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Single dose 
of a replication‑defective vaccinia 
virus expressing Zika virus‑like 
particles is protective in mice
Brittany Jasperse  1,2, Caitlin M. O’Connell  1, Yuxiang Wang1 & Paulo H. Verardi1* 

Zika virus (ZIKV), a flavivirus transmitted primarily by infected mosquitos, can cause neurological 
symptoms such as Guillian–Barré syndrome and microcephaly. We developed several vaccinia virus 
(VACV) vaccine candidates for ZIKV based on replication-inducible VACVs (vINDs) expressing ZIKV pre-
membrane (prM) and envelope (E) proteins (vIND-ZIKVs). These vIND-ZIKVs contain elements of the 
tetracycline operon and replicate only in the presence of tetracyclines. The pool of vaccine candidates 
was narrowed to one vIND-ZIKV containing a novel mutation in the signal peptide of prM that led to 
higher expression and secretion of E and production of virus-like particles, which was then tested for 
safety, immunogenicity, and efficacy in mice. vIND-ZIKV grows to high titers in vitro in the presence 
of doxycycline (DOX) but is replication-defective in vivo in the absence of DOX, causing no weight 
loss in mice. C57BL/6 mice vaccinated once with vIND-ZIKV in the absence of DOX (as a replication-
defective virus) developed robust levels of E-peptide-specific IFN-γ-secreting splenocytes and anti-E 
IgG titers, with modest levels of serum-neutralizing antibodies. Vaccinated mice treated with anti-
IFNAR1 antibody were completely protected from ZIKV viremia post-challenge after a single dose of 
vIND-ZIKV. Furthermore, mice with prior immunity to VACV developed moderate anti-E IgG titers that 
increased after booster vaccination, and were protected from viremia only after two vaccinations with 
vIND-ZIKV.

Zika virus (ZIKV) is a member of the Flaviviridae family, a group of viruses that contain a positive-sense ssRNA 
genome about 11 kb in length. The ZIKV genome encodes a single polyprotein which is cleaved by viral and 
cellular proteases into three structural proteins (capsid, C; pre-membrane, prM; and envelope, E) and several 
non-structural (NS) proteins1,2. ZIKV is primarily transmitted by bites of infected Aedes mosquitos, but can also 
be transmitted from mother to fetus, or through sexual contact, breastfeeding, or blood transfusion3.

ZIKV was first isolated from a sentinel monkey in the Zika forest of Uganda in 19474. The first human case was 
reported in 1960 in Nigeria, followed by limited sporadic cases until the 2007 outbreak on Yap Island in Micro-
nesia, during which an estimated 73% of the residents became infected with ZIKV5. A major epidemic of ZIKV 
infection occurred in French Polynesia in 2013–2014 with an estimated 19,000 suspected cases of ZIKV6. In May 
2015, authorities in Brazil confirmed autochthonous transmission of ZIKV and within 5 months, it had spread 
to 14 states within Brazil7. In late 2015, increasing numbers of infants born with microcephaly were reported, 
prompting the Brazil Ministry of Health to declare a Public Health Emergency of National Importance8 and 
the World Health Organization to declare a Public Health Emergency of International Concern from February-
November 20169. Once it emerged in Brazil, ZIKV spread rapidly throughout Central and South America, leading 
to over 170,000 confirmed ZIKV cases across 48 countries and territories3.

The rapid spread of ZIKV and its association with neurological diseases necessitated the rapid development 
of a safe and efficacious vaccine. Since the 2015 outbreak, there has been considerable effort to develop vaccines 
against ZIKV. Vaccine candidates to date are based on several different platforms, including purified inactivated 
virus, live-attenuated viruses, DNA, mRNA, protein, peptide, and viral-vectored vaccines10. Most flavivirus vac-
cine candidates are based on the E protein (since E is the target of neutralizing antibodies1) or co-expression of 
prM and E, to lead to the formation of virus-like particles (VLPs)11.
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Vaccinia virus (VACV) was used to eradicate smallpox, a disease caused by variola virus, a related poxvirus. 
VACV has also been used as a viral vector for the development of effective human and animal vaccines since it 
is thermally stable, able to elicit strong humoral and cell-mediated immune (CMI) responses, easy to propagate, 
and not oncogenic12. However, VACV can cause complications in individuals with conditions such as atopic 
dermatitis, cardiac disease, and immunosuppression. We recently generated VACV vectors with a built-in safety 
mechanism that replicate only in the presence of tetracycline antibiotics13,14. The replication-inducible VACVs 
(vINDs) contain elements from the tetracycline (tet) operon, specifically the tetR gene encoding the repressor 
protein (TetR), along with the tetO2 operator sequence downstream of the promoter of a gene essential for 
VACV replication (e.g., D6R, A7L, A6L)13,14. In the absence of tetracyclines, the TetR protein is expressed and 
binds to the operator sequence, preventing transcription of the essential gene, and consequently replication of 
the virus. Conversely, in the presence of tetracyclines such as doxycycline (DOX), the TetR protein undergoes a 
conformational change and no longer binds the operator sequence, allowing transcription of the essential gene 
and replication of the virus. In the absence of antibiotics, vINDs do not produce infectious progeny13,14 and act 
like other replication-deficient VACV strains such as modified vaccinia Ankara (MVA). Unlike MVA, vINDs 
replicate to high titers in standard cell culture in the presence of tetracycline antibiotics. Importantly, in the 
absence of inducer, expression of a fluorescence marker is detected in abortively-infected cells13,14, indicating 
that even in the absence of viral replication, heterologous antigens are expressed.

Here, we generated several ZIKV vaccine candidates in a vIND backbone (as a viral vector) to express ZIKV 
as secreted VLPs, in an effort to induce robust ZIKV immunity by both the viral vector and by the secreted VLPs. 
We found that a novel mutation (D4W) in the natural signal peptide (SP) of prM resulted in increased expression 
and secretion of E. We chose this vIND-ZIKV to continue into downstream studies. A single dose of vIND-ZIKV 
induced robust CMI and humoral immune responses that protected transiently-susceptible C57BL/6 mice from 
viremia after ZIKV challenge. We also tested our vaccine in the context of prior VACV immunity and found 
that mice previously inoculated with vIND required two doses of vIND-ZIKV to generate high anti-E antibody 
titers and protect against ZIKV viremia.

Results
Design and generation of ZIKV vaccine candidates.  We generated several vaccine candidates against 
ZIKV based on a sequenced isolate (Asian lineage), Brazil-ZKV2015 (accession #KU497555.1)15. A schematic 
representation of the vaccine constructs is shown in Fig. 1a. The ZIKV gene(s) were placed under the control of 
a synthetic VACV PE/L promoter16 and inserted between VACV genes D5R and D6R by homologous recombi-
nation, generating a vIND that replicates only in the presence of tetracyclines13. Enhanced green fluorescence 
protein (EGFP) was included in the recombinant VACVs (rVACVs) to expedite purification. The first vaccine 
candidate contained the full-length E protein with a methionine added immediately upstream to facilitate trans-
lation. A second vaccine candidate was designed that included prM and E, along with the putative natural signal 
peptide (SP) encoded in the last 18 amino acids of C2, to ensure proper folding and secretion of E and lead to the 
formation of VLPs11 (Fig. 1a).

