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Abstract: Photoacoustic (PA) imaging provides morphological and functional information
about angiogenesis and thus is potentially suitable for breast cancer diagnosis. However, the
development of PA breast imaging has been hindered by inadequate patients and a lack of
ground truth images. Here, we report a digital breast phantom with realistic acoustic and optical
properties, with which a digital PA-ultrasound imaging pipeline is developed to create a diverse
pool of virtual patients with three types of masses: ductal carcinoma in situ, invasive breast
cancer, and fibroadenoma. The experimental results demonstrate that our model is realistic,
flexible, and can be potentially useful for accelerating the development of PA breast imaging
technology.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Worldwide, breast cancer is the leading type of cancer in women, contributing 25.4% of the total
number of new cases diagnosed in 2018 [1]. It has been proved that the key to breast cancer
survival is early diagnosis [2–4]. Mammography is currently the gold standard for breast cancer
screening which, however, has lower sensitivity in women with dense breasts [5,6]. Ultrasound
(US) is seen as an adjunct to mammography, but suffers from speckle artifacts and low specificity
[7,8]. Magnetic resonance imaging (MRI) poses a large financial burden and sometimes requires
the use of intravenous contrast agents that can potentially cause damage to the human body
[9–11]. It is also hampered by often excluding patients due to claustrophobia, pacemakers, etc. In
recent years, photoacoustic computed tomography (PACT) is growing rapidly as a non-invasive
imaging modality for breast cancer screening and diagnosis, which has overcome many of these
limitations [12–17].

In PACT, the biological tissue being imaged is illuminated by a pulsed laser. Scattered photons
are selectively absorbed by chromophores in the tissue, giving rise to fast thermal expansion,
which generates ultrasonic waves [18]. The photoacoustically generated sound waves are then
received by ultrasonic transducers and digitally processed to reconstruct images of light absorption
contrast. Since scattered photons are employed for contrast generation while ultrasound waves
are used for signal localization, the imaging depth of PACT can reach several centimeters, way
beyond the optical diffusion limit of 1 mm in typical biological tissues [19,20]. By scanning
the wavelength of the illumination light, the absorption spectrum of each image voxel can be
measured, which contains important functional information, such as saturation of oxygen (sO2)
[13,16]. To date, several clinical PACT systems for breast imaging have been built with vastly
different configurations and image characteristics [12–17].

For the following reasons, in silico studies are important for continued development and
improvement of PACT imaging devices: (1) In PACT, the properties of the signals are coupled
with image features such as blood vessels’ orientation and spatial density. A computer-generated
phantom with various anatomically and physiologically relevant properties can help engineers
optimize system designs. Moreover, building an imaging system and doing clinical experiments
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are costly and time consuming. It can be very inefficient to iteratively optimize the system via real
experiments. In contrast, system design based on numerical phantoms is fast and cost-effective.
(2) The digital phantom provides a gold standard for both anatomical and functional imaging,
thus making system evaluation more quantitative. (3) A fair comparison among different imaging
systems requires that the same object be imaged and evaluated, thus all systems need to be present
on site to image the same patient. However, different systems can be compared more easily by in
silico experiments using data generated by the same numerical phantom. (4) As computing and
storage capacities increase, the difficulties of performing accurate simulations reduce.

For the above reasons, researchers have conducted several numerical studies [21–28] to
simulate the PA imaging process of human breasts, yet these models have limitations that remain
unaddressed. Current PA breast phantoms are based either on segmentation of MRI/mammography
dataset [21–25] or on the combination of a few simple objects [26–28]. Details of these studies
are provided in Table 1. Compared with the existing PA breast phantoms, we aim to cover
their advantages and bring several improved features: (1) Realistic phantoms for human breast

Table 1. Overview of PA digital breast phantoms.

Study year Breast modeling
technique

Tissue type Lesion model Advantages and limitations

2014 [26] Combination of a
few simple objects

Skin and fat None A model easy to accomplish but
oversimplified

2017 [21] Threshold
segmentation from
contrast-enhanced

MRI data

Skin, vessel, fat
and

fibroglandular
tissue

None Accurate representation of the
breast anatomy but suffers from
large computational burden and
huge time consumption, only 50

patients’ data were acquired

2017 [27] Combination of a
few simple objects

Background soft
tissue

A circular target
that had

absorption
properties of
hemoglobin

A 2D model easy to accomplish but
oversimplified, the optical
parameters are inaccurate

