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A B S T R A C T   

In this paper, we consider a mathematical model to explain, understanding, and to forecast the outbreaks of 
COVID-19 in India. The model has four components leading to a system of fractional order differential equations 
incorporating the refuge concept to study the lockdown effect in controlling COVID-19 spread in India. We 
investigate the model using the concept of Caputo fractional-order derivative. The goal of this model is to es-
timate the number of total infected, active cases, deaths, as well as recoveries from COVID-19 to control or 
minimize the above issues in India. The existence, uniqueness, non-negativity, and boundedness of the solutions 
are established. In addition, the local and global asymptotic stability of the equilibrium points of the fractional- 
order system and the basic reproduction number are studied for understanding and prediction of the transmission 
of COVID-19 in India. The next step is to carry out sensitivity analysis to find out which parameter is the most 
dominant to affect the disease’s endemicity. The results reveal that the parameters η, μ and ρ are the most 
dominant sensitivity indices towards the basic reproductive number. A numerical illustration is presented via 
computer simulations using MATLAB to show a realistic point of view.   

Introduction 

Since COVID-19 transmission started in January 2020, mathematical 
modeling has been at the forefront of shaping the decisions around 
different non-pharmaceutical interventions to confine its’ spread in the 
world. Mathematical modeling is a powerful tool for understanding 
transmission of COVID-19 and exploring different scenarios. But, instead 
of focusing on which model is correct, we should accept that “one model 
can not answer it all” and that we need more models that answer 
complementary questions that can piece together the jigsaw and halt 
COVID- 19 spread. Models are used to predict the future of a population. 
In the case of epidemics, we need mathematical modeling to understand 
how the disease is most likely to spread, and where it is more likely to 
spread. This will help avoid risky trial experiments or random guesses 
with real populations. It can also be viewed as a shortcut, instead of 
implementing many guesses about how to deal with the spread of a 
disease we can see what implementing each of these guesses would 
mean using some nifty equations, and take more well-informed 

decisions. Even as you read this, mathematical modeling has been at the 
heart of several policy decisions worldwide regarding the response to 
COVID-19. 

Fractional calculus can be considered as the generalization of their 
order where fractional order is replaced with integer order. In systematic 
study it has been observed that integer order model is a special case of 
fractional order model where solution of fractional order system must 
converge to the solution of integer order system as the order approaches 
to one [17]. There are numerous fields where fractional order frame-
works are more reasonable than integer order frameworks. Phenomena, 
which are connected with memory property and affected by hereditary 
property, cannot be expressed by integer order systems [18]. It is seen 
that the information gathered from real life phenomena fits better with 
fractional order frameworks. 

Postavaru et al. [19] proposed a fractional order SEIR model to 
analysis the dynamics of COVID-19 in China, South Korea, Italy and the 
USA. Zhang et al. [20] formulate and analyze a new mathematical model 
for COVID-19 epidemic with isolated class in fractional order. To predict 
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the transmission of COVID-19 in Iran, Rezapour et al. [21] provide a 
SEIR epidemic model using the Caputo fractional derivative. A mathe-
matical model of fractional order is constructed to study the significance 
of the lockdown in mitigating the virus spread by Ahmed et al. [22]. 
Shaikh et al. [23] have analysed a Bats-Hosts-Reservoir-People trans-
mission fractional-order COVID-19 model for simulating the potential 
transmission with the thought of individual response and control mea-
sures by the government of India. Ahmad et al. [24] developed a fuzzy 
fractional order system to analyse novel coronavirus infection in 
Caputo’s sense. Baleanu et al. [25] proposed and analyzed a fractional 
differential equation model for the COVID-19 transmission by using the 
Caputo-Fabrizio derivative. Khan et al. [26] has formulated and 
analyzed a new mathematical model using fractal-fractional derivative 
in Atangana-Baleanu sense for the dynamics of COVID-19 in China with 
quarantine and isolation. Bushnaq et al. [27] have investigated a new 
model on COVID-19 disease under Mittag-Leffler type derivative. Yadav 
and Verma[28] have been developed a fractional model based on 
Caputo-Fabrizio fractional derivative for the transmission of COVID-19 
in Wuhan China. A nonlinear dynamical model of COVID-19 disease 
under fuzzy caputo, random and ABC fractional order derivative has 
studied by Rahman et al. [29]. Mohammad and Trounev[30] have 
proposed a new fractional order model based on the well-known Atan-
gana-Baleanu fractional derivative with non-singular kernel for COVID- 
19 disease spread analysis. Tuan et al. [31] has presented a mathemat-
ical model for the transmission of COVID-19 in the world by the Caputo 
fractional-order derivative. Complex dynamics of novel COVID-19 
(2019-nCov) with fractional derivative have been investigated by 
Khan and Atangana[32]. Ahmad et al. [33] proposed a mathematical 
model for the transmission dynamics of COVID-19 disease under the 
fractional-order derivative. Haar collocation method is established to 
compute the approximate solution of the COVID-19 model in [34]. 
Fractional order epidemic model to describe the dynamics of COVID-19 
under nonsingular kernel type of fractional derivative has been intro-
duced in [35]. Higazy[36] proposed a fractional order mathematical 
model for COVID-19 pandemic. Alkahtani and Alzaid[37] proposed a 
mathematics model of COVID-19 with fractional derivative to analyze 
the spread of it in Italy. Zhang et al. [38] proposed a time fractional 
derivative model to predict COVID-19 evolution in the United States, 
Italy, Japan, and South Korea. Trend of COVID-19 in the USA has been 
studied by a generalized fractional-order SEIR model in [39] Lu et al. 
[40] proposed a fractional model based on the coupling effect of inter- 
city networks. Rajagopal et al. [41] proposed a fractional-order model 
for the spread of COVID-19. There are more fractional order models on 
COVID-19, for example one can see ([42–50]). 

This paper introduces a four-compartmental COVID-19 infection 
model with fractional order. We have separated the total populace of 
India into four classes, purposely susceptible (S(t)), infected individuals 
which are not under treatment (I(t)) and infected individuals which are 
under treatment (T(t)) as well as recovered class (R(t)). We have also 
introduced sensitive analysis of R 0 in the model which makes the model 
more realistic and biologically significant. Preliminaries of fractional 
order calculus are discussed in section 2. The model derivation and 
limitation of our model are explained in Section 3. The basic properties 
of our proposed model structure are discussed in section 4. In section 4, 
we introduce the concept of the basic reproduction number R 0 [13]. 
Next we are dealing with the two types of equilibrium points of the 
system namely disease-free equilibrium (DFE) E0; and endemic equi-
librium E*. We observe that if R 0 < 1 then the system becomes locally 
asymptotically stable at E0. Again if R 0 > 1 then the system becomes 
unstable at E0 but E* is stable. Section 4. discusses the sensitivity analysis 
of R 0. Analytical results obtained in the previous sections are numeri-
cally verified in section 6 with the help of realistic values of the model 
parameters using MATLAB. 