SPs characteristically contain three distinct domains: an N-terminal (n) region often containing positively-
charged residues, a hydrophobic (h) region of at least six hydrophobic residues, and a polar uncharged C-terminal 
(c) region17 to facilitate translocation into the endoplasmic reticulum (ER) and in the case of ZIKV capsid SP, to 
direct prM into the ER lumen for proper secretion of E. Upon reviewing the ZIKV SP sequence, we were con-
cerned that the negatively-charged aspartic acid in the n-region (Fig. 1a) would lead to sub-optimal secretion of 
E. We designed a series of SP variants using TargetP 1.1 software17 to evaluate the localization of proteins based 
on the SP sequence. The first variant we generated replaced the aspartic acid residue with a strongly hydropho-
bic residue, of which tryptophan resulted in the highest secretory pathway prediction score (0.930), compared 
to the natural SP (score 0.865). We also generated a SP variant that replaced the aspartic acid with a positively 
charged lysine (score 0.878). Lastly, we generated a vaccine candidate that included the last 22 amino acids of 
the SP of Japanese Encephalitis Virus (JEV, score 0.931), since this sequence has been used successfully to target 
proteins for secretion18.

Once constructs containing the desired ZIKV antigens were generated (Fig. 1a), they were subcloned into 
a plasmid containing elements of the tetracycline (tet) operon13 to facilitate generation of vINDs expressing 
the ZIKV antigens (vIND-ZIKVs). The resulting shuttle vectors were transfected into cells infected with a lac 
operon-based inducible parental virus, and after homologous recombination, vIND-ZIKVs were purified away 
from parental virus using our recently developed accelerated method19. Briefly, cells were serially infected with 
the parental VACV/rVACV pool in the presence of DOX (rVACV inducer) and absence of isopropyl β-d-1-
thiogalactopyranoside (IPTG, parental VACV inducer). Using this method, single clones of each vIND-ZIKV 
were obtained in about 1 week.

Single mutations within the SP of prM result in increased secretion of E.  The five vaccine candi-
dates (Fig. 1a) were then evaluated for expression of E in both the lysate and supernatant of Vero cells infected in 
the absence of DOX by western blot (Fig. 1b). A protein matching the expected size of E (~ 55 kDa) was observed 
in the cell lysate for all vaccine constructs, albeit to different levels. As expected, in cells infected with the vIND-
ZIKV expressing E only (without SP and prM) expression of E was contained within the cell (cell lysate), with 
little secretion of E detected in the supernatant (Fig. 1b). Interestingly, similarly low levels of E were secreted 
into the supernatant by the natural SP, but those levels increased dramatically when the natural SP was replaced 
with each of the three variants, especially D4W. Similar results were observed when Vero cells were infected with 
the vIND-ZIKVs in the presence of DOX (Supplementary Figure 1). This increase in expression and secretion 
of E by vIND-ZIKV (D4W) was also detected in human HeLa S3 cells, which poorly secreted E (Supplementary 
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Figure 2). Therefore, substitution of the D residue with W dramatically increased expression of E in the cell 
lysate and supernatant compared to the natural SP, and resulted in the strongest expression of E compared to all 
variants tested. Thus, vIND-ZIKV (D4W) was selected as the vaccine candidate to progress to further studies 
(referred to from now on as vIND-ZIKV).

vIND‑ZIKV produces ZIKV VLPs.  Replication of vIND-ZIKV in the absence and presence of DOX was 
evaluated by fluorescence microscopy. As expected, formation of plaques (EGFP+) was observed only in the 
presence of DOX, whereas single abortively-infected cells were detected by expression of EGFP in the absence 
of DOX (Fig. 1c). vIND-ZIKV was also evaluated for formation of VLPs by transmission electron microscopy 
(TEM) compared to wild-type ZIKV particles. Stock ZIKV strain PRVABC59 and supernatants from vIND-
ZIKV-infected cells were concentrated and negatively stained with 0.5% uranyl acetate for TEM imaging. We 
visualized VLPs of the expected size (~ 50–60 nm20) in the supernatant of vIND-ZIKV-infected cells that resem-
bled virions produced by ZIKV PRVABC59 (Fig. 1d).

vIND‑ZIKV grows to high titers in the presence of DOX but does not replicate in the absence 
of DOX.  Next, the replication of vIND-ZIKV was evaluated in vitro (Fig. 2a). BS-C-1 cells were infected with 
vIND-ZIKV, vIND, or the wild-type (replication-competent) strain Western Reserve (WR) at a multiplicity of 
infection (MOI) of 5 in the absence or presence of 1 µg/ml doxycycline (DOX). Cells were collected at 0 and 
24 h post infection (hpi) and lysates were titered on fresh monolayers in the presence of DOX. In the absence 
of DOX, vIND-ZIKV and vIND did not replicate (titers at 24 hpi were lower than input levels at 0 hpi), while 

Figure 1.   vIND-ZIKV encoding prM and E secretes E into the supernatant of infected cells and forms VLPs. 
(a) Schematic representation of vIND-ZIKV vaccine constructs in the D5R-D6R locus of VACV. Constructs 
contained the tet repressor gene (tetR) under the control of a strong synthetic early/late promoter (PE/L), the 
tet operator sequence (O2) immediately downstream of the natural D6R promoter (PD6R), and the EGFP gene 
under the control of the natural F17R late promoter (P11). Signal peptide (SP) variant sequences are listed; 
underlined M represents methionine added to N-terminus and bold amino acids represent mutations from the 
natural SP sequence or the JEV SP sequence. (b) Western blot of Vero cells (lysates or supernatants) infected 
with the vaccine candidates. Bands of approximately 55 kDa were observed. Full-length blots are presented in 
Supplementary Figure 3. (c) Representative brightfield and fluorescence images of cells 2 days after infection 
with vIND-ZIKV (D4W), showing plaque formation in the presence of DOX (cytopathic effects on multiple 
EGFP+ cells), or abortive infection (single EGFP+ cell) in absence of DOX. (d) Representative TEM images of 
ZIKV PRVABC59 virion (left) or VLPs secreted into the supernatant of vIND-ZIKV (D4W)-infected Vero cells.
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the replication-competent WR replicated to high titers. In the presence of DOX, vIND reached near-wildtype 
levels of replication by 24 hpi, albeit statistically significantly lower than WR; however, vIND-ZIKV replication 
was attenuated compared to both WR and vIND (p < 0.001 and p < 0.05, respectively). Despite the attenuation 
of vIND-ZIKV in vitro, high titer vaccine stocks were still readily generated in the presence of DOX for down-
stream studies.