2018 [22] Load the initial PA
pressure from X-ray
breast image after

processing

Background soft
tissue visualized
by X-ray images

Benign and
malignant

tumors
segmented from

X-ray images

Large database available, easy to
accomplish, while the real PA

images are significantly different
from the simulated ones, the X-ray
images can’t give enough contrast

between malignant and benign
tumors as well as between vessels

and other background tissues

2018 [28] Combination of a
few simple objects

Glandular tissue
and vessels

None A 2D model easy to accomplish but
oversimplified

2019 [23] Application of the
second phantom

Skin, vessel, fat
and

fibroglandular
tissue

Tumors acquired
from mice

studies (imaged
with fluorescent
imaging system)

Tumor models derived from mice
studies; no distinction between

tumor types

2020 [24] Segmentation of the
digital

mammography
(DM) dataset based

on deep learning

Skin, fat and
fibroglandular

tissue

Segmented from
DM dataset

Large database available, high
efficiency but only in 2D, does not
include vessel structures which are

crucial for PA imaging

2021 [25] Reconstruct the 3D
breast model

through a series of
2D US B-scan slices,

then perform
segmentation

Skin, fat and
fibroglandular

tissue

Segmented
manually from

US images

Accurate representation of the
breast anatomy but does not include
vessel structures, suffers from large
time consumption, no distinction

between tumor types
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with high resolution and accurate physical properties of different tissue types. (2) Automatic
and fast generation of breast models to accommodate a variety of breast types. (3) Improved
and extendable precision in modelling different types of breast masses. (4) A comprehensive
and easy-to-use package tailored to simulate realistic PACT systems, which enables users to
freely modify parameters. To meet these goals, we applied a newly reported software, known
as the VICTRE breast phantom [29]. This software generates random voxelized digital breast
phantoms step by step that contain skin, nipple, lactiferous duct, terminal duct lobular unit
(TDLU), interlobular gland tissue, fat, suspensory ligament, muscle, artery, and vein. The general
characteristics of the breast (volume, gland fraction, etc.) are selected by the user or randomly
sampled from a population-based distribution [30].

A model for breast masses has been introduced as a supplement of the digital breasts [31],
this mass model, however, was oversimplified for PACT. Following the same modeling strategy,
we make further improvements to the mass model based upon anatomical and physiological
properties of the breast. Breast cancers are classified as non-invasive breast cancer and invasive
breast cancer (IBC). Non-Invasive breast cancers are those which do not spread, derived mostly
from the mammary ductal epithelium [32]. Thus our breast mass models are classified into
three major types: (1) benign fibroadenoma, (2) ductal carcinoma in situ (DCIS), and (3) IBC.
Utilizing the new phantom, we simulated PA wave propagation and detection in two dimensions
(2D) and three dimensions (3D). Then we compared PA images of different types of healthy
breasts. In addition, we performed studies using our breast tumor models, and presented overlaid
PA and ultrasound (US) images containing both anatomical and functional information. PA/US
dual-modality imaging provides complementary information from different contrast mechanisms,
which enhances each individual contrast for improved clinical performance.

2. Methods

Figure 1(a) presents an overview of the VICTRE breast model. To account for different patient
positions (i.e., standing, supine, or prone), we adjusted the simulation parameters to change the
profile of the breast, as shown in Fig. 1(c) where the left profile corresponds to the standing
position while the right one mimics the supine position. The model also allows for the control of
breast density, which is known to affect lesion detection in digital mammography (DM) [5,6].
The breasts of the female population fall into four density categories: extremely dense (0.548
glandular volume fraction (GVF)), heterogeneously dense (0.339 GVF), scattered fibroglandular
densities (0.143 GVF), and almost entirely fat (0.071 GVF). According to this, we created four
types of breast models corresponding to different breast densities (shown in Fig. 1(d)) [33]. Once
the model parameters are fixed, breast tissue textures are randomly generated with pre-determined
statistical values. In this way, multiple breast models of each type can be made (with different
microscopic tissue realizations) by simply changing a random number seed [30].