Preliminaries on fractional calculus 

First we recall the basic definitions and some relevant results 
regarding to the Caputo fractional derivative ([1,2]). 

Definition 1. For a given function y ∈ Cn and t,α∊R then the fractional 
order derivative having order α in Caputo sense is given by 

Dα(y(t)) =
1

Γ(n − α)

∫ t

0

yn(X )

(t − X )
α+1− n dX ,

where n − 1 < α < n ∈ N. Γ is the well-known gamma function. 

Definition 2. For a function h : R+→R, the fractional integral having 
order α is given by 

Iα(y(t)) =
1

Γ(α)

∫ t

0
y(X )(t − X )

α− 1dX .

Definition 3. [5] For a given dynamical system with Caputo fractional 
operator given by 

Dαy(t) = u(t, y(t) ); y(0) = y0; α ∈ (0, 1), (2.1) 

A point y* is called an equilibrium point of the system if it satisfies 
u(t, y*) = 0. This equilibrium point is locally asymptotically stable if all 
eigenvalues λj of the Jacobian matrix J = ∂u

∂y evaluated at y* satisfy 
⃒
⃒
⃒arg

(
λj
)⃒⃒
⃒ > απ

2 . 

In order to implement Lyapunov stability method for a system 
involving Caputo derivative, we re-call the relevant result from ([5,6]). 

Theorem 1. For an equilibrium point given by y* for the system in Caputo 
sense (2.1) and Ω ∈ Rn be the domain such that y* ∈ Ω and let 
G : [0,∞) × Ω→R, be a continuously differentiable function and if 

V1(y)⩽G (t, y(t) )⩽V2(y) (2.2)  

and 

Dαy(t)⩽ − V3(y) (2.3)  

∀α ∈ (0, 1) and y ∈ Ω. Where V1(y),V2(y) and V3(y) are continuously 
positive definite functions over Ω, then the point y of (2.1) is uniformly 
asymptotically stable. The following theorem is important to show the 
uniform boundedness of the solution. 

Theorem 2. (Comparison Theorem [3]). Let y(t) ∈ C([0,+∞)). If u(t)
satisfies 

Dαy(t)⩽ − λy(t) + ξ, y(0) = u0 ∈ R,

where α ∈ (0, 1], λ, ξ ∈ R and λ ∕= 0, then 

y
(

t
)

⩽
(

u0 −
ξ
λ

)
Eα[ − λtα] +

ξ
λ
,

where Eα(z) is the Mittag-Leffler function of one parameter, which is defined 
by 

Eα

(

z

)

=
∑∞

j=1

zj

Γ(αj + 1)
.

This function plays a crucial role in the classical calculus for α = 1, where it 
becomes the exponential function as follows, 

ez = E1

(

z

)

=
∑∞

j=1

zj

Γ(j + 1)
.
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In [4], the fractional derivatives of Mittag-Leffler functions and further 
several important properties were established. The relationships between the 
Mittag-Leffler and Wright functions were also proved in [4]. 

Algorithm for fractional-order dynamic systems 

We consider the fractional differential equation with initial condi-
tions 

Dαy
(
t
)
= u
(
t, y
(
t
))
, for0⩽t < Twithy(k)

(
0
)
= y(k)0 , k = 0, 1,…, n − 1.

Here y(n)(t) is the ordinary nth derivative of y(t). It is equivalent to the 
Volterra integral equation 

y
(

t) =
∑⌈α⌉.− 1

k=0 y(k)0
tk

k!+
1

Γ(α)
∫ t

0 (t − τ)α− 1u(τ, y(t
))

dτ Set h = T
N, tj = jh,

j = 0,1,…,N ∈ Z+, then it can be discretized as follows: 

yh

(

tn+1
)
=

∑⌈α⌉.− 1
k=0 y(k)0

tk
n+1
k! + hα

Γ(α+2) u
(

tn+1, yp
h

(

tn+1

))

+ hα

Γ(α+2)

∑n
j=0aj,n+1u

(
tj,yh

(
tj
))

where aj,n+1 

=

⎧
⎨

⎩

nα+1 −
(
n − α

)
(n + 1)α for j = 0

(n − j + 2)α+1
+ (n − j)α+1

− 2(n − j + 1)α+1 for 1⩽j⩽n
1 for j = n + 1 

. The solution of the fractional differential equation is yp
h
(
tn+1

)
=

∑⌈α⌉.− 1
k=0 y(k)0

tkn+1
k! + 1

Γ(α)
∑n

j=0
bj,n+1u

(
tj, yh

(
tj
))

, where bj,n+1 = hα

α ((n − j + 1)α 

− (n − j)α), for 0⩽j⩽n. 

The error estimate in this method is 

e =
max

j = 0, 1,…,N

⃒
⃒
⃒
⃒y
(
tj
)
− yh

(
tj
)
⃒
⃒
⃒
⃒ = O(hp) in which p = min(2,1 + α). 

This is called the Adams-Bashforth-Moulton predictor-corrector 
scheme, which is a time-domain approach and is more effective for 
investigating the dynamics of fractional-order system ([7,8]). 

Mathematical model of COVID-19 with Caputo fractional 
derivative 

To construct the model we divide the total population N into four 
subclasses i.e., suspectable class S(t), infected class (i.e. infected but not 
under treatment) I(t), treatment class (i.e. infected but under treatment) 
T(t) and those who recovered are denoted by R(t). The suspectable 
population is recruited at the rate Λ. The natural death rate in all classes 
is denoted by d. The function η(1 − μ)SI denotes the incidence rate 
function describing the rate at which the suspectable one becomes in-
fectious and joins the infected and treatment classes. The parameter β2 
and γ2 are the recovery rate of infected and treatment class respectively. 
We apply proportional refuge μS in our model to study the effect of 
lockdown in COVID-19 spread in India. As of our knowledge, this is a 
new concept to analysis the lockdown effect in COVID-19 epidemic 
model. The dynamics in each class is governed by a fractional order 
differential equation (FDE). Hence, the proposed fractional order SITR 
model is given by the following nonlinear system of FDEs. 