vIND‑ZIKV is attenuated in mice even in the presence of DOX.  To evaluate the safety of vIND-
ZIKV, 6-week-old CB6F1 mice were inoculated intranasally with 2 × 104 PFU vIND-ZIKV or vIND in either the 
absence or presence of DOX in the drinking water and were weighed daily for 21 days (Fig. 2b,c, respectively). 
Intranasal infection of normal mice is an ideal route for studies of poxvirus pathogenesis and virulence, since 
replication-competent VACVs lead to infection of the central nervous system and weight loss21, and this dose 
was shown to cause weight loss without mortality in vIND-infected mice during pilot studies. Our vINDs are 
replication-defective in the absence of DOX and should therefore be safer, yet they cause weight loss and mor-
tality (intranasal inoculation) and replicate to wild-type levels in ovaries (intraperitoneal inoculation) in the 
presence of DOX (as replication-competent VACVs)14. Accordingly, in the absence of DOX, mice in both groups 
maintained and then gained weight throughout the study (Fig. 2b). In a recent study we have shown that vIND 

Figure 2.   vIND-ZIKV replicates only in the presence of DOX and is attenuated compared to vIND in vitro 
and in vivo. (a) BS-C-1 cells were infected with wild-type strain Western Reserve (WR), vIND or vIND-ZIKV 
(D4W) at an MOI of 5 in the absence or presence of 1 µg/ml DOX. At 0 or 24 h, cells were collected and lysates 
were titered in duplicate on BS-C-1 cells in the presence of 1 µg/ml DOX. Plaques were counted 2 days post-
infection and mean titers of triplicate samples are shown. (b,c) CB6F1 mice (n = 5) were inoculated intranasally 
with 2 × 104 PFU vIND or vIND-ZIKV (D4W) in either the absence (b) or presence (c) of 0.125 mg/ml DOX 
in the drinking water and were weighed daily for 21 days. Asterisks represent statistical significance (*p < 0.05, 
†p < 0.001) by two-way ANOVA (a) or two-way repeated measures ANOVA (b,c). Error bars represent SD.
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replication is not detected in ovaries of mice inoculated intraperitoneally in the absence of DOX14. In the pres-
ence of DOX, vIND-infected mice started to lose weight on day 4, reached peak weight loss at day 7, and recov-
ered back to starting weight by day 16 (Fig. 2c). However, vIND-ZIKV was slightly more attenuated than vIND 
in the presence of DOX, as mice infected with vIND-ZIKV lost weight to a lesser degree than those infected with 
vIND (p < 0.001). This demonstrated that our vIND-ZIKV vaccine would be safe when given as a vaccine in the 
absence of DOX (as a replication-defective vaccine vector) and has an added safety feature, since it is attenuated 
(compared to vIND) even in the presence of DOX.

vIND‑ZIKV induces high levels of CMI responses in mice.  We next sought to evaluate the immuno-
genicity of our vaccine candidate. We first tested CMI by vaccinating 6-week-old C57BL/6 mice (n = 5) intra-
muscularly with 107 PFU vIND, vIND-ZIKV, or PBS (in the absence of DOX). After 7 days, mice were sacrificed, 
spleens were removed, and splenocytes were harvested and incubated with 4 µg/ml of a 15-mer peptide of ZIKV 
E protein for 18 h for an ELISPOT assay. Mice vaccinated with vIND-ZIKV had robust levels of antigen-specific 
IFN-γ-secreting splenocytes that were not detected in mice vaccinated with PBS (p < 0.01) or vIND (Fig. 3).

vIND‑ZIKV induces humoral immune responses in mice.  We analyzed the humoral immune 
responses of vIND-ZIKV by measuring the induction of ZIKV E-specific IgG and neutralizing antibodies 
(Fig.  4). Six-week-old C57BL/6 mice (n = 8) were vaccinated intramuscularly with 107 PFU vIND or vIND-
ZIKV. Blood was collected on the day of vaccination (naïve sera) or at euthanasia (4 weeks after vaccination) for 
analysis. Antibodies against ZIKV E were measured by ELISA (Fig. 4a). vIND-vaccinated mice had no E-specific 
IgG titers after vaccination, while vIND-ZIKV vaccination induced robust levels of E-specific antibodies (geo-
metric mean 2072 U/ml, p < 0.001). Next, neutralizing antibodies in serum were measured by plaque reduction 
neutralization test (PRNT) (Fig. 4b). As expected, serum from vIND-vaccinated mice did not neutralize ZIKV 
(PRNT50 titer < 4). Surprisingly, mice inoculated with vIND-ZIKV had low neutralizing antibody titers (geomet-
ric mean PRNT50 titer of 4.4) after vaccination, although they were statistically higher than vIND (p < 0.01). One 
vIND-ZIKV-vaccinated mouse was excluded from analysis due to low volume of serum collected that prevented 
analysis at the lowest dilution, although this mouse had a PRNT50 titer < 6. Despite low neutralizing antibody 
titers, vIND-ZIKV vaccination induced robust levels of E-specific IgG (Fig. 4a) and antigen-specific CMI (Fig. 3) 
that warranted further investigation in a challenge model.

vIND‑ZIKV induces humoral immune responses and protects mice from viremia.  To further 
assess the humoral immune responses and simultaneously evaluate efficacy of vIND-ZIKV, we utilized a ZIKV 
challenge model22 where C57BL/6 mice are made transiently susceptible to ZIKV infection by administering 
an anti-IFNAR1 monoclonal antibody23 1 day prior to challenge. Since low neutralizing antibody titers were 
observed after a single vIND-ZIKV vaccination (Fig. 4b), a group receiving two vIND-ZIKV vaccinations was 
included (as indicated in Fig. 5). Briefly, 6-week-old C57BL/6 mice (n = 8) were vaccinated intramuscularly with 
PBS or 107 PFU vIND or vIND-ZIKV at weeks 0 and 2, as outlined in Fig. 5a. Mice were challenged 2 weeks 
post-boost with 104 PFU ZIKV strain PRVABC59 (Asian lineage) intraperitoneally, 1 day after administration 
of 2 mg anti-IFNAR1 antibody (Leinco, MAR1-5A3) intraperitoneally. Mice were sacrificed 2 weeks later at the 

Figure 3.   vIND-ZIKV vaccination stimulates antigen-specific IFN-γ-secreting splenocytes after 1 week. 
Antigen-specific IFN-γ-secreting splenocytes in C57BL/6 mice (n = 5) vaccinated intramuscularly with either 
PBS, vIND, or vIND-ZIKV (D4W) at 107 PFU were measured 7 days post vaccination by ELISPOT with E 
peptide IGVSNRDFVEGMSGG. Data is shown as spot-forming cells (SFC) per 106 splenocytes. Asterisk 
represents statistical significance (p < 0.01) with the Kolmogorov–Smirnov test when comparing to the PBS-
vaccinated control group. Horizontal line represents mean and error bars represent SD. Images of representative 
wells are shown below each group.
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conclusion of the study. Blood was collected retro-orbitally at regular intervals (Fig. 5a) or by cardiac puncture 
at euthanasia.