To set up a breast model, a series of deformations are performed to create a breast with a
particular volume and shape, starting from a base quadratic surface. Then the Voronoi technique
[34] is applied to generate the initial glandular compartments and grow a ductal tree-like structure
with terminal duct lobular units from the nipple into each compartment. The next step involves
using the Perlin noise function [35] to create a realistic gland/fat tissue interface and the Cooper’s
ligament network. Then, to simulate a realistic vascular network, random trees (one for each
major vein and artery in human breast) originating from the backing muscle layer of the phantom
are generated. A cost function is used to yield a preferential growth direction of the main branch
in the skin surface/chest wall direction. These main branches spawn smaller secondary branches
and the process proceeds recursively to fill the breast volume. In general, the generated vascular
network tends to have bigger vessels near the skin surface and the chest wall, while smaller
vessels are in between (Fig. 1(b)). After finalizing the breast model, the stochastic Gaussian
random sphere model [36] is used to generate a tumor mass in the center, and the iterative fractal
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Fig. 1. Digital breast models. (a) 3D view of the breast model; (b) Distribution of blood
vessels in the breast; (c) Side view of the breast profile in standing and supine positions;
(d) Four types of breasts with different densities (from left to right: extremely dense,
heterogeneously dense, scattered fibroglandular densities, and almost entirely fat).

branch algorithm is performed to add complex needle-like structures simulating microvascular
clusters around the breast mass [31]. Studies have identified distinct patterns in PA images,
corresponding to various vasculatures associated with different types of tumors [37–39]. For
example, a study [39] reported that the centripetal blood vessel structure was observed in the PA
images of breasts diagnosed with IBC, whereas intratumoral spotty signals were observed in
the DCIS cases. In another study [37], the PA images showed absence of hemoglobin within or
around fibroadenoma. Moreover, using diffuse optical spectroscopy and tomography, researchers
have found that malignancies are characterized by a substantially higher concentration of blood,
with significantly lower oxygenation than normal or benign tissue [40–42]. We modified the
mass model taking into account the above observations, and produced three types of mass
models: fibroadenoma, DCIS, and IBC (Fig. 2). In our phantom, fibroadenomas are modeled
by a regular oval-shaped mass without vessels inside or microvasculature around. Meanwhile,
IBC’s are irregularly shaped and have a centripetal blood vessel structure as well as surrounding
microvasculatures. For DCIS, we add a few thin vessels inside an irregular mass, to simulate the
observed intratumoral spotty patterns. We also decrease the oxygenation level within malignant
masses. The digital mass is embedded into the breast phantom in the end. TDLUs are the primary
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site for cancer formation. As a result, we choose the locations for the insertion of masses where a
TDLU has been generated, including the chest wall.

Fig. 2. Breast cancer models. (a) Fibroadenoma; (b) DCIS; (c) IBC.

In our study, MCmatlab was used as the simulation platform. The outer boundary for the
simulation zone is a rectangular cuboid whose internal volume is uniformly divided into cubic
voxels. The user assigns to each voxel a medium or tissue type, described by its absorption
coefficient µa, its scattering coefficient µs, and its Henyey–Greenstein scattering anisotropy factor
g at the applied optical wavelength. Then an input light beam is simulated by launching photon
packets and calculating their energy deposition in the simulated volume using a Monte-Carlo
model (MC model) [43].

Near-infrared (NIR) light is preferred for PACT due to the relatively low optical scattering and
absorption [44]. Hence we conducted our simulation at 700 nm and 900 nm using the optical
parameters listed in Table 2 [45,46]. The optical properties of lactiferous duct, TDLU, and
suspensory ligament are approximately equal, we define them all as the fiber tissue [47]. As it is
computationally challenging to assign individual blood vessel elements with different optical
properties [44], we assume average blood oxygenation (sO2) of 75% for vein and 95% for artery.

Table 2. Optical properties of breast tissues for 3D Monte Carlo simulation.

Tissue µa (mm−1) µa (mm−1) µs (mm−1) µs (mm−1) g Refractive

type 700 nm 900 nm 700 nm 900 nm index, n

Fat 0.062 0.067 7.30 6.80 0.98 1.3

Artery 0.330 0.795 7.14 5.56 0.90 1.3

Skin 0.048 0.033 16.70 21.27 0.90 1.3

Muscle 0.052 0.054 7.36 6.67 0.93 1.3

Glands 0.036 0.057 11.20 7.90 0.96 1.3

Fiber 0.013 0.016 11.50 16.18 0.90 1.3

Cancer 0.033 0.035 8.70 15.10 0.90 1.3

Vein 0.500 0.655 7.14 5.56 0.90 1.3

In this study, we simulated PA imaging using linear transducer arrays. Linear arrays have
been extensively used in PACT for breast imaging due to their commercial availability and
compatibility with traditional ultrasound scanners [44]. Figure 3 illustrates the schematic of the
imaging setup in our simulations. A 128-element linear array (2.5 MHz central frequency, -6 dB
bandwidth of 70%) is placed on top of the breast of a patient in the supine position. A linear
illumination pattern is chosen because it can provide relatively homogenous optical fluence at the
imaging plane [44]. Light sources are placed outside the model and provide a uniform fluence at
the breast surface with an area of 12× 12π mm2. The light incident position and the center line
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of the transducer imaging plane are in coincidence. The background medium is non-scattering
and non-absorbing, and has no refractive index mismatch with the breast model.

