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Abstract

Sarcomas are a heterogeneous group of malignancies with mesenchymal lineage differentiation. 

The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions as tissue-agnostic 

oncogenic drivers has led to new personalized therapies for a subset of patients with sarcoma in 

the form of tropomyosin receptor kinase (TRK) inhibitors. NTRK gene rearrangements and fusion 

transcripts can be detected with different molecular pathology techniques, while TRK protein 

expression can be demonstrated with immunohistochemistry. The rarity and diagnostic complexity 

of NTRK gene fusions raise a number of questions and challenges for clinicians. To address these 

challenges, the World Sarcoma Network convened two meetings of expert adult oncologists and 

pathologists and subsequently developed this article to provide practical guidance on the 

management of patients with sarcoma harboring NTRK gene fusions. We propose a diagnostic 

strategy that considers disease stage and histologic and molecular subtypes to facilitate routine 

testing for TRK expression and subsequent testing for NTRK gene fusions.
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INTRODUCTION

Sarcomas are a heterogeneous group of malignancies that exhibit mesenchymal lineage 

differentiation. They arise in either soft tissue (~80%) or bone (~20%) and comprise ~70 

malignant subtypes (per World Health Organization classification), each with distinct 

underlying biology and clinical behavior.1 Sarcomas account for approximately 1% of all 

adult cancers and 20% of all pediatric solid tumors.2 Complete resection (with or without 

radiation and/or chemotherapy) forms the mainstay of curative management for most 

subtypes in the localized setting. For patients diagnosed with locally advanced or metastatic 

disease, or those with disease recurrence following surgery, treatment options include 

systemic therapy and potential local approaches such as radiation, isolated limb perfusion, 

surgery, and ablation techniques.3 The median overall survival of patients with advanced soft 

tissue sarcomas is approximately 20 months, with most patients deriving only transient 

benefit from palliative chemotherapy.4,5 Therefore, there is a clear unmet need for more 

effective systemic therapies for patients with advanced/metastatic sarcomas.

As our understanding of the molecular basis of tumorigenesis has improved with advances in 

diagnostic technology, precision oncology approaches to the treatment of sarcomas have 

emerged. A classic example of this is mutational profiling of KIT, PDGFRA, and other 

genes to predict sensitivity of gastrointestinal stromal tumors (GISTs) to imatinib and other 

KIT/PDGFRA tyrosine kinase inhibitors.6–11 More recently, the discovery of neurotrophic 

tyrosine receptor kinase (NTRK) gene fusions as pan-tumor oncogenic drivers has provided 

new precision medicine-based treatment options for a subset of patients with sarcoma.12 The 

rarity and diagnostic complexity of this particular biomarker raise a number of questions and 

challenges for clinicians.

To address these issues, the World Sarcoma Network, a think tank gathering national and 

international sarcoma groups for the past 10 years, convened two consensus meetings of 

expert adult oncologists and pathologists to discuss diagnostic challenges and propose a 

diagnostic strategy in this area. We subsequently developed this article to provide practical 

guidance on how to optimally integrate the NTRK gene fusion biomarker into the clinical 

management of patients with sarcoma.

NTRK GENE FUSIONS

The NTRK genes NTRK1 (chromosome 1q23.1), NTRK2 (chromosome 9q21.33), and 

NTRK3 (chromosome 15q25.3) are typically involved in normal neuronal development and 

encode the tropomyosin receptor kinase (TRK) proteins, traditionally known as TRKA, 

