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Abstract

We derive theoretical guarantees for the exact recovery of piecewise constant two-dimensional 

images from a minimal number of non-uniform Fourier samples using a convex matrix completion 

algorithm. We assume the discontinuities of the image are localized to the zero level-set of a 

bandlimited function, which induces certain linear dependencies in Fourier domain, such that a 

multifold Toeplitz matrix built from the Fourier data is known to be low-rank. The recovery 

algorithm arranges the known Fourier samples into the structured matrix then attempts recovery of 

the missing Fourier data by minimizing the nuclear norm subject to structure and data constraints. 

This work adapts results by Chen and Chi on the recovery of isolated Diracs via nuclear norm 

minimization of a similar multifold Hankel structure. We show that exact recovery is possible with 

high probability when the bandlimited function describing the edge set satisfies an incoherency 

property. Finally, we demonstrate the algorithm on the recovery of undersampled MRI data.
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1. INTRODUCTION

The recovery of a linear combination of exponentials from their few uniform samples is a 

classical problem in signal processing with extensive applications. Prony’s method, or one 

of its robust variants, attempts to recover the signal by estimating an annihilating polynomial 

whose zeros correspond to the frequency of the exponentials. The finite rate of innovation 

(FRI) framework [1] extended these methods to recover more general signals that reduce to a 

sparse linear combination of Dirac delta functions under an appropriate transformation (e.g., 

differential operators, convolution). Recently, several authors have further extended FRI 

methods to recover such signals from their non-uniform Fourier samples [2–6] by exploiting 

the low-rank structure of an enhanced matrix (e.g., Hankel matrix in 1-D). Performance 

guarantees do exist when the transform is an identity and when the Diracs are well-separated 

[2].

The above signal models have limited flexibility in exploiting the extensive additional 

structure present in many multidimensional imaging problems. Specifically, the edges in 

multidimensional images are connected and can be modeled as smooth curves or surfaces. 
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We have recently introduced a novel framework to recover piecewise polynomial images, 

whose edges are localized to smooth curves, from their uniform [7,8] and non-uniform [6] 

Fourier samples; this work generalizes a recent extension of the FRI framework to curves 

[9]. We model the piecewise smooth signal as having partial derivatives that vanish outside 

the zero level-set of a bandlimited function. This relation translates to an annihilation 

condition involving the uniform Fourier samples of the partial derivatives, which can be 

compactly represented as the multiplication of a specific structured matrix with the Fourier 

coefficients of the bandlimited function. Our earlier work has shown that the structured 

matrix is low-rank, and we used this property to recover the signal from its non-uniform 

Fourier samples with good performance. Efficient algorithms that work on the original 

signal samples rather than the structured high-dimensional matrix also were introduced [10]. 

We observe the signal models in [2,3,5] do not include the class of signals considered in this 

work.

The main focus of this work is to introduce theoretical guarantees on the recovery of 

piecewise constant signals, whose discontinuities are localized to zero level-sets of 

bandlimited functions, from non-uniform Fourier samples. Since such signals cannot be 

expressed as a finite linear combination of isolated Diracs, the recovery guarantees in [2] 

cannot be directly extended to our setting. Specifically, the theory in [2] relies heavily on a 

explicit factorization of the enhanced matrix (e.g., Vandermonde factorization of a Hankel 

matrix in the 1-D case), which is only available when the number of discontinuities are finite 

and well separated. Instead, we give a new description of the row and column subspace of 

the structured matrix, which allow us to derive incoherence measures based solely on 

properties of the bandlimited function describing the edge set of the image.

2. THEORY

2.1. Signal Model: 2-D Piecewise Constant Images

We consider the recovery of a piecewise constant function

f(r) = ∑
i = 1

N
aiχΩi(r), for all r = (x, y) ∈ [0, 1]2, (1)

where ai ∈ ℂ, and χΩ denotes the characteristic function of the set Ω. We assume the Fourier 

samples f[k] specified by

f[k] = ∫[0, 1]2
f(r)e−j2πk ⋅ r; k ∈ ℤ2, (2)

are available at a subset of non-uniform locations k ∈ Θ belonging to a rectangular set of 

uniform sampling locations Γ ⊂ ℤ2 in Fourier domain.