DαS(t) = Λ − η(1 − μ)SI − dS (3.4)  

DαI(t) = ρη(1 − μ)SI − (β1 + β2 + d)I
DαT(t) = (1 − ρ)η(1 − μ)SI − (γ1 + γ2 + d)T
DαR(t) = γ2T + β2I − dR  

with the initial conditions, S(0) = S0 > 0, I(0) = I0⩾0,T(0) = T0⩾0 and 
R(0) = R0⩾0. 

In (3.4), Dα denotes the Caputo derivative having order α ∈ (0, 1) in 

order to describe the memory effects in the proposed epidemic model. In 
this model we consider that all the infected population are not under 
treatment. That is the main reason of spread COVID-19 in India. 

To make our study more effective we have assumed that λ(S, I) =
η(1 − μ)SI is to be non-negative and continuously differentiable in the 
interior of R+. 

The model’s parameters are described as follows: 

Λ: The recruitment rate of susceptible population 
μ: The refuge parameter 
ρη: The coefficient of transmission (coronavirus infection) rate from 
susceptible population to infected but not under treatment popula-
tion and the rate of transmission of infection is of the form: 
ρη(1 − μ)SI 
(1 − ρ)η: The coefficient of transmission (coronavirus infection) rate 
from susceptible population (infected by infected population) to 
infected but under treatment population and the rate of transmission 
of infection is of the form: (1 − ρ)η(1 − μ)SI 
β1: Disease death rate of infected but not under treatment class 
without treatment. 
β2: The rate at which infected but not under treatment class recov-
ered from disease without treatment by own immunity. 
γ1: Disease death rate of infected but under treatment class. 
γ2: The rate at which infected but under treatment class recovered 
from disease. 
d: The coefficient of natural death rate of all epidemiological indi-
vidual classes (S, I,T and R). 

The variable t represents time, and can be measured in hours, days, 
weeks, or months, depending on the disease spread. Doing the substi-
tution R = N − S − I − T, we can remove the fractional order differential 
equation for R, and then we obtain the simpler model 

DαS(t) = Λ − η(1 − μ)SI − dS (3.5)  

DαI(t) = ρη(1 − μ)SI − (β1 + β2 + d)I
DαT(t) = (1 − ρ)η(1 − μ)SI − (γ1 + γ2 + d)T 

The above model formulation (3.5) can be rewritten as 

DαS(t) = Λ − η(1 − μ)SI − dS (3.6)  

DαI(t) = ρη(1 − μ)SI − BI
DαT(t) = (1 − ρ)η(1 − μ)SI − CT  

where B = (β1 + β2 + d); C = (γ1 + γ2 + d) with the initial conditions, 
S(0) = S0 > 0, I(0) = I0⩾0,T(0) = T0⩾0 and R(0) = R0⩾0. 

Limitation of the model: We assume in our model that the disease 
spreads uniformly all over the country but it is not true. We also assume 
that the infected class (i.e. infected but not under treatment) I(t) is not 
under treatment in future but in real situation it is not true. Our second 
last assumption is that disease does not spread from treatment class (i.e. 
infected but under treatment) T(t). Our last assumption is that there is 
no latent period, after infection either they go to class I(t) or T(t). 

Analysis of the fractional-order COVID-19 system 

The mathematical analysis of the fractional-order system (3.4) is 
presented in this section. 

Existence and uniqueness of the solution 

The existence and uniqueness of the solutions of fractional order 
system ( 3.4) are studied in the region ϜM × (0,T] where ϜM =

{
(S, I,T,

R) ∈ R4 :

max(|S|, |I|, |T|, |R|)⩽ξ
}
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. 

Theorem 3. For each X0 = (S0, I0,T0,R0) ∈ ϜM, there exists a unique 
solution X(t) ∈ ϜM of the fractional-order system (3.4) with initial condition 
X0, which is defined for all t⩾0. 

Proof. The approach used in [9] is adopted. Consider G(X) = (G1(X),
G2(X),G3(X),G4(X)) and 

G1(X) = Λ − η(1 − μ)SI − dS (4.7)  

G2(X) = ρη(1 − μ)SI − BI
G3(X) = (1 − ρ)η(1 − μ)SI − CT
G4(X) = γ2T + β2I − dR 

For any X, X̃ ∈ ϜM, it follows from (4.7) that,  

where H = max{(1 − μ)ξ(2η + d), (1 − μ)ξ(2η + B + β2), (C + γ2), d }
Hence, G(X) satisfies the Lipschitz condition and so the existence and 
uniqueness of fractional order system (3.4) are established. □ 

Boundedness and non-negativity 

The solutions of the system (3.4) are the densities of the interacting 
populations and so must be non-negative and bounded. This is investi-
gated in this section. 

Theorem 4. The solutions of fractional order system (3.4) which start in 
R4

+ are uniformly bounded and non-negative. 

Proof. The approach used by [9] is followed. Define the function 
W(t) = S(t) + I(t) + T(t) + R(t) . Then  

Now applying the standard comparison theorem for the fractional 
order [10], we have 

0⩽W(t)⩽W(0)Eα( − d(t)α
) + Λ

d(t)
αEα,α+1( − d(t)α

), where Eα is the 

Mittag-Leffler function. According to Lemma 5 and Corollary 6 in [10], 
by taking t→∞, this gives 0⩽W(t)⩽Λ

d. Hence, the solutions of fractional 

order system (3.4) starting in R4
+ are uniformly bounded within the 

region W1, where W1 =
{
(S, I,T,R) ∈ R4

+ : W
(

t
)
⩽Λ

d + ∊, ∊ > 0
}

Now, 

the non-negativity of the solutions of the fractional-order system (3.4) is 
studied. From (3.4), one has 

DαS(t)|S=0 = Λ > 0, 
DαI(t)|I=0 = 0, 
DαT(t)|T=0 = (1 − ρ)η(1 − μ)SI⩾0, 
DαR(t)|R=0 = γ2T + β2I⩾0. 
According to Lemmas 5 and 6 in [11], one can deduce that the so-

lutions of the fractional order system (3.4) are non-negative. □ 

Equilibrium points and stability 

To evaluate the equilibria of the proposed model (3.6) we need to 
solve the following linearized system: 

Λ − η(1 − μ)SI − dS = 0
ρη(1 − μ)SI − BI = 0 (3.8)  

(1 − ρ)η(1 − μ)SI − CT = 0 

Thus, we have the fractional SITR model (3.6) with at the most two 
equilibria which are: 

The disease free equilibrium (DEF) given by 

E0 = (S0, 0, 0) =
(Λ

d
, 0, 0

)
,

The endemic equilibrium (EE) denoted by E* = (S*, I*,T*), where, 

S* = B
ρη(1− μ) ,T

* =
(1− ρ)

ρ × B
CI

* and I* =
Λρη(1− μ)− dB

Bη(1− μ) = d
η(1− μ) (R 0 − 1)existsif 

R 0 > 1. where R 0 is the basic reproduction number. The basic repro-

duction number has an important biological meaning. It is the number of 
infected mice resulting from each infected mouse during its infected 
lifetime [12]. 