To measure the humoral immune response to vIND-ZIKV, antibody titers against E were analyzed by ELISA 
(Fig. 5b). In mice vaccinated once with vIND-ZIKV, E-specific IgG titers were low (geometric mean 387 U/ml) 
2 weeks post vaccination, but increased by 4 weeks post vaccination (geometric mean 2166 U/ml). Similarly, mice 
vaccinated twice with vIND-ZIKV had low anti-E titers following the first vaccination (geometric mean 411 U/
ml), but increased tenfold after a second vaccination with vIND-ZIKV (geometric mean 5214 U/ml; p < 0.05 
compared to mice inoculated with PBS). Following ZIKV challenge, control groups vaccinated with vIND (once 
or twice) or PBS developed anti-E IgG titers (geometric mean of 17,291; 9078; or 13,578 U/ml, respectively). 
E-specific antibody titers were boosted post-challenge in mice vaccinated once or twice with vIND-ZIKV (geo-
metric mean 32,509 or 22,964 U/ml, respectively), and were statistically significantly higher than mice inoculated 
with PBS (geometric mean 13,578 U/ml; p < 0.005) (Fig. 5b).

The level of neutralizing antibodies was determined for each group at weeks 0, 2, 4, and 6. Since only small 
volumes of blood were collected retro-orbitally at each time point, serum from each group was pooled for PRNT 
analysis. Mice vaccinated with vIND-ZIKV had a modest increase in neutralizing titer at weeks 2 and 4 followed 
by an increase after challenge (Fig. 5c). Next, to assess the extent to which vIND-ZIKV protected against ZIKV 
replication after challenge, antibody titers against NS1 were measured by ELISA. Most mice vaccinated with 
vIND-ZIKV once or twice had detectable NS1 titers at week 6 (2 weeks post-challenge), although significantly 
lower when compared to PBS-vaccinated controls (p < 0.005) (Fig. 5d), indicating potential challenge virus 
replication (i.e., lack of sterilizing immunity).

C57BL/6 mice made transiently susceptible to ZIKV by anti-IFNAR1 antibody develop viremia after 
challenge22. We collected blood 2 days post-challenge (determined in pilot studies as the day of peak viremia), 
and performed quantitative reverse transcription PCR (qRT-PCR) using primers previously described24. Mice 
vaccinated with PBS or vIND once or twice had high levels of viremia (Fig. 5e). However, mice vaccinated once 
or twice with vIND-ZIKV were protected from viremia (p < 0.005). Therefore, a single dose of vIND-ZIKV was 
sufficient to completely protect mice from transient viremia.

VACV‑primed mice vaccinated twice with vIND‑ZIKV are protected from viremia.  Since VACV 
can be, and has been, used for many applications (e.g., vaccine, therapeutic, and oncolytic vectors), we also 
wanted to explore if prior immunity to VACV had any impact on the immunogenicity and efficacy of our ZIKV 
vaccine. To test this, we repeated the vaccination/challenge experiment described above but added a “VACV 
prime” 2 weeks prior to vaccination by inoculating mice intramuscularly with 107 vIND (or PBS), in the absence 
of DOX, to mirror prior vector immunity (Fig. 6a). Anti-VACV antibodies were detected in vIND-primed mice 
at the time of vaccination (week 0) and were further increased by week 2 (Fig. 6b).

As seen previously in naïve mice (Fig. 5b), mice vaccinated once with vIND-ZIKV had low E-specific IgG 
titers 2 weeks post vaccination (geometric mean 394 U/ml), but titers increased by 4 weeks post vaccination 
(mean 1084 U/ml) (Fig. 6c). Mice vaccinated twice with vIND-ZIKV had similarly low anti-E titers 2 weeks after 
initial vaccination (geometric mean 413 U/ml), which increased nearly 15-fold after the booster vaccination 
(geometric mean 6050 U/ml). Control groups vaccinated once or twice with vIND, or with PBS only developed 
anti-E IgG titers after ZIKV challenge (geometric mean of 13,456; 19,521; or 7477 U/ml; respectively). Antibody 
titers against E increased after ZIKV challenge in mice vaccinated once or twice with vIND-ZIKV (geometric 
mean 48,884 or 11,719 U/ml, respectively), and were statistically significantly higher than mice vaccinated with 
PBS (p < 0.005) (Fig. 6c). As seen in the previous challenge study, mice vaccinated with PBS or vIND developed 

Figure 4.   vIND-ZIKV vaccination induces E-specific IgG and neutralizing antibodies. Humoral immune 
responses in C57BL/6 mice (n = 8) vaccinated intramuscularly with 107 PFU vIND or vIND-ZIKV (D4W) are 
shown 4 weeks after vaccination. (a) ZIKV E-specific IgG titers were measured by ELISA at week 4. (b) Plaque 
reduction neutralization tests (PRNTs) were performed on serum collected from mice vaccinated with vIND or 
vIND-ZIKV. The PRNT50 was calculated as the reciprocal of the dilution that resulted in at least 50% reduction 
in ZIKV plaques. Naïve sera (week 0) had PRNT50 titers < 4 (data not shown). Asterisk represents statistical 
significance (*p < 0.01, †p < 0.001) with the Kolmogorov–Smirnov test. Horizontal lines represent geometric 
mean and error bars represent SD. LLD lower limit of detection.
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neutralizing antibody titers only after challenge (Fig. 6d). Interestingly, only mice vaccinated twice with vIND-
ZIKV had detectable neutralizing antibody titers in pooled sera at weeks 2 and 4, which increased after challenge 
(Fig. 6d). Similarly, mice vaccinated twice with vIND-ZIKV had reduced NS1-specific antibody titers 2 weeks 
post-challenge (Fig. 6e).

As above, we collected blood 2 days post-challenge and performed qRT-PCR to measure ZIKV viremia. As 
expected, VACV-primed mice vaccinated with PBS or vIND had high levels of viremia (Fig. 6f). Interestingly, 
VACV-primed mice vaccinated once with vIND-ZIKV had high levels of viremia, showing that prior inocula-
tion with vIND in the absence of DOX most likely resulted in vector immunity that interfered with vIND-ZIKV 
vaccination. This finding corresponded with the lack of detectable ZIKV neutralizing antibody titer in this 
group (Fig. 6d). However, a second vaccination with vIND-ZIKV protected VACV-primed mice from viremia, 
as levels were statistically significantly lower than the PBS control group (p < 0.005), and were close to or below 
the detection limit (Fig. 6f).