TRKB, and TRKC, respectively.12,13 Wild-type TRK proteins are activated through 

oligomerization mediated by the binding of neurotrophin ligands.14 Subsequent downstream 

signaling contributes to central nervous system (CNS) development and regulation of 

appetite, body weight, memory, mood, movement, pain, and proprioception.15–20

NTRK gene fusions have been identified in a diverse range of adult and pediatric tumor 

types.12 These fusions result from inter- or intra-chromosomal rearrangements leading to 

juxtaposition of the 3′ region of an NTRK gene (encoding the full kinase domain) with the 
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5′ region of a partner gene (encoding an oligomerization or other protein-association 

domain), ultimately producing a constitutively active TRK fusion protein.21 Fusions 

involving NTRK gene 5′ regions have also been reported, although the pathogenicity of 

these is unclear.22 In addition to fusions, NTRK gene point mutations and amplifications 

have been identified in a variety of different cancer types; however, roles for these 

aberrations in tumorigenesis have not been established.22

While rare in most common tumor types (e.g. lung and colorectal cancers), NTRK gene 

fusions are reported to be recurrent in a subset of rare tumor types (e.g. secretory carcinoma 

of the salivary gland, secretory carcinoma of the breast, congenital mesoblastic nephroma, 

pediatric melanoma, and infantile fibrosarcoma).21,23,24 One of the first discovered and most 

well characterized fusions, ETV6-NTRK3, resulting from a t(12;15)(p13;q25) translocation, 

is present in >90% of infantile fibrosarcomas.25,26 By contrast, NTRK fusions have been 

identified in other adult and pediatric sarcomas at a frequency of <1%.23,27,28 Recent studies 

investigating NTRK fusions among mesenchymal neoplasms have identified a number of 

emerging new soft tissue tumor entities displaying various phenotypes, which resemble 

lipofibromatosis, fibrosarcoma, and malignant peripheral nerve sheath tumors (Table 1). A 

significant number of these NTRK fusion-positive tumors show co-expression of S100 

protein and CD34, while the rest have a nonspecific immunophenotype.27,29–32 The 

published literature on NTRK gene fusion frequency in sarcomas is limited and more data 

are needed.

TARGETED THERAPY FOR TRK FUSION CANCERS

NTRK gene fusions (but not other NTRK alterations) appear to be primary oncogenic 

drivers in the tumors that harbor them. The encoded fusion proteins feature constitutive 

tyrosine kinase activity that may be targeted clinically with a number of agents that are 

either approved or in development.12,33

Larotrectinib

Larotrectinib is a first-in-class, ATP-competitive, small-molecule inhibitor of TRK. It is 

highly potent, with IC50 values in the range of 6.5–10.6 nM, and highly selective for TRKA, 

B, and C, with binding affinities over 100-fold greater than for a panel of other kinases.
24,34,35 Larotrectinib is approved by the US Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) for use in adult and pediatric patients with solid tumors 

harboring an NTRK gene fusion who have disease that is locally advanced or metastatic, or 

where surgery is likely to result in severe morbidity, and who have no satisfactory treatment 

options.36,37 Patients with a known resistance mutation are not indicated for larotrectinib 

treatment.

Larotrectinib has demonstrated robust efficacy in a combined analysis of three phase I/II 

trials in adults and children with TRK fusion cancers, irrespective of age or tumor type.38 In 

an integrated dataset of 159 patients, investigator-assessed objective response rate (ORR) 

was 79% [95% confidence interval (CI) 72% to 85%] and median duration of response was 

35.2 months (median follow-up 12.9 months). The median time to response was 1.8 months.
39 Objective responses and durable disease control were also observed in the subsets of 

Demetri et al. Page 4

Ann Oncol. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patients with primary CNS tumors or non-CNS solid tumors with brain metastases.40,41 

Larotrectinib-related adverse events of grade 3–4 occurred in 13% of patients, and dose 

reductions and treatment discontinuations due to treatment-related adverse events occurred 

in 8% and 2% of patients, respectively.39 Long-term follow-up is ongoing. The favorable 

safety profile of larotrectinib, together with robust clinical efficacy, translated into rapid, 

sustained, and clinically meaningful improvements in quality of life in the majority of 

patients.42

Among the 17 different tumor types represented in the larotrectinib dataset, the most 

common (47%) were sarcomas.39 Of 71 patients with a sarcoma, two (3%) had an 

osteosarcoma and a dedifferentiated chondrosarcoma, four (6%) had a GIST, 29 (41%) had 