The next generation method [13] is used to obtain R 0 for system 
(3.6). The fractional order system (3.6) can be rewritten as follows: 

⃦
⃦
⃦G(X) − G

(
X̃
)⃦
⃦
⃦ =

⃒
⃒
⃒G1(X) − G1

(
X̃
)⃒
⃒
⃒+

⃒
⃒
⃒G2(X) − G2

(
X̃
)⃒
⃒
⃒+

⃒
⃒
⃒G3(X) − G3

(
X̃
)⃒
⃒
⃒+

⃒
⃒
⃒G4(X) − G4

(
X̃
)⃒
⃒
⃒

=

⃒
⃒
⃒Λ − η(1 − μ)SI − dS − Λ + η(1 − μ)S̃̃I + dS̃

⃒
⃒
⃒+

⃒
⃒
⃒ρη(1 − μ)SI − BI − ρη(1 − μ)S̃Ĩ + BĨ

⃒
⃒
⃒

+

⃒
⃒
⃒

(
1 − ρ

)
η(1 − μ)SI − CT −

(
1 − ρ

)
η(1 − μ)S̃̃I + CT̃

⃒
⃒
⃒+

⃒
⃒
⃒γ2T + β2I − dR − γ2T̃ − β2 Ĩ + dR̃

⃒
⃒
⃒

⩽
⃒
⃒
⃒η(1 − μ)

(
SI − S̃̃I

)⃒
⃒
⃒+ d

⃒
⃒
⃒S − S̃

⃒
⃒
⃒+

⃒
⃒
⃒ρη(1 − μ)

(
SI − S̃̃I

)⃒
⃒
⃒+ B

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+

⃒
⃒
⃒

(
1 − ρ

)
η(1 − μ)

(
SI − S̃̃I

)⃒
⃒
⃒+ C

⃒
⃒
⃒T − T̃

⃒
⃒
⃒

⩽η(1 − μ)ξ
⃒
⃒
⃒S − S̃

⃒
⃒
⃒+ η(1 − μ)ξ

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+ d

⃒
⃒
⃒S − S̃

⃒
⃒
⃒+ ρη(1 − μ)ξ

⃒
⃒
⃒S − S̃

⃒
⃒
⃒+ ρη(1 − μ)ξ

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+ B

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒

+
(

1 − ρ
)

η(1 − μ)ξ
⃒
⃒
⃒S − S̃

⃒
⃒
⃒+
(

1 − ρ
)

η(1 − μ)ξ
⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+ C

⃒
⃒
⃒T − T̃

⃒
⃒
⃒+ γ2

⃒
⃒
⃒T − T̃

⃒
⃒
⃒+ β2

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+ d

⃒
⃒
⃒R − R̃

⃒
⃒
⃒

⩽(ξ(1 − μ)(2η + d) )
⃒
⃒
⃒S − S̃

⃒
⃒
⃒+ (ξ(1 − μ)(2η + B + β2) )

⃒
⃒
⃒I − Ĩ

⃒
⃒
⃒+ (C + γ2)

⃒
⃒
⃒T − T̃

⃒
⃒
⃒+ d

⃒
⃒
⃒R − R̃

⃒
⃒
⃒

⩽H
⃦
⃦
⃦(S, I,T,R) −

(
S̃, Ĩ, T̃, R̃

)⃦
⃦
⃦

⩽H
⃦
⃦
⃦X − X̃

⃦
⃦
⃦

DαW(t) = DαS(t) + DαI(t) + DαT(t) + DαR(t)
= Λ − η(1 − μ)SI − dS + ρη(1 − μ)SI − BI + (1 − ρ)η(1 − μ)SI − CT + γ2T + β2I − dR
= Λ − β1I − γ1T − d(S + I + T + R)

DαW(t) + dW(t) = Λ − β1I − γ1T
DαW(t) + dW(t)⩽Λ   
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DαI(t) = ρη(1 − μ)SI − BI (3.9)  

DαT(t) = (1 − ρ)η(1 − μ)SI − CT
DαS(t) = Λ − η(1 − μ)SI − dS 

The system (3.9), can be written: 

DαX(t) = F (X) − V (X) where F (X) =

⎡

⎣
f1
f2
f3

⎤

⎦ =

⎡

⎣
ρη(1 − μ)SI

(1 − ρ)η(1 − μ)SI
0

⎤

⎦and V (X) =

⎡

⎣
v1
v2
v3

⎤

⎦ =

⎡

⎣
BI
CT

η(1 − μ)SI + dS − Λ

⎤

⎦ The 

matrices F(X) and V(X) are defined as follows: 

F
(
X
)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1

∂I
∂f1

∂T
∂f1

∂S
∂f2

∂I
∂f2

∂T
∂f2

∂S
∂f2

∂I
∂f3

∂T

(
∂f3

∂S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
ρη(1 − μ)S0 0 0

(1 − ρ)η(1 − μ)S0 0 0
0 0 0

⎤

⎦

V
(
X
)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂v1

∂I
∂v1

∂T
∂v1

∂S
∂v2

∂I
∂v2

∂T
∂v2

∂S
∂v3

∂I
∂v3

∂T
∂v3

∂S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
B 0 0
0 C 0

η(1 − μ)S0 0 d

⎤

⎦ .

Now, |V| = BCd, 

V− 1( X
)
= 1

BCd

⎡

⎣
Cd 0 0
0 B 0

Cη(1 − μ)S0 0 BC

⎤

⎦ Then, 

F.V− 1 =
1

BCd

⎡

⎢
⎢
⎣

ρη(1 − μ)S0 0 0

(1 − ρ)η(1 − μ)S0 0 0

0 0 0

⎤

⎥
⎥
⎦

⎡

⎣
Cd 0 0
0 B 0

Cη(1 − μ)S0 0 BC

⎤

⎦

=
1

BCd

⎡

⎣
ρη(1 − μ)S0Cd 0 0

(1 − ρ)η(1 − μ)S0Cd 0 0
0 0 0

⎤

⎦ To obtain the eigenvalues of 

F.V− 1, at the infected mice extinction equilibrium point E0 = (S0, 0,

0) =
(

Λ
d,0, 0

)
, the following equation: 

⃒
⃒F.V− 1 − λI

⃒
⃒ = 0, needs to be 

solved. Here, λ is the eigenvalue and I is the identity matrix, F.V− 1 is the 
next generation matrix for the model (3.6), λ1, λ2 can be computed as 
λ1 = 0, λ2 = 0 and λ3 =

ρη(1− μ)S0Cd
BCd =

ρη(1− μ)
B × Λ

d. It follows that the 
spectral radius of matrix F.V− 1 is ρ

(
F.V− 1) = max

(
λ1,2,3

)
. According to 

Theorem 2 in [13], the basic reproduction number of the fractional 
order model (3.6) is: 

R 0 =
ρη(1 − μ)

B
×

Λ
d
. (3.10)  

Theorem 5. The DF equilibrium point E0(S0,0, 0) of the fractional order 
system ( 3.6) is stable if R 0 < 1. 

