlations between gambling-related control
beliefs and exploration behavior or between addiction severity
and behavioral and/or fMRI readouts. While this contrasts with
some previous findings using different tasks (Reuter et al., 2005;
Miedl et al., 2012; van Holst et al., 2012a), overall such effects
show considerable variability, both regarding behavior (Wiehler
and Peters, 2015) and in reward-related imaging findings (Clark
et al,, 2019). Our study still included a considerable range of
addiction severity (SOGS scores ranged from 3 to 17) suggesting
that range restriction is an unlikely explanation for the lack of
correlations. However, given the limited sample size typical of
studies in such clinical populations, statistical power is an addi-
tional concern in the present study.

For the analysis of neural exploration effects, we extended
previous approaches (Daw et al., 2006) by separating the neural
effects of directed and random exploration via a model-based
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alns: anterior insula, dAcc: dorsal anterior cingulate cortex, Explore: Directed explore regressor as driving input in IPS. €, BMA weighted parameter comparison between groups. GD, gambling
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is indicating trend-level significance (p << 0.1, FDR corrected). D, Group identity was predicted based on the DCM parameters (leave-one-pair-out procedure).

Statistical significance was assessed with a permutation test. Displayed is the distribution of prediction accuracies under the null hypothesis (500 randomly shuffled labels). The observed accu-
racy of 73.2% (red line) is beyond the 95% interval of the null-distribution (dashed line). Error bars denote SEM.

classification of trials. Again, overall effects were highly similar
between groups and consistent with previous studies, such that
directed exploration recruited a fronto-parietal network includ-
ing FP regions (Daw et al, 2006; Badre et al, 2012; Raja
Beharelle et al., 2015; Chakroun et al., 2020). Importantly, our
initial hypothesis of attenuated FP activation in gamblers was
not confirmed. Although FP and IPS effects of directed explora-
tion were numerically smaller in gamblers (see Fig. 6), neither
group difference was significant. However, the DCM analysis
revealed some evidence for altered FP connectivity in gamblers
(i.e., trend-level reductions in connectivity for FP-parietal cortex
and FP-alns interactions; see Fig. 7C).

Given that dopamine has been implicated in both the explora-
tion/exploitation trade-off (Frank et al., 2009; Beeler, 2012;
Kayser et al., 2015; Gardner et al., 2018; Chakroun et al., 2020)
and GD (Voon et al, 2006; Boileau et al., 2014; Majuri et al.,
2017; Mathar et al., 2018; Potenza, 2018; van Holst et al., 2018),
we additionally conducted an exploratory analysis of sub-
cortical correlates of directed exploration. The finding of
reduced SN/VTA effects during exploration in gamblers res-
onates with a recent study that reported increased dopamine
synthesis capacity in striatal regions in gamblers (van Holst
et al., 2018), but see Potenza (2018) for a critical discussion.
Given the reciprocal connectivity between striatum and SN/
VTA (Haber and Knutson, 2010), increased striatal-mid-
brain feedback inhibition might be one mechanism underly-
ing this effect. However, small midbrain effects can be
affected by cardiac or respiratory artifacts, which were not
directly controlled in the present study.

Group membership could be decoded from the DCM cou-
pling parameters with an accuracy of 73.2%. This supports
the idea that network interactions might contain additional
information reflecting a participants’ clinical status compared
with univariate contrasts (Brodersen et al., 2014). However, we
emphasize that the overall prediction accuracy, although signifi-
cantly above chance-level based on permutation testing, is still
too low for potential clinical applications. Higher accuracies
could be achieved by larger training datasets (to reduce the noise
induced by individual outliers). Also, more detailed network
models might better reflect the underlying neural computations
and thus yield higher predictive accuracy.

A number of limitations of the present study need to be
acknowledged. First, it remains unclear whether reduced directed
exploration constitutes a vulnerability factor or a consequence of
continuous gambling. It would therefore be interesting to see
whether these effects are tied to the clinical development of
patients (e.g., to the escalation of gambling behavior or treatment
effects) or whether they manifest as stable factors that increase
the risk for the development of the disorder. Second, a compari-
son of the present results to patients with substance-use disor-
ders would be of considerable interest (Morris et al., 2016), in
particular given the overlap in terms of decision-making impair-
ments. Third, tasks such as the observe-or-bet task (Blanchard
and Gershman, 2018) or the horizon task (Wilson et al., 2014)
might allow for a more clear-cut dissociation between directed
and random exploration than the bandit task employed here.
The reason is that the computational model assumes that value,
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perseveration and exploration bonus jointly affect action proba-
bilities at the time of choice. Our classification of trials into ex-
ploitation, directed exploration and random exploration based
on the fitted model therefore might not constitute as clear-cut
segregation of the involved processes as in these other tasks. On
the other hand, one advantage of the bandit task is that it assesses
behavior as it unfolds over longer learning periods in a dynamic
environment. As such, it might better resemble exploration
behavior as it occurs in dynamic real-world settings. Finally,
models with free random walk parameters showed convergence
problems, such that these parameters (with the exception of o)
could only be estimated in a non-hierarchical fashion (Raja
Beharelle et al., 2015; Chakroun et al., 2020). Allowing A or 6 to
vary still revealed a group difference in ¢. Likely more data are
required to reliably estimate these parameters, in particular in
clinical samples such as the present one.

Impairments in reward-based learning, decision-making and
cognitive control are hallmarks of GD (Wiehler and Peters, 2015;
Clark et al., 2019). Here, we show using computational modeling
that during reinforcement learning in volatile environments,
gamblers’ behavior is characterized by attenuated directed explo-
ration rather than increased perseveration. Whether alterations
in the exploration/exploitations trade-off extend to other tasks or
environmental statistics, or could account for previous findings
of reversal learning impairments in gamblers (de Ruiter et al,,
2009; Boog et al., 2014) are interesting open question. Coupling
parameters from a dynamic causal model of an exploration-
related network contained information predictive of clinical sta-
tus, raising the possibility that such network interactions might
be more diagnostic of this disorder compared with univariate
effects. An exploratory analysis of subcortical exploration-related
group differences revealed reduced activity in the SN/VTA in
gamblers, complementing accumulating evidence for dopami-
nergic dysfunction associated with this disorder (Boileau et al.,
2014; van Holst et al., 2018; van Timmeren et al., 2018; Clark et
al,, 2019; Kayser, 2019). Taken together, our findings highlight
computational mechanisms underlying reinforcement learning
in volatile environments in GD. In light of earlier results
(Chakroun et al., 2020) this might be related to dopaminergic
dysregulation.
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