Figure 5.   A single vaccination with vIND-ZIKV is protective in mice. (a) Schematic of vaccination/challenge 
schedule and timing of blood collection. Six-week-old immunocompetent C57BL/6 mice (n = 8) were vaccinated 
intramuscularly with PBS or 107 PFU vIND or vIND-ZIKV (D4W) at weeks 0 and 2. Mice were challenged 
2 weeks post-boost with 104 PFU ZIKV strain PRVABC59 intraperitoneally, 1 day after being administered 2 mg 
anti-IFNAR1 antibody intraperitoneally. (b) ZIKV E-specific IgG titers were measured by ELISA at weeks 0, 2, 
4 (1 day prior to challenge), and 6. (c) PRNTs were performed in twofold dilutions on pooled serum collected 
at the indicated time points. (d) ZIKV NS1-specific IgG titers were measured by ELISA at weeks 4 (1 day prior 
to challenge) and 6. (e) Viremia was measured in serum collected 2 days after ZIKV challenge by qRT-PCR. 
Asterisks represent statistical significance (*p < 0.05, †p < 0.005) by two-way repeated measures ANOVA (b,d) or 
unpaired t tests (e) compared to PBS-vaccinated control group. Horizonal lines represent geometric mean and 
error bars represent SD. LLD lower limit of detection.
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Discussion
We developed several vaccine candidates expressing ZIKV E protein either alone or with prM to rapidly deter-
mine an antigen strategy that leads to high levels of E protein expression and VLP secretion. Our vaccine 
candidates were generated in the backbone of a vIND13 developed to improve the safety profile of a traditional 
replication-competent VACV, while still achieving high titers in vitro in traditional cell lines, unlike traditional 
replication-defective VACVs such as MVA, that do not replicate optimally in standard mammalian cell lines. 
When administered as a vaccine (in the absence of DOX), our vINDs still express all viral antigens in infected 
cells and are therefore immunogenic, yet safer for both the vaccine administrator and recipient. In addition, 
recombinant vINDs can be produced in a week, using our Efficient Purification by Parental Inducer Constraint 
(EPPIC) system19, thus allowing the straightforward generation of multiple vaccine candidates that can be tested 
for expression, and if needed, immunogenicity.

Here we showed that single mutations in the SP of prM resulted in increased expression of E intracellularly 
and in the supernatant of vIND-ZIKV-infected cells, compared to the putative natural SP. Since we hypothesized 
that increased expression and secretion of E would lead to improved immunogenicity of our vaccine, we selected 
the vaccine candidate with a D4W mutation in the SP to progress to further studies. We also showed that, even in 
the absence of DOX, co-expression of prM and E (but not E alone) by vIND-ZIKV leads to the formation of VLPs 
that can be visualized by TEM and resemble wildtype ZIKV virions. VLPs are an appealing vaccine approach 
because they present epitopes in a conformation similar to the native virus and therefore induce strong innate 

Figure 6.   Two vaccinations with vIND-ZIKV are required to protect mice against ZIKV in mice with prior 
vector immunity. (a) Schematic of vaccination/challenge schedule and timing of blood collection in VACV-
primed mice. Six-week-old immunocompetent C57BL/6 mice (n = 8) were vaccinated intramuscularly with 
PBS or 107 PFU vIND 2 weeks prior to first vaccination. Mice were then vaccinated with PBS or 107 PFU vIND 
or vIND-ZIKV (D4W) at weeks 0 and 2. Mice were challenged 2 weeks post-boost with 104 PFU ZIKV strain 
PRVABC59 intraperitoneally, 1 day after being administered 2 mg anti-IFNAR1 antibody intraperitoneally. 
(b) Anti-vector (VACV) antibodies were measured by ELISA in pooled serum collected at weeks − 2, 0, and 
2. (c) ZIKV E-specific IgG titers were measured by ELISA at weeks 0, 2, 4 (1 day prior to challenge), and 6. 
(d) PRNTs were performed in twofold dilutions on pooled serum collected at the indicated time points. (e) 
ZIKV NS1-specific IgG titers were measured by ELISA at weeks 4 (1 day prior to challenge) and 6. (f) Viremia 
was measured in serum collected 2 days after ZIKV challenge by qRT-PCR. Asterisks represent statistical 
significance (*p < 0.05, †p < 0.005) by two-way repeated measures ANOVA (c,e) or unpaired t tests (f) compared 
to PBS-vaccinated control group. Horizonal lines represent geometric mean and error bars represent SD. LLD 
lower limit of detection.
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and adaptive immune responses, are safe because they lack a viral genome and are non-replicating, and contain 
a highly repetitive surface that is highly immunogenic25. Thus, VLPs have been studied as vaccines against ZIKV 
by several groups26–34. In the future, we plan to generate and purify vIND-ZIKV-produced VLPs and vaccinate 
mice with the purified VLPs directly.

Though our vaccine would be administered only in the absence of DOX, we evaluated growth characteristics 
in vitro and in vivo both in the absence and presence of DOX. We found that in the absence of DOX, vIND and 
vIND-ZIKV were replication-defective, demonstrated by input-levels of virus 24 hpi and lack of weight loss in 
mice. In the presence of DOX, vIND and vIND-ZIKV are replication-competent, reaching high titers in vitro 
and causing weight loss in mice. Interestingly, vIND-ZIKV was attenuated both in vitro and in vivo compared to 
vIND. This is not entirely unexpected, since ZIKV VLPs produced by vIND-ZIKV would compete with VACV 
for cellular resources and processes that may interfere with vIND-ZIKV replication. Regardless, vIND-ZIKV 
would always be administered in the absence of DOX (and therefore be replication-defective) when given as a 
vaccine, and is still able to grow to high titers in cell culture during vaccine production (in the presence of DOX).

Here we demonstrated that mice vaccinated with a single dose of vIND-ZIKV had robust levels of ZIKV 
E-specific IFN-γ-secreting splenocytes 1 week after vaccination. Furthermore, C57BL/6 mice vaccinated with 
vIND-ZIKV had robust E-specific antibody titers, although PRNT50 titers were only modest after a single vacci-
nation. Our PRNT assay measures ZIKV neutralization by reduction in the actual number of plaques developed, 
which may have resulted in low sensitivity compared to other methods. Importantly, despite low neutralizing 
antibody titers, vIND-ZIKV-induced immunity was sufficient to protect against ZIKV challenge. After treatment 
with an anti-IFNAR1 antibody followed by ZIKV challenge, mice vaccinated with one or two doses of vIND-
ZIKV were protected from viremia and had reduced anti-NS1 antibody titers, while control mice had high levels 
of viremia and NS1-specific antibodies.

Though widespread smallpox vaccination has ceased, there is a population of individuals who will have immu-
nity to VACV from either prior immunization as a child, or from more recent vaccination due to employment as 
a healthcare professional, first responder, military member, or researcher working with poxviruses. Furthermore, 
VACV is being explored as a vector for vaccines, immunotherapies, and oncolytic therapies12. Therefore, it was 
important to test whether prior immunity to VACV would interfere with the immunogenicity and efficacy of 
our vaccine. To test this, we inoculated mice with vIND 2 weeks prior to the start of the immunogenicity and 
efficacy study. Despite prior vector immunity, vaccinated mice generated E-specific antibodies following vac-
cination once or twice with vIND-ZIKV. Interestingly, while naïve mice vaccinated once with vIND-ZIKV were 
protected from viremia, mice with prior VACV exposure followed by a single vaccination with vIND-ZIKV 
were not protected. However, a second vaccination with vIND-ZIKV overcame this inhibitory effect and mice 
were protected from viremia.