Ultrasound probe

Breast

Diffused
laser light

Computer and laser

Cable

Fig. 3. The schematic of the imaging setup.

We employed the k-Wave toolbox [48] for all the simulations regarding PA wave propagation
and detection. The initial PA pressure was simulated based on the optical fluence distribution
from the 3D MC model. The initial pressure gave rise to PA waves that propagated in tissues
which were acoustically heterogeneous (Table 3) [49–51] with negligible acoustic attenuation.
The PA signals were detected by transducer elements that were curved in one dimension to create
elevational focusing. This allowed us to simulate the acoustic sectioning of a real handheld
probe. The detected signals were then band-pass filtered to account for the finite bandwidth
imposed by the ultrasound detector and its electronics. To form an image, we used the simplest
delay-and-sum (DAS) reconstruction algorithm.

Table 3. Acoustic properties of breast tissues for k-Wave
simulation.

Tissue type Speed of sound (m/s) Density (kg/m3)

Fat 1440 910

Artery 1578 1050

Skin 1624 1109

Muscle 1588 1090

Glands 1500 1000

Fiber 1750 1170

Cancer 1400 950

Vein 1578 1050

Since the optical absorption spectra of oxygenated hemoglobin (HbO2) and deoxygenated
hemoglobin (Hb) are different, sO2 can be determined from PA images acquired at multiple
wavelengths. In the simplest case when the spectral coloring effect is negligible, and Hb and
HbO2 are the dominant absorbers, total concentration of hemoglobin (tHb) and sO2 can be
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estimated by acquiring images at two wavelengths, followed by linear spectral unmixing [52]. To
maximize the estimation accuracy, the two selected wavelengths should be on the opposite side
of the isosbestic point [37]. Wavelength-dependent light scattering has a substantial influence on
the optical fluence maps. For the breast phantom shown in Fig. 4(a), the light fluence distribution
at 700 nm and 900 nm are shown in Fig. 4(b), the distribution of the optical fluence has become
quite different after propagating just a few millimeters (Fig. 4(c)).

Fig. 4. MC simulation of the light fluence distribution in a numerical phantom. (a)
Cross-sectional view of the digital breast; (b) Optical fluence distributions at 700 nm (left)
and 900 nm (right); (c) Optical fluence difference, 3D view (left) and slice view (right).

The artifacts in the PA images are mainly caused by the limited detection angular coverage,
the heterogeneous acoustic properties, and insufficient spatial sampling frequency. The existence
of the artifacts increases the difficulty of sO2 estimation, and thus we employ the region growth
method for image segmentation and accordingly apply a mask to selectively calculate sO2 in the
area of interest.

To display the reconstructed PA images on top of gray-scale ultrasound images (as many
researchers do in their experiments), we also simulate pseudo-B-mode ultrasound images using
the same numerical phantom. These images are termed ‘pseudo’ because they are not created by
rigorous simulations; rather, they are directly rendered from the echogenicity feature maps of
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the numerical phantoms. The image is formed by first adding motion blur to the input acoustic
impedance map and then multiplying it with a speckled noise pattern. Such speckle patterns are
generated from our in vivo US images by the exemplar-based texture synthesis method [53].

3. Results

All our MC simulations of light fluence distribution were performed in 3D, while for acoustic
propagation and detection we did both 2D and 3D simulations. 2D simulations are much faster,
while 3D simulations are in principle more accurate. PA images corresponding to the three types
of breast mass models (shown in Fig. 2) are given in Fig. 5, from which we conclude that the
2D- and 3D-models are quite similar in terms of revealing anatomical structures, and both suffer
from artifacts due to the limited-view detection [54,55]. For the 2D model, the reconstructed
PA image can better recover the actual anatomical structures, because out-of-plane artifacts are
absent. In the following simulations, we choose to use the 2D model for higher efficiency.

Fig. 5. Simulated PA images. Row 1: fibroadenoma, Row 2: DCIS, Row 3: IBC. (a)
PA wave propagation and detection were performed in 2D; (b) PA wave propagation and
detection in 3D. Red dashed boxes indicate the lesions.