Proof. Following Matignon’s condition ([14,15]), the equilibrium 
point E0 of the fractional order system (3.6) is locally asymptotically 
stable if and only if all the eigenvalues λi of the Jacobian J(E0) satisfy 
⃒
⃒
⃒arg(λi)

⃒
⃒
⃒ > απ

2 . The Jacobian matrix of system (3.6) evaluated at the 

equilibrium point E0 is: 

J
(
E0
)
=

⎡

⎣
− d − η(1 − μ)S0 0
0 ρη(1 − μ)S0 − B 0
0 (1 − ρ)η(1 − μ)S0 − C

⎤

⎦

The eigenvalues of the characteristic equation of J(E0) are λ1 =

− d, λ2 = ρη(1 − μ)S0 − B and λ3 = − C. It can be observed that, if 

ρη(1 − μ)S0 < B⇒R 0 < 1 then λ2 does satisfy the Matignons condition 
([14,15]). Therefore the equilibrium point E0 of the fractional order 
system (3.6) is stable if R 0 < 1. □ 

Theorem 6. The equilibrium point E*(S*, I*,T*) of the fractional order 
system (3.6) is an asymptotically stable point if R 0 > 1. 

Proof. Following Matignon’s condition ([14,15]), the equilibrium 
point E* of the fractional order system (3.6) is locally asymptotically 
stable if and only if all the eigenvalues λi of the Jacobian J(E*) satisfy 
⃒
⃒
⃒arg(λi)

⃒
⃒
⃒ > απ

2 . The Jacobian matrix of system (3.6) evaluated at the 

equilibrium point E* is: 

J
(
E*) =

⎡

⎣
a11 a12 0
a21 a22 0
a31 a32 a33

⎤

⎦

where a11 = − η(1 − μ)I* − d,a12 = − η(1 − μ)S*,a21 = ρη(1 − μ)I*, a22 

= ρη(1 − μ)S* − B, a31 = (1 − ρ)η(1 − μ)I*, a32 = (1 − ρ)η(1 − μ)S*, a33
= − C 

. 
The eigenvalue of the characteristic equation of J(E*) be λ1 = a33 =

− C < 0, and the other two satisfy the equation 

λ2 + C1λ + C2 = 0 (3.11)  

where C1 = − (a11 + a22) = (1 − μ)(ηI* − ρηS*)+d+B = dR 0 and C2 =

a11a22 − a12a21 = {(1 − μ)(ηBI* − dηS*) + dB } = dB(R 0 − 1). There-
fore the equilibrium point E* of the fractional order system (3.6) is stable 
if R 0 > 1. □ 

Global stability 

The global stability of the solution of the fractional order model al-
ways becomes a most important concern, which is discussed in the 
following section. 

Global stability of disease-free equilibrium E0(S0,0, 0)
The global stability of the disease-free equilibrium E0 is easily proved 

by using common Lyapunov function. 

Theorem 7. The disease-free equilibrium E0 = (S0, 0,0) of proposed 
model (3.6) is globally asymptotically stable if R 0 < 1 and unstable when 
R 0 > 1. 

Proof. To prove this, we define a Lyapunov function V(t) given by 
V(S, I,T) = A 1I + A 2T. Now, we have 

DαV = A 1DαI(t) + A 2DαT(t)

= A 1[ρη(1 − μ)SI − BI ] + A 2[(1 − ρ)η(1 − μ)SI − CT ]

= (A 1ρη + A 2(1 − ρ)η)(1 − μ)SI − A 1BI − A 2CT

= A 1B
[
(A 1ρη + A 2(1 − ρ)η)

A 1
×

ρη(1 − μ)
B

S − 1
]

I − A 2CT

(3.12) 

Using the disease-free steady state condition of the model (3.6), S0 =
Λ
d, one gets from the Eq. (3.12), 

DαV = A 1B
[
(A 1ρη + A 2(1 − ρ)η)

A 1
×

ρη(1 − μ)
B

S0 − 1
]

I − A 2CT

= A 1B
[
(A 1ρη + A 2(1 − ρ)η)

A 1
×

ρη(1 − μ)
B

×
Λ
d
− 1

]

I − A 2CT

= A 1B
[
(A 1ρη + A 2(1 − ρ)η)

A 1
R 0 − 1

]

I − A 2CT.

Let the constants be A 1 = (1 − ρ)η and A 2 = 1 − ρη, then simplifying, 
we have, 
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DαV = − (1 − ρη)CT + (1 − ρ)ηB[R 0 − 1]I.

Therefore 

DαV⩽0 

It follows that if R 0 < 1, then we have DαV|(3.6)⩽0. In addition, we 
know that DαV|(3.6) = 0 , if and only if S(t) = S0 and T(t) = 0. 
Substituting T(t) = 0 into (3.6), one can directly obtain I(t) = 0. 
Therefore, the maximum invariant set for 

{
(S, I,T) ∈ Ω0 : DαV|(3.6) =

0
}

is the singleton set E0. According to the LaSalle’s invariance princi-
ple, we know that all solutions in Ω0 converge to E0. Therefore, the 
disease-free steady state of model (3.6) is globally asymptotically stable 
when R 0 < 1. This completes the proof. □ 

Global stability of endemic equilibrium E*(S*, I*,T*)

Theorem 8. The endemic equilibrium (EE), E* of the system (3.6) is 
Globally asymptotically stable (GAS) If R 0 > 1. 