infantile fibrosarcoma, and 36 (51%) had other soft tissue tumors, including adult 

fibrosarcoma, inflammatory myofibroblastic tumor, infantile myofibromatosis, 

lipofibromatosis, malignant peripheral nerve sheath tumor, myopericytoma, spindle cell 

sarcoma, high-grade endometrial stromal tumor, and synovial sarcoma.43 The histologic 

subtypes of these patients were captured as reported by the investigators; however, due to the 

very rare nature of the subtypes reported and the varied nomenclature used in sarcoma 

pathology, a central pathology review and efficacy analysis by sarcoma subtype is warranted. 

Furthermore, data on other driver alterations in these patients would be informative.

The ORR with larotrectinib in adult and pediatric patients with sarcoma harboring an NTRK 
fusion was 74% (95% CI 52% to 90%) and 94% (95% CI 82% to 99%), respectively. 

Objective responses were observed in patients with soft tissue sarcomas, GISTs, and 

infantile fibrosarcoma. Of two patients with a bone sarcoma, one had a partial response and 

one had stable disease. At a median follow-up of 15.6, 13.0, and 14.1 months, median 

duration of response, progression-free survival, and overall survival were not estimable (NE; 

range 1.6+ to 44.2+), 28.3 (95% CI 16.8-NE), and 44.4 (95% CI 44.4-NE) months, 

respectively (Table 2). Grade 3–4 adverse events related to larotrectinib were reported in 

13% of patients.43

Entrectinib

Entrectinib is a multi-targeted, pan-TRK, ROS1, and ALK inhibitor. It has low to sub-

nanomolar enzymatic activity against TRKA, TRKB, TRKC, ROS1, and ALK (IC50 values 

of 1.7, 0.1, 0.1, 0.2, and 1.6 nM, respectively).44 Entrectinib is FDA-approved for use in 

adult and pediatric patients ≥12 years of age with solid tumors harboring an NTRK gene 

fusion who have disease that is metastatic or where surgery is likely to result in severe 

morbidity, and who have progressed following treatment or have no satisfactory alternative 

therapy. Patients with a known resistance mutation are not indicated for entrectinib 

treatment. Entrectinib is also FDA-approved for patients with metastatic non-small cell lung 

cancer (NSCLC) harboring a ROS1 gene fusion.45

Entrectinib demonstrated tumor-agnostic efficacy in an integrated analysis of 54 patients 

with TRK fusion cancers in one of three phase I/II trials. Independently assessed ORR was 

57% (95% CI 43% to 71%) and median duration of response was 10.4 months (median 

follow-up 12.9 months). Clinically meaningful and durable intracranial responses were seen 

in patients with brain metastases. Adverse events with entrectinib were mainly grade 1 or 2 
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and the proportion of patients with dose reductions and treatment discontinuations due to a 

treatment-related adverse event was 27% and 4%, respectively.46

Among 13 patients with sarcoma in the overall entrectinib clinical trial dataset, six subtypes 

were identified: cervix adenosarcoma, dedifferentiated chondrosarcoma, endometrial stromal 

sarcoma, follicular dendritic cell sarcoma, GIST, and malignant peripheral nerve sheath 

tumor. Of note, there were no patients with infantile fibrosarcoma enrolled in these trials. 

The ORR for the sarcoma subset was 46%. Median duration of response, progression-free 

survival, and overall survival were 10.3 (95% CI 4.6–15.0), 11.0 (95% CI 6.5–15.7), and 

16.8 (95% CI 10.6–20.9) months, respectively (Table 2).47

METHODS OF NTRK GENE FUSION TESTING

NTRK gene rearrangements and fusion transcripts can be detected with different molecular 

pathology techniques such as FISH, reverse transcription polymerase chain reaction (RT-