An extra simulation was carried out to investigate if various breast density affects the PA
image features, especially imaging depth. Four breast models corresponding to different breast
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densities as displayed in Fig. 1(d) were used in the simulation. Considering the optical fluence
distributions could be remarkably affected by the vascular distribution, we applied the same
vascular structure. MC simulation was performed at a wavelength of 900 nm and light intensity
on the breast surface was about 150 mw cm−2. After that we employed a 128-element linear
ultrasonic transducer array (0.75 mm pitch, 0.25 mm inter-element spacing) for signal detection.
The received PA signals were reconstructed by DAS algorithm assuming a uniform speed of
sound of 1500 m/s. Figure 6 shows that breast density does not have a significant influence on
the optical fluence distribution. The penetration depths were all around 2 cm for the four types of
breasts with dramatically different density, according to the MC simulation. As expected, in the
right column of Fig. 6, PA features reconstructed at the same depth were similar for all four cases.
This observation agrees with experiments, that is, compared to mammography, PA image quality
is less sensitive to radiographic density of the breast [12].

Using our simulation platform, in silico imaging can be easily performed and compared with
experimental ones. As an example, we simulated PA/US dual-modality imaging of a dense breast
with an embedded lesion whose center was located 1 cm below the skin. To measure sO2, we
acquired PA images at both 700 nm and 900 nm and then employed linear spectral unmixing
for demodulation. However, linear unmixing only works when the excitation spectrum stays
unchanged at different depths [56]. As we have demonstrated in Fig. 4(c), the excitation spectrum
is affected by wavelength-dependent light scattering and absorption. This could induce substantial
error in the sO2 measurement. Thus for deep-seated targets optical fluence compensation is
essential for accurate sO2 imaging [56,57]. Here we simply assumed that perfect compensation
has been made to create the gold standard sO2 maps. By applying the mask segmented from
the reconstructed PA images before calculating, we can eliminate most artifacts without loss
of the features. Figure 7 illustrates three images corresponding to three types of tumors with
their respective PA features, the anatomical structure of the digital phantom has been shown in
Fig. 5(a). The embedded mass had a diameter of 8 mm, representative of an early-stage lesion,
which can be clearly seen from the US images as hypoechoic masses. These images exhibit
the common features of PA/US dual-mode imaging where US provides the grayscale structural
background while superimposed PA images indicate functional information, such as tHb and sO2
[37]. The figures show the possible advantage of PA/US imaging over US imaging alone. For
example, in Fig. 7(c), the US image feature may suggest a benign lesion such as a fibroadenoma.
However, the centripetal vessel with relatively low oxygenation, as well as increased blood supply
around the mass, indicate possible malignancy. Figure 7(b) provides another example of how PA
imaging may be useful for differentiating among subtypes of malignant mass.
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Fig. 6. Simulation results for different types of breasts. Column on the left are images of
light energy deposition at a wavelength of 900 nm. Column on the right are images of PA
initial pressure reconstructed with a uniform speed of sound of 1500 m/s. (a) Extremely
dense breast; (b) Heterogeneously dense breast; (c) Breast with scattered fibroglandular;
(d) Breast with almost entirely fat. Red dashed boxes represent the region shown in the PA
images.
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Fig. 7. Simulation results of PA/US dual-modality breast imaging. Left column: tHb
images superimposed on grayscale ultrasound images. The color scheme for PA signal is
shown on the bottom left. Right column: sO2 images superimposed on grayscale ultrasound
images. The color scheme for sO2 display is shown on the bottom right. (a) Fibroadenoma;
(b) DCIS; (c) IBC.

4. Discussion

Malignant tumors are often associated with angiogenesis and reduced sO2 due to their aggressive
growth [37]. Therefore, PA imaging is a potential candidate for breast cancer diagnosis and
screening [12] thanks to its high sensitivity to morphological and functional changes of the
vascular network. The development and clinical translation of the PACT technology can be
accelerated by well-designed digital phantoms which have realistic physiological, anatomical
and physical properties. Here, we introduce a breast phantom created from the computational
methods. The phantom is not only realistic, but also flexible enough to allow adjustments of
its density, shape, and detailed structural realization. We performed 3D MC simulation and
used k-Wave to simulate acoustic propagation and detection. In our demonstrations, we chose to
apply acoustic simulation in 2D for better efficiency without losing much accuracy. Based on the
digital phantom, we also generated grayscale US images upon which pseudo-color PA images
were superimposed.