It is important to note that this prior immunity study was very stringent, since the vaccination regimen 
was initiated only 2 weeks after VACV priming, when antibody levels are already present and CMI responses 
to the VACV vector would still be robust. It is very likely that further separation of the VACV prime from the 
vIND-ZIKV vaccination would lessen the effect of prior VACV immunity on vIND-ZIKV efficacy. Conversely, 
priming with a replication-competent VACV, rather than vIND, may exacerbate the effect of prior immunity 
on vIND-ZIKV efficacy. However, robust immune responses are generated against VACV despite replication 
capacity (e.g., MVA)35, so we hypothesized that inoculating with vIND would be sufficient to recapitulate the 
effect of pre-existing VACV immunity. In fact, we observed that a single inoculation of vIND followed by a single 
vaccination with vIND-ZIKV resulted in moderate levels of anti-E antibody, yet after challenge NS1-specific 
titers and viremia were similar to negative controls. Despite this, we showed, even in this stringent scenario, that 
two vaccinations with vIND-ZIKV can overcome prior immunity to VACV.

In addition to vIND-ZIKV presented here, other replication-defective VACV strains have also been studied 
as viral-vectored vaccine candidates against ZIKV. An MVA vector expressing ZIKV NS1 induced robust CMI 
and humoral responses and was protective against lethal intracerebral challenge in immunocompetent mice36. 
Furthermore, an MVA vaccine expressing prM and E elicited strong CMI and humoral responses in normal mice 
and reduced ZIKV viremia in immunocompromised IFNAR−/− mice after challenge37. In addition to MVA, other 
replication-defective VACV strains have been studied as ZIKV vaccines. For example, a replication-defective 
VACV-vectored vaccine candidate against chikungunya virus (CHIKV) and ZIKV based on the VACV Copen-
hagen strain and encoding the structural proteins of CHIKV and prM and E of ZIKV induced ZIKV-neutralizing 
antibodies in immunocompetent and immunocompromised IFNAR−/− mice and protected IFNAR−/− mice from 
ZIKV viremia and infection of tissues38. Furthermore, vaccination with a DNA plasmid (expressing ZIKV prM 
and E) followed by a booster vaccination with a non-replicating VACV vector (based on the VACV Tiantan strain 
and expressing ZIKV E) induced anti-E IgG and neutralizing antibodies in mice39.

During this study, we rapidly identified advantageous single mutations within the SP of prM that resulted in 
increased expression and secretion of ZIKV E protein from a vIND. One possible consequence of the SP mutation 
is improper folding of E resulting in a diminished immune response. While we did not assess protein folding 
in this study, we did show that expression of prM-E by vIND-ZIKV results in the secretion of VLPs resembling 
ZIKV particles, as well as robust CMI and humoral immune responses in mice that protected against ZIKV chal-
lenge. The vaccine antigen identified here (D4W SP-prM-E) could be incorporated into other vaccine platforms 
(e.g., DNA or mRNA vaccines, VLPs alone), particularly in the case of vaccinating pregnant mothers or women 
of child-bearing age, or could be pursued further in replication-defective vIND vectors with additional safety 
mechanisms40 to counteract the potential loss of TetR protein function due to mutations.
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Materials and methods
Ethics statement.  This study was carried out in accordance with recommendations set forth by the 
National Institutes of Health Guide for the Care and Use of Laboratory Animals and in compliance with the 
ARRIVE guidelines. Experimental protocols were approved by the University of Connecticut Institutional Ani-
mal Care and Use Committee. All animals were purchased from The Jackson Laboratory (Bar Harbor, ME, USA) 
and housed in an AAALAC-accredited facility.

Cells.  African green monkey BS-C-1 (CCL-26), Vero (CCL-81), and human HeLa S3 (CCL-2.2) cells were 
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and were grown in Dul-
becco’s modified Eagle medium (D-MEM; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 
5–10% tetracycline-tested fetal bovine serum (FBS, Bio-Techne, Flowery Branch, GA, USA). All cells were 
grown at 37 °C in 5% CO2.

Viruses, antibodies and peptides.  The L-variant of VACV strain Western Reserve (WR) was obtained 
from ATCC (VR-2035) and a clone (9.2.4.8) derived by sequential plaque purification40 was used to generate the 
recombinant viruses in this study. ZIKV strain PRVABC59 (Asian lineage) was obtained from BEI Resources 
(National Institute of Allergy and Infectious Disease, National Institutes of Health, USA; NR-50240) and was 
thawed once and divided into aliquots that were stored at − 80 °C. New aliquots were thawed for each assay 
and discarded after use. ZIKV envelope protein antibody GTX133314 was obtained from Genetex (Irvine, CA, 
USA), and goat anti-rabbit IgG secondary antibody PI31460 conjugated to horseradish peroxidase (HRP) was 
obtained from Thermo Fisher Scientific. Peptides spanning the entire ZIKV envelope protein as consecutive 
15-mers with 12-mer overlap were obtained from BEI Resources (NR-50553).

ZIKV genes.  The prM and E genes of ZIKV strain Brazil-ZKV2015 (sequences based on accession 
#KU497555.1, Asian lineage) were obtained by gene synthesis (Atum, Newark, CA, USA). The entire coding 
region of E (504 amino acids) was included in the construct with a methionine amino acid at the N-terminus. 
For constructs containing prM and E, the 18 amino acids preceding prM (the putative signal sequence within 
the C protein) were encoded immediately upstream of prM (168 amino acids), with a methionine amino acid at 
the N-terminus. TargetP 1.1 software17 (Technical University of Denmark) was used to predict the localization 
of the E protein (e.g., secretory pathway). Variants of the natural capsid SP were selected based on improvements 
in the output of TargetP 1.1 software. A 6× His tag was encoded immediately downstream of E in all constructs.

Construction of vIND‑ZIKV transfer plasmids.  The ZIKV gene(s) were inserted into a plasmid back-
bone containing the tetR repressor gene under the control of a constitutive VACV promoter and the tetO2 opera-
tor sequence, which was inserted directly downstream of the natural D6R promoter to control expression of the 
VACV gene D6R13. To expedite purification of the recombinant viruses, enhanced green fluorescence protein 
(EGFP) was also included in the construct under the control of a VACV P11 (F17R) promoter.