PCR), and massive parallel sequencing (MPS), while TRK protein expression can be 

demonstrated by immunohistochemistry (IHC) (Table 3).48,49

Fluorescence in situ hybridization

FISH employs fluorescently labeled DNA probes that anneal to specific regions within or 

flanking a gene(s) of interest. To detect a particular NTRK gene fusion, colocalization of 

FISH probes to each gene component of the fusion can be demonstrated.27 In practice, 

however, it is more feasible to use break-apart FISH probes that flank each of the three 

NTRK genes and demonstrate rearrangement without identifying the fusion partner gene.
27,34 The efficient break-apart approach avoids the need to develop an unrealistically large 

number of FISH probe sets for uncommon fusions and also detects novel fusions with as yet 

uncharacterized fusion partners. FISH is available in many clinical laboratories, has a short 

turnaround time, and is relatively inexpensive; however, specific expertise is required to 

interpret test results, particularly in paraffin sections where nuclear slicing can result in 

artifacts. A false-negative rate of up to 30% has been reported with FISH in pediatric 

sarcomas.50 Furthermore, FISH does not distinguish between in-frame and out-of-frame 

fusion events.

Immunohistochemistry

IHC typically employs an antibody that binds to antigens common to the C-terminal domain 

of all three TRK proteins (pan-TRK IHC) to detect elevated TRK protein expression (Table 

4). This method relies on the fact that most normal cells express low levels of TRK while 

tumor cells harboring an NTRK gene fusion typically display elevated TRK protein levels. 

Nevertheless, TRKA, TRKB, and TRKC expression can be observed by IHC in some 

normal cells: neurons, myenteric plexus, endothelial cells, and podocytes. In adult tissue, 

expression is restricted to smooth muscle, testes, and neuronal components. These 

components can be used as internal (endothelial cells, myenteric plexus) or external 

(podocytes in renal tissue) positive IHC controls. IHC represents a useful indirect readout 

for NTRK gene rearrangements. However, variable rates of sensitivity (75%−88%) and 

specificity (81%−96%) have been reported,51,52 which may be explained by the use of 
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different antibodies, different IHC detection protocols, and poor or excessive tissue fixation. 

Any of these variables can impact IHC staining and intensity. The overall positive and 

negative predictive values in one IHC study have been reported to be 11.2% and 99.8%, 

respectively (using pan-TRK antibody clone EPR17341).51 Moreover, sensitivity has been 

shown to vary according to the NTRK gene involved, with lower sensitivity reported for 

NTRK3 (55%−79%) compared with NTRK1 (88%−96%) and NTRK2 (89%−100%).51,52 A 

TRK IHC signal should be considered as positive when staining of ≥1% of tumor cells is 

observed.53 Furthermore, the subcellular pattern of pan-TRK IHC staining may indicate the 

nature of the underlying gene fusion, with nuclear staining suggestive of NTRK3 fusions 

and moderate to strong, diffuse cytoplasmic staining suggestive of NTRK1/NTRK2 fusions.
49,53,54

One benefit of IHC over molecular analyses is that it provides evidence of the expression of 

the protein target of TRK inhibitors. Of six patients with primary resistance to larotrectinib 

among the initial 55 patients treated in clinical trials, three had tumor material available for 

central analysis and in all three cases, pan-TRK IHC did not demonstrate elevated TRK 

protein expression, indicating that the rearrangements detected by molecular testing did not 

yield chimeric proteins with an intact TRK C-terminus in these cases. One additional patient 

harbored an NTRK3 kinase domain mutation that conferred resistance.38

IHC is widely available in clinical laboratories, allows a rapid turnaround time, and is far 

less expensive than FISH. Although more data on sensitivity and specificity are needed, pan-

TRK IHC is considered to have a false-negative rate of ~10%.52 In a study of seven patients 

with soft tissue spindle cell tumors and NTRK3 rearrangement detected by both IHC and 

FISH, rearrangements were only confirmed by RNA sequencing in three cases.30 Therefore, 

sarcomas with a high probability of harboring an NTRK fusion but with negative pan-TRK 