Proof. Consider the model given by (3.6). Let R 0 > 1, so that the 
associated endemic equilibrium exists. Further, consider the following 
nonlinear Lyapunov function: 

W (t) =
(

S − S* − S*ln
(

S
S*

))

+
1
ρ

(

I − I* − I*ln
(

I
I*

))

+
1

(1 − ρ)

(

T

− T* − T*ln
(

T
T*

))

(3.13)  

with Lyapunov fractional order derivative 

DαW (t) =
(

1 −
S*

S

)

DαS
(

t
)

+
1
ρ

(

1 −
I*

I

)

DαI
(

t
)

+
1

(1 − ρ)

(

1

−
T*

T

)

DαT
(

t
)

(3.14)  

=

(

1 −
S*

S

)

[Λ − η(1 − μ)SI − dS ] +
1
ρ

(

1 −
I*

I

)

[ρη(1 − μ)SI − BI ]

+
1

(1 − ρ)

(

1 −
T*

T

)

[(1 − ρ)η(1 − μ)SI − CT ]

It can be shown from (3.6) that, at endemic steady state, 

Λ = η(1 − μ)S*I* − dS*,B = ρη(1 − μ)S*,C =

(

1 − ρ
)

η(1 − μ) S*I*

T*

(3.15) 

Using the relations (3.15) in (3.14) gives 

DαW (t) = dS*
(

2 −
S
S* −

S*

S

)

+η(1 − μ)S*I*
(

1 −
SI

S*I* −
S*

S
+

I
I*

)

η(1 − μ)S*I*
(

SI
S*I* −

S
S* −

I
I* +1

)

+η(1 − μ)S*I*
(

SI
S*I* −

SIT*

S*I*T
−

T
T* +1

)

After simplification, we have 

DαW (t) = dS*
(

2 −
S
S* −

S*

S

)

+ η(1 − μ)S*I*
(

3 −
S*

S
−

S
S*

(

1 −
I
I*

)

−
T
T*

−
SIT*

S*I*T

)

Finally, since the arithmetic mean exceeds the geometric mean, then 
(

2 −
S
S* −

S*

S

)

⩽0,

and if 

(

3 −
S*

S
−

S
S*

(

1 −
I
I*

)

−
T
T* −

SIT*

S*I*T

)

⩽0.

then, by Lyapunov stability theorem, it ensures that the model is GAS at 
E* when R 0 > 1. 

A sensitivity analysis of R 0 

Here, we investigate the response of R 0 to parameter changes and 
determine the effect of each parameter on R 0 and the potential for 
effective control and elimination of the disease. 

It is straightforward to calculate the partial derivatives of the value of 
R 0 using (3.10) with respect to the parameters Λ, η, μ, ρ, β1 and β2. With 
all other parameters held constant, the elasticity Ex (or the variable’s 
normalized forward sensitivity index) approximates the fractional 
change in R 0 that results from a unit fractional change in parameter x 
defined as 

Ex =
x

R 0
×

∂R 0

∂x
.

This index shows how sensitive R 0 is to changes of parameter x. 
Specifically, a positive (negative) index shows that an increase in the 
parameter value results in an increase (decrease) of R 0 [16] (See Fig. 1) 

The elasticities for the quantities of interest are 

EΛ = 1 (5.16)  

Eη = 1 (5.17)  

Eμ = −
μ

1 − μ (5.18)  

Eρ = 1 (5.19)  

Eβ1 = −
β1

B
(5.20)  

Eβ2 = −
β2

B
(5.21) 

Fig. 2 indicates that, R 0 is most sensitive to Λ, η, ρ and β2. The rate μ 
has some sensitivity index. It can also be observed that, R 0 is less sen-
sitive to β1, the disease induced death rate. 

The sensitivity indexes for Λ, η, μ, ρ, β1 and β2, are found to be 

Fig. 1. Transfer Diagram of SITR model.  
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1, 1, − 0.25,1, − 0.0164 and − 0.9833, respectively, once all parameters 
are fixed at their baseline values (Fig. 2). Thus, for instance, if the 
growth rate Λ of susceptible populations is increased or (decreased) by 
10%, then the value of R 0 would increase or (decrease) by 10%. Like-
wise, a 10% increase or (decrease) of the η would correspond to a 10% 
increase or (decrease) of the R 0, 10% increase or (decrease) of μ would 
correspond to a 2.5% decrease or (increase) in the value of R 0, 10% 
increase or (decrease) of the ρ would correspond to a 10% increase or 
(decrease) of the R 0, 10% increase or (decrease) of β1 would decrease or 
(increase) the R 0 by 0.164% and 10% increase or (decrease) of β2 would 
correspond to decrease or (increase) the value of R 0 by 9.833%. 

Therefore, the above interpretations recommend that control stra-
tegies that can efficiently decrease the probability of disease trans-
mission η, growth rate Λ and ρshould be used to control the disease 
transmission effectively. Additionally, increase in the rate of μ, β2 will 
lead to a decrease in R 0. Effect of lockdown μ on R 0 is very small. Since 
there is no strong evidence to determine those who have been contacted 
with COVID-19 and those who are not carrying the virus. Due to the 
situations, preventive measures, such as social and physical distancing, 
are still the only option to halt the transmission of COVID-19. Since 
lockdown effect on R 0 is very small, so we can avoid this to rescue our 
economy. (See Table 1) 

Numerical simulation and discussion 

In this section, numerical simulations of the fractional-order epide-
miological model (3.4) are conducted to illustrate the theoretical results 
obtained before. Most non-linear fractional-order differential equations 
do not have exact analytical solutions and numerical methods are 
necessary to solve these equations. For the numerical simulation of 
fractional-order epidemic system, the Adams-Bashforth-Moulton type 
predictor-corrector scheme is applied. Numerical algorithm for the 
proposed fractional-order dynamic systems is 

Sn+1 = S0 +
hα

Γ(α+2)

{
Λ − η(1 − μ)Sp

n+1Ip
n+1 − dSp

n+1 +
∑n

j=0a1,j,n+1(Λ −

η(1 − μ)SjIj − dSj)
}

In+1 = I0 + hα

Γ(α+2)

{
ρη(1 − μ)Sp

n+1Ip
n+1 − BIp

n+1 +

∑n
j=0a2,j,n+1(ρη(1 − μ)SjIj − BIj)

}
Tn+1 = T0 +

hα

Γ(α+2)

{(
1 − ρ)η(1 − μ)

Sp
n+1Ip

n+1 − CTp
n+1 +

∑n
j=0a2,j,n+1((1 − ρ)η(1 − μ)SjIj − CTj)

}
in which 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sp
n+1 = S0 +

1
Γ(α)

∑n

j=0
b1,j,n+1

(
Λ − η(1 − μ)SjIj − dSj

)

Ip
n+1 = I0 +

1
Γ(α)

∑n

j=0
b2,j,n+1

(
ρη(1 − μ)SjIj − BIj

)