Generation of vIND‑ZIKVs.  Recombinant VACVs were generated by infecting BS-C-1 cells in 12-well cul-
ture plates with a lac-inducible parental virus (viLacR, expressing DsRed fluorescence protein) for 1 h. Infected 
cells were then overlaid with complete D-MEM supplemented with 2.5% FBS containing 0.1 mM isopropyl β-d-
1-thiogalactopyranoside (IPTG) and 1 µg/ml DOX (Sigma-Aldrich, St. Louis, MO, USA). Plasmids were com-
plexed with FuGENE HD transfection reagent (Promega, Madison, WI, USA) for 15 min before being added to 
individual wells of infected cells. Cells were incubated for 2 days at 37 °C before being analyzed with an EVOS FL 
inverted fluorescence microscope (Thermo Fisher Scientific) for successful transfection (EGFP expression) and 
parental virus replication (DsRed expression and cytopathic effect). Cell lysates and supernatants were collected 
and processed, and vIND-ZIKVs were serially purified from parental virus in the absence of IPTG and presence 
of DOX by our recently developed method19 based on the swapping of inducible systems. High-titer stocks were 
generated by infecting HeLa S3 cells with the VACVs at an MOI of 0.1 in the presence of 1 µg/ml DOX14. The 
vIND-ZIKVs from high-titer stocks were authenticated by extraction of viral DNA (NucleoSpin Blood Mini kit, 
Macherey-Nagel, Bethlehem, PA, USA) and PCR amplification with Q5 high-fidelity DNA polymerase (New 
England Biolabs, Ipswich, MA, USA). The PCR product was checked by restriction enzyme analyses, and either 
sequenced directly or after cloning into the Zero Blunt PCR cloning kit (Thermo Fisher Scientific). PCR and 
sequencing primers are shown in Supplementary Table 1.

Expression of ZIKV proteins from vIND‑ZIKVs by western blot.  Vero or HeLa S3 cells grown in 
100 mm culture dishes to near confluency were infected with each VACV at an MOI of 5. After 1 h, cells were 
washed and overlaid with D-MEM containing 2.5% FBS with or without the addition of 1 µg/ml DOX, and incu-
bated at 37 °C for 2 days. Cell lysates were collected and processed. Supernatants were clarified by centrifugation 
(1000  × g × for 10 min at 4 °C) and transferred (~ 8 ml) to conical tubes containing 2 ml of ice-cold 40% PEG-
8000, and incubated overnight at 4 °C. The 10 ml mixtures were then added to ultraclear centrifuge tubes, loaded 
onto a SW 32 Ti rotor (Beckman Coulter, Indianapolis, IN, USA), and centrifuged at 9100 rpm for 30 min at 
4 °C. Supernatants were discarded and pellets were resuspended in 80 µl 10 mM Tris (pH 8.0) buffer.

Samples were run on 4–20% Mini-PROTEAN TGX Stain-Free gels (BioRad, Hercules, CA, USA) and proteins 
were then transferred onto mini PVDF membranes using TransBlot Turbo (BioRad). Membranes were incubated 
in blocking buffer (5% non-fat milk in PBS-Tween) for 1 h, washed with PBS-Tween, and primary antibody was 
then added and incubated for 2 h. The membranes were then washed 3 times with PBS-Tween before adding 
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secondary antibody and incubating for 1 h. Membranes were washed three times with PBS-Tween, two times with 
water, prepared for chemiluminescent development by incubation in Clarity Western ECL Substrate (BioRad), 
and imaged with a ChemiDoc digital imager (BioRad).

The effect of DOX on vIND-ZIKV (D4W) plaque formation was determined by infecting near-confluent 
BS-C-1 cell monolayers in six-well plates with vIND-ZIKV (D4W) at 50 PFU/well in the absence or presence 
of 1 μg/ml DOX. Individual plaques and infected cells were imaged 2 days later by brightfield and fluorescence 
microscopy with an Axio Observer D1 inverted fluorescence microscope (Carl Zeiss, Oberkochen, Germany) 
using an XF100-2 (EGFP) filter (Omega Optical, Brattleboro, VT, USA).

Negative staining and electron microscopy.  Samples were concentrated in preparation for electron 
microscopy. A virus stock of ZIKV PRVABC59 was concentrated using an ultra-centrifugal filter unit (Millipore-
Sigma, Burlington, MA, USA) with a 100 kDa cutoff. To concentrate VLPs produced by vIND-ZIKV (D4W), 
Vero cells grown in T-175 culture flasks to near confluency were infected at an MOI of 5. After 1 h, cells were 
washed and overlaid with D-MEM supplemented with 2.5% FBS. After cells were incubated for 2 days at 37 °C, 
the supernatant was clarified by centrifugation at 500×g for 10 min at 4 °C, transferred (~ 24 ml) to a conical tube 
containing 6 ml cold 40% PEG-8000, and incubated overnight at 4 °C. The supernatant/PEG mixture was loaded 
onto a SW 32 Ti Rotor (Beckman Coulter) and centrifuged at 9100 rpm for 30 min at 4 °C. The pellet was resus-
pended in 200 µl 10 mM Tris (pH 8.0) buffer. Concentrated ZIKV and VLPs were fixed in 2% glutaraldehyde 
for 15 min. Fixed samples (3 µl) were then deposited onto plasma-cleaned carbon-coated copper grids (Electron 
Microscopy Sciences, Hatfield, PA, USA) and incubated for 2 min. The grids were then washed with 0.5% uranyl 
acetate and air dried. Grids were imaged with a FEI Tecnai 12 G2 Spirit BioTWIN transmission electron micro-
scope at the University of Connecticut Biosciences Electron Microscopy Laboratory.

One‑step growth VACV curves.  BS-C-1 cells grown in 12-well culture plates to near confluency were 
washed and infected with vIND or vIND-ZIKV (D4W) at an MOI of 5, in triplicate wells, for 1 h. After 1 h, cells 
were washed and overlaid with D-MEM supplemented with 2.5% FBS and 1 µg/ml DOX. Plates were incubated 
at 37 °C and at the indicated time points (0 or 24 h), cell lysates were collected and processed. Processed cell 
lysates were then diluted and added to fresh BS-C-1 cells in 24-well culture plates in duplicate to determine viral 
titer. Infected plates were stained 2 days later with 0.5% crystal violet in 10% ethanol/20% formaldehyde and 
plaques were enumerated.

Safety of vIND‑ZIKV in normal mice.  Female CB6F1/J mice (stock No. 100007, 6 weeks of age, n = 5) 
were inoculated intranasally with 2 × 104 PFU vIND or vIND-ZIKV (D4W) and weighed daily for 21 days. Mice 
were given either normal drinking water (NO DOX treatment) or 0.125 mg/ml DOX in the drinking water, 
replaced every 2 days (DOX treatment).