IHC staining should be considered for confirmatory testing with a genomic method (FISH or 

MPS). IHC may prove to be a valuable screening tool to highlight NTRK rearrangements, 

with the exception of CNS and neuroendocrine tumors where IHC is not a reliable screening 

tool because of endogenous elevated TRK expression. Furthermore, many sarcomas with 

myogenic or neural differentiation may display focal TRK expression.53 Thus, in these 

tumors, only diffuse staining should be considered positive. Strong TRK IHC staining can 

also be found in cases with NTRK gene amplification, supporting the requirement to 

confirm the presence of NTRK rearrangements with an orthogonal molecular method 

(Figure 1).30

Reverse transcription polymerase chain reaction

RT-PCR uses primers flanking the breakpoint region in the transcript encoded by the fused 

genes, with the 3′ primer annealing to an NTRK gene and the more 5′ primer annealing to 

the relevant fusion partner gene. When present in the tumor, the targeted portion of the 

fusion transcript will be amplified yielding a positive RT-PCR result. RT-PCR is a widely 

established technique and is rapid and inexpensive. Multiplex RT-PCR can be carried out 

using primer sets specific to a number of known NTRK fusion genes in a single assay. 

However, this method does not detect NTRK gene fusions with unknown partner genes; 

thus, a negative RT-PCR result cannot exclude the presence of a fusion. Therefore, RT-PCR 
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is only recommended in settings where a specific type of fusion is expected following 

histologic-based triage, for instance, ETV6-NTRK3 in infantile fibrosarcoma, or as a 

complementary method for gene rearrangements detected by FISH.

Massive parallel sequencing

MPS allows for the simultaneous detection of fusions between NTRK1—3 and any number 

of fusion partner genes, depending upon the particular assay used. Targeted MPS with a 

panel of primers that hybridize to select regions in predefined genes is the preferred method. 

DNA-based MPS assays are not the best approach for identifying all NTRK fusions, 

especially those involving the NTRK2 and NTRK3 genes because of their large introns. 

Targeted RNA MPS allows for more systematic detection of NTRK fusion transcripts. 

Adequately designed targeted RNA MPS panels allow for the detection of novel NTRK gene 

fusion partners, and there are a number of commercially available assays that cover all three 

NTRK genes. However, it should be noted that different commercial panels have shown 

some remarkable differences in detection rate.55 MPS is not routinely conducted in all 

clinical laboratories, has a relatively long turnaround time, and is quite expensive, 

particularly if only a limited number of tests are required. However, various groups are 

continuing to develop RNA MPS platforms that can detect in parallel the multitude of fusion 

genes observed in sarcomas.

In addition to functional NTRK fusion transcripts, RNA-based MPS assays may identify 

non-oncogenic aberrant NTRK rearrangements (incidental genomic alterations) that do not 

yield constitutively active fusion proteins. Clinicians should be aware of this possibility and 

understand how to interpret complex MPS data reports. If expression of the fusion protein is 

in doubt, IHC may be a useful confirmatory tool. Similarly, NTRK point mutations occur 

more often than gene fusions and may also be identified by MPS assays; however, these 

mutations are not considered predictive of treatment response.56

TESTING FOR NTRK GENE FUSIONS IN SARCOMAS

Given the robust efficacy and favorable safety profiles of TRK inhibitors demonstrated in 

patients with TRK fusion sarcomas, testing for NTRK gene fusions should be incorporated 

into the clinical management of patients with sarcoma, with prioritization in specific stages 

and subtypes, as discussed below. The rarity of these oncogenic drivers presents a number of 

challenges, including the cost of testing, limited resources, limited tumor tissue, and the 

complexities of integrating a new molecular test into the current diagnostic workup. 