Tp
n+1 = T0 +

1
Γ(α)

∑n

j=0
b2,j,n+1

( (
1 − ρ

)

η(1 − μ)SjIj − CTj

)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1,j,n+1 =
hα

α ((n − j + 1)α
− (n − j)α

)

, 0⩽j⩽n

b2,j,n+1 =
hα

α ((n − j + 1)α
− (n − j)α

)

, 0⩽j⩽n

b3,j,n+1 =
hα

α ((n − j + 1)α
− (n − j)α

)

, 0⩽j⩽n 

⎧
⎨

⎩
a1,j,n+1 

=

⎧
⎨

⎩

nα+1 −
(
n − α

)
(n + 1)α

(n − j + 2)α+1
+ (n − j)α+1

− 2(n − j + 1)α+1

1

forj = 0
for1⩽j⩽n

forj = n + 1
a2,j,n+1

=

⎧
⎨

⎩

nα+1 −
(
n − α

)
(n + 1)α

(n − j + 2)α+1
+ (n − j)α+1

− 2(n − j + 1)α+1

1

forj = 0
for1⩽j⩽n

forj = n + 1
a3,j,n+1

=

⎧
⎨

⎩

nα+1 −
(
n − α

)
(n + 1)α

(n − j + 2)α+1
+ (n − j)α+1

− 2(n − j + 1)α+1

1

forj = 0
for1⩽j⩽n

forj = n + 1  

Based on Table 3, the basic reproduction number is R 0 = 3.2776, 
which is much greater than 1. Hence the infection spreads so quickly in 
India. All the figures from Fig. 3 to Fig. 8 are drawn based on the values 
from Table 2 and Table 3 except the varied parameters. For the proposed 
model, graphical presentation of R 0 with respect to η, ρ and μ is given in 
Fig. 3. 

From Fig. 3(i), we observe that when η and ρ gradually decrease, R 0 
decreases, which means that when infected cases are strictly identified, 
then R 0 gradually decreases, i.e., the rate of spreading of the infection 

Fig. 2. The sensitivity analysis of the basic reproductive number.  

Table 1 
Sensitive analysis for India based on sensitive parameters.  

x Λ  η  μ  ρ  β1  β2  

Ex  1 1 − 0.25  1 − 0.0164  − 0.9833   

Table 3 
Model parameters for COVID-19 system  

Parameters India Source 

Λ  50000  https://www.mohfw.gov.in/ 
η  0.00000000017  Estimated 
ρ  0.6  Assumed 
β1  0.001  Assumed 
β2  0.06  Assumed 
γ1  0.002  Estimated 
γ2  0.06  Estimated 
μ  0.2  Assumed 
d 0.00002  https://www.mohfw.gov.in/ 
α  0.95  Assumed  
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gradually decreases. From Fig. 3(ii), we observe that when η gradually 
increases and μ gradually decreases, R 0 is gradually increased. From 
Fig. 3(iii), we observe that when μ gradually increases and ρ gradually 
decreases, R 0 is gradually decreased. In addition,we draw the contour 
plots for the basic reproduction number R 0 with respect to the pa-
rameters 3(iv) η versus ρ, 3(v) η versus μ, 3(vi) μ versus ρ to visualize the 
influence of the control parameters in controlling the reproduction 
number R 0. 

In Fig. 4(i) the green curve presents infected individuals which are 
under treatment for this proposed model and bar diagram shows the 
actual infected individual. Fig. 4(i) depicts the actual infected individual 
that almost coincides to our proposed model curve from 1st July to 29th 

July 2020. Therefore, the proposed COVID-19 model is best fitted to the 
current situation of India. 

Now taking all the parameters value from Table 2 and Table 3, then if 
we gradually decreases α, then active infected individuals which are 
under treatment decrease which are presented in Fig. 4(ii). 

Fig. 4(ii) shows that, if the fractional order α decreases in long run, 
then the active infected individuals which are under treatment decrease. 
From the figure it is clear that when α = 0.99 then the active infected 
individuals which are under treatment are nearly 37 × 107 in around 
200 days after that active individuals decrease as day increases and 

before 500 days it has been vanished. Again, if α = 0.97, α = 0.95, α =

0.93, α = 0.91 i.e., α decreases and then the number of active cases are 
decreased and attain the maximum number as days increase. Therefore, 
the number of active cases are decreased as days increase. 

In Fig. 5(i) the green curve presents total deaths which are under 
treatment for this proposed model and bar diagram is the actual deaths 
as per our available data. Fig. 5(i) depicts that the actual deaths almost 
coincide to our proposed model curve from 1st July to 29th July 2020. 
Therefore, the proposed COVID-19 model is best fitted to the current 
situation of India. Here the number of deaths are coming only from 
treatment section, in infected but not under treatment section. The 
number of deaths are unknown because of the deaths are not notified in 
Governmental section from infected zone. So, day by day the number of 
infected people is increasing and therefore the number of deaths are 
increased. So, our job has to be identified those people who are infected 
by COVID-19 and send them to hospital in treatment section such that 
number deaths may be minimized. 

Now taking all the parameters value from Table 2 and Table 3, then if 
we gradually decreases α, then the total death of under treatment pop-
ulation decreases, which is presented by Fig. 5(ii). 

Fig. 5(ii) shows that if the fractional order α decreases in long run, 
then the total death cases are decreased and after certain time this rate is 
stable. From the figure it is clear that when α = 0.99 then the total death 
cases are nearly 10 × 108 in around 400 days after that active in-
dividuals are stable as day increases. Again, if α = 0.97, α = 0.95, α =

0.93, α = 0.91 then the number of total death cases are decreased and 
attain its maximum number. Therefore the number of total death cases 
are increased and stable as day increases. 

Fig. 3. The figure shows the basic reproduction number R 0 when (i) η and ρ varies, (ii) η and μ varies, (iii) μ and ρ varies. Contour plots of basic reproduction number 
R 0 with respect to (iv) η and ρ, (v) η and μ, (vi) μ and ρ. 

Fig. 8. (i) Time series of active infected population which is under treatment for different values of μ. (ii) Time series of total infected population which is under 
Treatment for different values of μ. 

Table 2 
Estimated Initial population (as of 1stJuly, 2020)  

Region  S(0) I(0) T(0)
India  12× 108  3× 105  220114  
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In Fig. 6(i) the green curve indicates infected individuals which are 
under treatment for this proposed model and bar diagram refers to the 
total recoveries as per our available data. Fig. 6(i) depicts that the actual 
recoveries almost coincide our proposed model curve from 1st July to 
29th July 2020. Therefore, the proposed COVID-19 model is best fitted to 
the current situation of India. Here the number of recoveries are coming 
only from Treatment section, in infected section the number of re-
coveries are not notified in Governmental section from infected zone. So 
they should be increased. This should be a great achievement in our 
Governmental section in front of whole world. So, the rest of world 
follows our trend such that infected rate are minimized. So, our job has 

to be identified those people who are recover from COVID-19 and notify 
the records. 