An advantage of this computational model is that it is designed specifically for photoacoustic
imaging. The simulated tissue types, anatomical structures, and optical/acoustic properties are
all chosen to be realistic. Based on the breast phantom, the simulated PA/US images have shown
features that are commonly found in experimental images. This model also offers the capability
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of creating a large population of virtual patients having benign or malignant tumors, and with
dramatically diverse tissue contents (density) and breast shapes. Used in conjunction with the
optical and acoustic simulation software reported above, this phantom allows researchers to
investigate a number of technical problems conveniently (since no real experiments are required)
and quantitatively (since the gold standard is available). For example, different light illumination
and detection schemes can be quantitatively compared and optimized, if the simulated results
could emulate the real images. Similarly, the reflection artifacts and spectral coloring effect in
PA imaging can also be analyzed. By comparing PA images generated from breasts that are
acoustically heterogeneous (according to Table 3) and homogenous (speed of sound 1500 m/s,
density 1000 kg/m3), the generation of reflection artifacts was clearly observed in Fig. 8(a-b).
Likewise, we calculated the sO2 map around the mass (IBC) by linear unmixing, but without
fluence compensation. In contrast with Fig. 7(c), the inaccurate estimation of sO2 (Fig. 8(c))
clearly reveals the spectral coloring effect [37,56]. Comparing our simulation results with the
in vivo ones (obtained using a custom-made hand-held PA imaging probe, central frequency
2.5 MHz, bandwidth 55%, 128 channels), the synthetic images show highly similar features
(Fig. 9). The digital phantom can be further improved iteratively using clinical data as feedback.

Fig. 8. Using the model to study reflection artifacts and spectral coloring effect. (a)
PA image of the breast (acoustically heterogeneous medium); (b) PA image of the breast
(acoustically homogeneous medium);(c) PA+US imaging of an IBC mass. Color: sO2 map
from multispectral PAI; grayscale: US image. sO2 estimation is different from Fig. 7(c)
because no fluence compensation was performed.

In practice, due to limitations in bandwidth, spatial sampling density, and viewing angle,
important vascular features may be distorted or even absent in the reconstructed image; due
to acoustic reflections and reverberations, artifacts can be generated and superimposed on true
structures; due to the spectral coloring effect, using two colors for sO2 demodulation can be
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Fig. 9. Simulated PA images and clinical PA images. (a) Simulated blood vessel in normal
breast; (b) Simulated tumor-related angiogenic vessels; (c) In vivo PA image of a healthy
breast; (d) In vivo PA image of breast tumor angiogenesis.

highly unreliable. Optimization of the imaging hardware can be systematically pursued in silico
using the digital phantoms, taking into account all the above-mentioned complexities.

Now, open source dataset for PA breast imaging is insufficient, while a large amount of data
can be generated digitally to train neural networks for various tasks such as image reconstruction,
vessel segmentation, lesion detection, artifacts removal, quantitative imaging, etc.. Another
advantage of using digital phantoms for algorithm development is that gold standards are readily
available.

The mass models used in this study were constructed based on a few cases of photoacoustic
imaging results. These models are still quite limited to accurately represent the structural and
functional diversity of real tumors and tumor microenvironments. The optical and acoustic
properties and the exact 3D shapes of the solid tumors, as well as the morphology and physiological
state of the vascular networks inside and surrounding the tumor due to angiogenesis, all need to
be more accurately modelled in the future.

5. Conclusion

In this paper, we present a realistic, 3D digital breast phantom which exhibits the fine structures
observed in in-vivo PA/US images. We find that although 3D acoustic model is more precise, 2D
model is more efficient with sufficient accuracy. The numerical phantom is useful for researchers
to develop PA systems for breast cancer imaging, and to investigate problems such as reflection
artifacts and the spectral coloring effect. On the one hand, using a phantom with the real
complexity of the human breast, it is possible to study the spectral coloring effect in detail. On the
other hand, 3D modelling of photon transportation in digital breasts could provide information



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1404

for more sophisticated optical fluence compensation. Using our phantom in conjunction with
prior structural information (e.g., acquired using US imaging), and by properly adjusting tissue
optical properties, we could customize a personalized compensation scheme for each patient.
This is another potential application where our phantom can contribute to better functional PA
imaging. Owing to insufficient number of cases reported of PA imaging of the breast, the mass
model for different types of breast cancer is still rudimentary [38]. Our future research will focus
on improving the mass model to better reflect the diversity and complexity of real tumors.
Funding. National Natural Science Foundation of China (61735016, 61971265); Fuzhou Institute for Data Technology
(Innovation Fund).
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