However, the overall benefit of molecular testing in the diagnosis and clinical management 

of patients with sarcoma has been demonstrated in large multicenter studies, similar to what 

has been shown for lung cancer.57,58 While sequence-based testing methods (RNA MPS or 

RT-PCR) are recommended for the detection of productive NTRK gene rearrangements, IHC 

with a validated antibody against TRK proteins (most easily with a pan-TRK antibody) may 

be used as a fast and less expensive pre-screening tool. Furthermore, selecting histotypes 

negative for pathognomonic genetic alterations (other translocations, kinase mutations, 

MDM2/CDK4 amplification) could allow exclusion of ~45% of all sarcomas from NTRK 
gene fusion testing, given the mutual exclusivity of such driver alterations.59,60
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NTRK fusion testing may be prioritized in disease settings where TRK inhibitor therapy is 

most relevant, also considering that some of the recently reported NTRK-rearranged entities 

tend to behave indolently. The majority of sarcoma patients are diagnosed while still 

localized and these tumors are amenable to curative surgical resection without the need for 

systemic therapy. Therefore, NTRK fusion testing in primary, resectable sarcomas may not 

be necessary (except when used for definitive diagnosis, such as in the case of putative 

infantile fibrosarcomas). Nevertheless, for patients at high risk of relapse, NTRK gene 

fusion testing might provide clinically actionable information for later in the disease course. 

Testing for NTRK gene fusions should be carried out in patients with locally advanced, 

unresectable tumors or in those with metastatic disease failing conventional therapies.

Sarcomas with a high NTRK fusion frequency (priority 1)

Given the potential cost and resource limitations of universal testing, we propose a three-

tiered diagnostic algorithm for the prioritization of NTRK gene fusion testing according to 

the likelihood of finding a fusion (Figure 2). The highest priority for NTRK fusion testing is 

given to the histologic subtypes that commonly or non-infrequently harbor NTRK gene 

fusions, such as infantile fibrosarcomas61 and ALK and ROS1 fusion-negative inflammatory 

myofibroblastic tumors.62 These entities should be tested upfront for NTRK fusions in all 

situations53 and the test should ideally be ordered by the pathologist following central 

pathologic diagnosis. In fact, NTRK fusion testing is often conducted as part of the 

diagnostic process for suspected infantile fibrosarcomas. For histologic subtypes with a high 

pre-test probability of harboring an NTRK fusion, we recommend the use of FISH, IHC, or 

MPS. A negative FISH result should be confirmed by MPS. For a positive FISH result, 

confirmation that the fusion is in-frame by MPS or RT-PCR should be considered in parallel 

to treatment. MPS confirmation of a negative IHC result is recommended for cases with 

typical histology. For cases with positive IHC results, treatment may be considered 

concurrently with confirmatory MPS.

Sarcomas with a low NTRK fusion frequency (priority 2)

NTRK gene fusions are thought essentially to be mutually exclusive to other primary 

oncogenic drivers.59 In a study of patients with various tumor types, 31% of NTRK fusion-

negative cases harbored activating MAPK pathway alterations compared with only 1.5% (n 
= 1) of NTRK fusion-positive cases.60 In another study, among 103 sarcomas tested for 

recurrent kinase fusions in one study, one sample had an NTRK1 gene fusion but no other 

concurrent fusions.63 Therefore, for sarcoma subtypes where NTRK gene fusions are rare, 

NTRK fusion screening should only be routinely done in cases already known to lack 

canonical oncogene alterations, such as wild-type GISTs and sarcomas with complex 

genomics. Sarcomas with recurrent gene fusions, GISTs with KIT, PDGFR, SDH, NF1, or 

BRAF alterations, and liposarcomas with MDM2 or CDK4 amplification may be excluded 

from routine NTRK fusion testing. Of this subset, however, tumors that do not show specific 

lineage differentiation (i.e. positive only for vimentin) may be enriched in molecular 

alterations including NTRK fusions.
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Sarcomas with canonical oncogene alterations (priority 3)

Very infrequent situations of NTRK gene fusions co-occurring with other driver alterations 

in untreated tumors have been reported; however, the NTRK fusion appears to exert 

oncogenic dominance in these rare cases.59,60 Therefore, NTRK fusion testing in tumors 

with canonical pathognomonic alterations may be valuable in a research context in order to 

provide data on frequency and clinical significance of co-occurring NTRK gene fusions. 