Now taking all the parameters value from Table 2 and Table 3. If we 
gradually decreases α and further steadily decreases of active infected 
individuals which are under treatment then it is also decreased and is 
presented by Fig. 6(ii). 

Fig. 6(ii) shows that, if the fractional order α decreases in long run, 
then the total recoveries cases are decreased and after certain time this 
rate is stable. From the figure it is clear that when α = 0.99 then the total 
recoveries cases are nearly 3 × 108 in around 400 days after that active 
individuals are stable as day increases. Again, if α = 0.97, α = 0.95, α =

Fig. 5. (i) Time series of Total deaths from 1/7/2020 to 20/7/2020. (ii) Time series of Total Death case in India for differentent values of fractional order α.  

Fig. 4. (i) Time series of active infected population from 1/7/2020 to 20/7/2020. (ii) Time series of active infected population which is under treatment for different 
values of fractional order α. 

Fig. 6. (i) Time series of total recoveries from 1/7/2020 to 20/7/2020. (ii) Time series of active infected population which is under Treatment for different values of 
fractional order α. 
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0.93, α = 0.91 then the number of total recoveries cases are decreased 
and attain its maximum number as days increase. Therefore, the number 
of total recoveries cases are increased and stable as day increases. 

In Fig. 7(i) the green curve presents infected individual which are 
under treatment for this proposed model and bar diagram presents the 
total infected as per our available data. Fig. 7(i) depicts that the total 
infected almost coincides our proposed model curve from 1st July to 29th 

July 2020. Therefore, the proposed COVID-19 model is best fitted to the 
current situation of India. Here the number of total infected are coming 
only from treatment section, in infected section the number of infected 
are unknown because the infected ones are not notified in Governmental 
section from infected zone. So, day by day the number of infected people 
is increasing due to carefulness of people. So, our job has to be identified 
those people who are infected by COVID-19 and send them to hospital in 
treatment section such that number of deaths is are minimized. 

Now taking all the parameters value from Table 2 and Table 3, then if 
we gradually decreases α and further steadily decreases of active 
infected individuals which is under treatment it is also decreased and is 
presented by Fig. 7(ii). 

Fig. 7(ii) shows that, if the fractional order α decreases in long run, 
then the total infected cases are decreased and after certain time this rate 
is stable. From the figure it is clear that when α = 0.99 then the total 
death cases are nearly 3 × 108 in around 400 days after that active in-
dividuals are stable as day increases. Again, if α = 0.97, α = 0.95, α =

0.93, α = 0.91 then the number of total death cases is decreased and 
attain its maximum number as days increase. Therefore, the number of 
total death cases is increased and stable as day increases. 

From, Fig. 8(i), we observe that when μ is considered as a lockdown 
effect, then an increases in the rate of lockdown effect the number of 
active infected cases is minimized. If μ = 0.2 i.e. 20% of lockdown im-
plies that the high number of active infected cases reaches to 225 day’s 
but the percentage of lockdown effect increases and then the number of 
active infected cases is minimized and takes some more extra days. 

Fig. 8(ii) shows that if the lockdown effect μ increases in long run, 
then the total infected cases is decreased and after certain time this rate 
is stable. Clearly, the rate at which infected cases are slow is due to 
increasing of lockdown percentage. From the figure it is clear that when 
α = 0.99 then the total infected cases are nearly 29 × 107 in around 400 
days after that active individuals are stable as day increases. Again, if 
α = 0.97, α = 0.95, α = 0.93, α = 0.91 then the number of total infected 
cases is decreased and attain its maximum number as days increase and 
then the number of total infected cases is increased and stable as day 
increases. 

Our main aim is to minimize the infection and death rate due to 
COVID-19. To control such cases we should identify the infected case 
and gives better treatment. We identify the infected individuals so that 

spread of infection should be minimized. Finally, In this paper, we 
extend the classical SIR model with treatment factor to a system of 
fractional ordinary differential equations (FODEs). For our fractional- 
order model, we determine the basic reproduction R 0 and prove that 
if R 0 < 1, the disease-free equilibrium is locally asymptotically stable. 
We establish the existence conditions of endemic equilibrium points. We 
prove the global stability of disease free equilibrium point and endemic 
equilibrium point. From sensitivity analysis of basic reproduction 
number R 0 it shows that if we identify the rate of infection from sus-
ceptible zone to infected zone and give better treatment then the deaths 
rate may be minimized and people who are infected too. The stability of 
endemic equilibrium points can be controlled by modifying the value of 
α. In fact, the fractional-order model can be achieved in the steady state 
by controlling the parameters which affect the value of α as shown in the 
Fig. 4(ii), Fig. 5(ii), Fig. 6(ii) and Fig. 7(ii). In the end of our paper, the 
analytical results are confirmed by some numerical simulations for real 
data related to COVID-19 disease. In Fig. 8, it is shown that the deadly 
disease can be controlled by restriction of appropriate percentage of 
lockdown. From this model we can easily identify the number of per-
cussion that is required to avoid the infection from COVID-19. The 
proposed model can provide useful information for understanding and 
prediction of the transmission of different epidemics worldwide. Most 
importantly, the goal of this model is to estimate in future the number of 
total infected, active cases, deaths as well as the recoveries from COVID- 
19. This helps to decide the future decision so that we control or mini-
mize the above cases. 

Future Expectation for the model system: 
From the above obtained results we can conclude that if we have not 

be able to control the infected rate then the deaths rate is unstoppable. 
From this paper we expect the future of infected individuals from Fig. 4 
(i). We discuss that in the following table: 

From the Table 4 it is clear that if we could not control the spread of 
COVID-19 in human body then day by day active infected cases are 
rapidly increasing. 

Fig. 7. (i) Time series of total infected from 1/7/2020 to 20/7/2020. (ii) Time series of active infected population which is under treatment for different values of 
fractional order α. 

Table 4 
Expected number of future prediction.  

Date Total Infected Total death 

01/08/2020 1.673× 106  3.773× 104  

01/09/2020 4.253× 106  8.543× 104  

01/10/2020 1.017× 107  1.959× 105  

01/11/2020 2.403× 107  4.62× 105  

01/12/2020 5.137× 107  1.019× 106   
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