Immunogenicity and efficacy of vIND‑ZIKV in mice.  To assess CMI responses, 6-week-old female 
C57BL/6J mice (stock No. 000664, n = 5) were inoculated with 107 PFU of vIND, vIND-ZIKV (D4W), or PBS 
intramuscularly in the right hind limb. Mice were sacrificed after 7 days and spleens were harvested for ELIS-
POT analysis. To assess humoral immune responses, 6-week-old female C57BL/6J mice (n = 8) were vaccinated 
intramuscularly with 107 PFU of vIND or vIND-ZIKV (D4W) and sacrificed 4 weeks after vaccination. Blood 
was collected retro-orbitally on day 0 (naïve sera) or at euthanasia by cardiac puncture for PRNT. To assess 
humoral immune responses and efficacy, 6-week-old C57BL/6J mice (n = 8) were inoculated with 107 PFU of 
vIND, vIND-ZIKV (D4W), or PBS intramuscularly. Two weeks later, mice were boosted intramuscularly with 
107 PFU of vIND, vIND-ZIKV (D4W), or PBS. Two weeks later, mice were challenged with 104 PFU of ZIKV 
(strain PRVABC59) intraperitoneally. One day prior to challenge, mice were given 2 mg of anti-IFNAR1 anti-
body (Leinco Technologies, MAR1-5A3, I-401) intraperitoneally. Mice were bled retro-orbitally on days 0, 14, 
27, and 30, and bled via cardiac puncture at euthanasia on day 42. To test the effect of prior vector immunity on 
the immunogenicity of vIND-ZIKV, 6-week-old female C57BL/6J mice (n = 8) were first primed intramuscularly 
with 107 PFU vIND or PBS. Two weeks later, mice were vaccinated to begin the humoral immune response and 
efficacy experiments, exactly as described above.

ELISPOT assay.  First, 96-well ELISPOT plates (mouse IFN-γ ELISPOT set, BD Biosciences, San Jose, CA, 
USA) were coated with purified anti-mouse IFN-γ overnight at 4 °C. Plates were then blocked for at least 2 h 
with RPMI 1640 containing 10% FBS and 1 × antibiotic–antimycotic (Thermo Fisher Scientific). Next, 4 µg/ml 
peptide (BEI Resources, NR-50553, IGVSNRDFVEGMSGG), which during pilot studies was determined to be 
the most immunogenic among five peptides tested that contained previously-described H-2b E epitopes41,42, or 
5 ng/ml phorbol myristate acetate (PMA) containing 500 ng/ml ionomycin, was added to the well followed by 
2 × 105 freshly harvested splenocytes. The cells were incubated for 18 h at 37 °C. Cell suspensions were aspirated 
and plates were washed twice with water and three times with PBS-Tween before adding biotinylated anti-
mouse IFN-γ. After incubation for 2 h, plates were washed 3 times with PBS-Tween before Streptavidin-HRP 
was added. After 1 h incubation, wells were washed four times with PBS-Tween, twice with PBS, and BD AEC 
substrate kit (BD Biosciences) was added. Spot development was monitored and stopped after 15 min by wash-
ing wells with water. Plates were air-dried overnight before spots were counted manually after imaging with a 
stereoscope.
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Plaque reduction neutralization assay (PRNT).  To measure the ability of serum to neutralize ZIKV, 
PRNTs were performed. Briefly, 12-well cell culture plates were seeded with Vero cells so that they were near 
confluency at the time of infection. Serum was heat-inactivated at 37 °C for 30 min. Serum samples collected 
during the immunogenicity study (at euthanasia) were analyzed individually, while serum collected during the 
efficacy studies (via periodic retro-orbital bleeding) were pooled due to low volumes. Serum was diluted twofold 
in complete DME containing 1 × antibiotic–antimycotic and mixed with equal volumes of ZIKV strain PRV-
ABC59 containing approximately 50 PFU/well. Serum/virus dilutions were incubated for 1 h at 37 °C, 5% CO2. 
After incubation, cells were infected with the serum/virus dilutions in duplicates for 1 h, inoculum was then 
aspirated and cells were overlaid with complete DME containing 1 × antibiotic–antimycotic, 2.5% FBS, and 1% 
methylcellulose. Plates were incubated for 4 days at 37 °C prior to fixation with 0.5% crystal violet in 10% etha-
nol/20% formaldehyde and manual plaque counting. The PRNT50 was calculated as the reciprocal of the highest 
dilution that resulted in at least 50% reduction in ZIKV plaques.

ELISA assays.  To detect antibodies against ZIKV, serum collected from mice was diluted 1:100, 1:500, 
1:1000, 1:4000, or 1:5000 for ELISA. Recombivirus Mouse Anti-Zika Virus Envelope Protein IgG kit (RV-
403120-1, Alpha Diagnostic International, San Antonio, TX, USA) and Recombivirus Mouse Anti-Zika Virus 
NS1 Protein IgG kit (RV-403320-1) were performed according to manufacturer’s instructions. Optical density 
(OD) was measured at 450 nm with a reference wavelength of 630 nm. Antibody concentrations (U/ml) were 
calculated based on a standard curve. Lower limit of detection (LLD) was 100 U/ml.

To detect antibodies against VACV, an in-house ELISA was developed. Briefly, flat-bottom 96-well plates 
were coated with VACV strain WR (~ 2 × 104 PFU) diluted in 100 µl PBS containing 0.1% FBS and incubated 
overnight at 4 °C. Serum collected from mice was pooled due to low volumes and subsequently serially diluted 
twofold in PBS containing 5% non-fat milk and 0.05% Tween. Plates were washed and blocked for 1 h in PBS 
containing 5% non-fat milk and 0.05% Tween. Plates were washed, serial dilutions of serum were added, and 
plates were incubated for 2 h. Plates were then washed, anti-mouse IgG-HRP conjugate (31430, Invitrogen, 
Carlsbad, CA, USA) diluted 1:1000 in PBS containing 5% non-fat milk and 0.05% Tween-20 was added, and 
plates were incubated for 1 h. Plates were washed, TMB Substrate (N301, Thermo Fisher Scientific) was added, 
the reaction was stopped with 2 M H2SO4, and OD was measured at 450 nm. Endpoint titers were calculated 
as the reciprocal of the highest serum dilution that gave a reading above the cutoff (upper prediction limit of a 
Student t-distribution of the no-serum control readings at 95% confidence interval)43.

Analysis of ZIKV viremia by qRT‑PCR.  Blood was collected by retro-orbital bleeding to analyze ZIKV 
viremia 2 days after challenge. RNA was extracted from 20 µl mouse serum using the QIAamp Viral Mini Kit 
(Qiagen, Venlo, Netherlands) per manufacturer’s instructions. The qRT-PCR assays were performed on the RNA 
samples in triplicate using iTaq Universal Probes One-Step Kit (BioRad) with primers previously described24. 
PFU equivalents were calculated using a standard curve prepared from a previously titrated sample of the ZIKV 
strain PRVABC59.

Statistical analyses.  Statistical analyses were performed using GraphPad Prism v.7.0e software (GraphPad 
Software, La Jolla, CA) as described in the figure legends. A p value less than 0.05 was considered statistically 
significant.

Data availability
All data generated or analyzed during the current study are available from the corresponding author on reason-
able request.
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