While NTRK gene fusions have been identified in a range of sarcoma subtypes (Table 1), 

comprehensive data on NTRK fusion frequency in different sarcoma subtypes are lacking. 

Therefore, the majority of soft tissue and bone sarcomas should continue to be studied until 

there are sufficient data to guide future diagnostic approaches. Comprehensive data about 

NTRK gene fusion frequency in different sarcoma subtypes and correlation with 

morphological features would better inform the optimal approach to NTRK gene fusion 

screening in sarcomas and should be collected. In this regard, a prospective registry and 

retrospective collection of TRK fusion sarcoma cases would be valuable and a study is 

planned in Spain and France where all soft tissue sarcomas will be prospectively screened 

with pan-TRK IHC, with positive cases then confirmed by MPS.

CLINICAL MANAGEMENT OF TRK FUSION SARCOMAS

The labeled indications for larotrectinib (FDA and EMA) and entrectinib (FDA) include 

patients for whom surgery is likely to result in severe morbidity or who have no satisfactory 

alternative therapy. Therefore, the advantages and disadvantages of TRK inhibitors 

compared with other available therapies should be discussed by the patient and the treating 

physician.

In addition to the overall efficacy of TRK inhibitors described earlier (Table 2), efficacy of 

neoadjuvant larotrectinib therapy has also been demonstrated in situations where surgery 

would otherwise result in life-changing operations (e.g. amputation). Five children with 

locally advanced TRK fusion sarcomas (three with infantile fibrosarcomas and two with 

other soft tissue sarcomas) achieved a partial response to neoadjuvant larotrectinib and 

underwent resection after a median of six treatment cycles. Resections were R0 (negative 

resection margins with no tumor at the inked resection margin) in three patients, R1 

(microscopic residual tumor at the resection margin) in one patient and R2 (incomplete 

resection with macroscopic residual tumor) in one patient. Three patients achieved complete 

or near-complete pathological responses and at last follow-up remained disease-free 7–15 

months after surgery.64 While these data are encouraging, the question of if and when to 

discontinue TRK inhibitor therapy following a complete response still remains.

For patients with metastatic disease requiring systemic therapy, treatment with larotrectinib 

or entrectinib is approved after failure of standard therapies and may be valuable after 

standard first-line treatment given the rapid, durable responses and tolerability observed. In 

clinical trials of larotrectinib and entrectinib, responses were typically observed at the time 

of the first protocol-mandated tumor assessment, and pseudo-progression is uncommon with 

these therapies; therefore, it may be possible to quickly evaluate treatment response. 

However, it should be noted that no data exist for larotrectinib or entrectinib compared or 
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combined with standard systemic cytotoxic therapies. Furthermore, the long-term safety 

profile of TRK inhibitors remains unknown and requires further study.

NTRK gene fusions have been shown to persist in tumors over time,60 suggesting that they 

remain the dominant oncogenic driver over the course of different treatments. This provides 

the rationale for a sequential TRK inhibitor treatment approach in patients with TRK fusion 

cancer, similar to current practice in oncogene-addicted (e.g. EGFR, ALK) NSCLC. The 

next-generation TRK inhibitors selitrectinib and repotrectinib have shown encouraging 

activity in patients who had progressed on larotrectinib or entrectinib due to acquired 

resistance mutations in the TRK kinase domain, including patients with sarcoma.65–67

SUMMARY

The emergence of NTRK gene fusions as clinically actionable biomarkers marks a new era 

in precision oncology, with the tumor-agnostic approvals of larotrectinib and entrectinib 

representing milestones in drug development. TRK inhibitors provide new personalized 

treatment options with the potential to extend survival and improve quality of life in some 

patients with sarcoma harboring NTRK gene fusions. Integrating NTRK fusion testing into 

the current diagnostic workup of patients with sarcoma is particularly challenging due to the 

rarity of this biomarker. Here, we propose a diagnostic strategy to address this that considers 

disease stage and histologic and molecular subtypes to facilitate routine testing for TRK 

expression and subsequent testing for NTRK gene fusions.

Routine genome-wide MPS in sarcomas may not currently be cost-effective due to the small 

number of additional genomic alterations to be tested. However, IHC provides a valuable 

pre-screening tool and focused MPS panels, such as those that detect NTRK gene fusions 

and other key gene fusions in parallel, are particularly relevant for sarcomas. Further 

research is necessary to fully establish the sensitivity and specificity of pan-TRK IHC. 

Furthermore, multinational comparative studies are encouraged to increase the 

reproducibility of MPS assays. Finally, prospective studies will be essential to determine the 

frequency of NTRK gene fusions in different sarcoma subtypes and correlation with 

morphological, biological, and clinical features in order to better inform the optimal 

approach to NTRK gene fusion screening.
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Figure 1. Examples of positive TRK IHC staining.
(A) ETV6-NTRK3 fusion infantile fibrosarcoma stained by hematoxylin and eosin and (B) 

pan-TRK IHC with A7H6R clone (Cell Signaling Technology) and ultraView detection. (C) 

Focal staining in a leiomyosarcoma without NTRK gene alterations. (D) Intense staining in 

a leiomyosarcoma with NTRK1 copy number gain. IHC, immunohistochemistry; NTRK, 

neurotrophic tyrosine receptor kinase receptor; TRK, tropomyosin receptor kinase.
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Figure 2. Recommended algorithm for NTRK gene fusion testing in sarcomas.
GIST, gastrointestinal stromal tumor; IFS, infantile fibrosarcoma; IHC, 

immunohistochemistry; IMT, inflammatory myofibroblastic tumor; LPS, liposarcoma; MPS, 

massive parallel sequencing; NTRK, neurotrophic tyrosine receptor kinase; RT-PCR, reverse 

transcription polymerase chain reaction; TRK, tropomyosin receptor kinase.
a For patients at high risk of relapse, NTRK gene fusion testing might provide clinically 

actionable information for later in the disease course.
b If histology is typical then confirmation by MPS is recommended.
c Treatment may be considered concurrently with confirmatory MPS.
d Consider parallel validation by MPS or RT-PCR to confirm that fusion is in-frame.
e Avoid IHC screening in cases with myogenic and neural differentiation due to the high rate 

of false positivity.
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Table 2.

Efficacy of TRK inhibitors in patients with sarcoma harboring NTRK gene fusions
a

Larotrectinib
n = 7143

Entrectinib
n = 1347

Objective response rate, % 87 (95% CI 77–94) 46 (95% CI 19–75)

Median duration of response, months NE (range 1.6+ to 44.2+) 10.3 (95% CI 4.6–15.0)

Median progression-free survival, months 28.3 (95% CI 16.8-NE) 11.0 (95% CI 6.5–15.7)

Median overall survival, months 44.4 (95% CI 44.4-NE) 16.8 (95% CI 10.6–20.9)

CI, confidence interval; MPS, massive parallel sequencing; NE, not estimable; NTRK, neurotrophic tyrosine receptor kinase receptor; PCR, 
polymerase chain reaction; TRK, tropomyosin receptor kinase.

a
In the larotrectinib clinical trials, NTRK gene fusions were detected by local MPS, according to the procedures and analytic pipelines established 

by each laboratory, or by FISH. All tests were carried out in a Clinical Laboratory Improvement Amendments-certified (or equivalent) laboratory. 
In the entrectinib clinical trials, NTRK gene fusions were detected by central RNA MPS (Trailblaze Pharos, Ignyta, San Diego, CA, USA) or local 
molecular testing (FISH, quantitative PCR, or DNA or RNA MPS).
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