We further assume that the edge-set of the image, specified by E := ∪i∂Ωi, to be the zero-set 

of a 2-D bandlimited trigonometric polynomial:

Ongie et al. Page 2

Proc Int Conf Image Proc. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μ0(r) = ∑
k ∈ Λ0

c[k]ej2πk ⋅ r, ∀r ∈ [0, 1]2,
(3)

where the coefficients c[k] ∈ ℂ, and Λ0 is a rectangular subset of Γ. Here we assume μ0 is 

the unqiue minimal degree trigonometric polynomial such that E = {μ0 = 0}, where the 

degree is defined by the rectangular dimensions of the Fourier support Λ0. We have shown 

in [8] that when μ(r) is any bandlimited function that vanishes on the edgeset E, the gradient 

∇f = (∂xf, ∂yf) satisfies the property

μ∇f = 0, (4)

in the distributional sense. See Fig. 1 for an illustration when the number of regions N = 1. 

Note that among all functions bandlimited to Λ0 in Fourier domain, μ = μ0 is the only one in 

this class that satisfies (4). However, if we consider μ that are bandlimited to a larger 

rectangular set Λ1 with Λ0 ⊂ Λ1 ⊂ Γ, then we have shown that all μ satisfying (4) are a 

multiple of μ0 [8]. The spatial domain relation (4) translates directly to the following vector 

annihilation relation in the Fourier domain:

∑
k ∈ Λ1

∇f[ℓ − k]μ[k] = 0, ∀ℓ ∈ Λ2 .
(5)

Here ∇f[k] = j2π(k1f[k], k2f[k]) for k = (k1, k2), and Λ2 ⊂ ℤ2 is any rectangular set on 

which the convolutions between ∇f and μ is valid. Note that the 2-D convolution between 

two filters support limited to rectangular sets Λ1 and Λ2 is support limited to the dilation of 

Λ1 by Λ2, which we denote by Λ1 ∗ Λ2. Since μ is bandlimited to Λ1, when using samples 

of ∇f within Γ, we require Λ1 ∗ Λ2 = Γ; see Fig. 2.

The Fourier domain annihilation relations (5) can be compactly represented in matrix form 

as

T(f)h =
T1(f)
T2(f)

h = 0, (6)

where Ti(f) ∈ ℂ Λ2 × Λ1 , i = 1, 2, are matrices corresponding to the discrete 2-D 

convolution of kif[k], k ∈ Γ, (omitting the irrelevant factor j2π) with a filter supported on 

Λ1, with output restricted to the index set Λ2. Here we use h to denote the vectorized version 

of a filter h[k], k ∈ Λ1. By our previous observations, the solutions h to (6) are given by the 

Fourier coefficients of a multiple of the minimal polynomial. Hence if the filter support Λ1 

is larger than the minimal filter support Λ0, T(f) has a large nullspace and is low-rank. 

Specifically, in [8] we proved the following:

Proposition 1.—Suppose T(f) is built with filter size Λ1 ⊇ Λ0 satisfying Γ ⊇ 2Λ1 ∗ Λ0, 
then
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R: = rank T(f) = Λ1 − Λ1:Λ0

where |Λ1| is the number of indices in Λ1 and |Λ1 : Λ0| is the number of integer shifts of Λ0 

contained in Λ1.

2.2. Recovery from non-uniform Fourier samples

Since the matrix T(f) is low-rank, we propose to recover the signal from its noiseless 

Fourier samples as the convex optimization problem:

minimizeg T(g) * subject to g[k] = f[k]; k ∈ Θ (7)

where ∥·∥∗ denotes the nuclear norm, i.e., the sum of the singular values. To aid in our 

analysis, we will now reformulate the recovery of f  as a matrix recovery problem using 

projection operators in the lifted matrix domain. We define basis matrices 

Ak =
A1, k
A2, k

∈ ℂ2 Λ2 × Λ1 , for all k ∈ Γ, where

Ai, k α, β =
ki

k ωi(k) , if (α, β) ∈ ωi(k)

0 else
(8)

for i = 1, 2. Here ωi(k) is the set of locations of the matrix T(f) containing copies of kif[k]. 
Note that the set {Ak}k∈Γ forms an orthonormal basis for the space of structured matrices 

defined by the lifting T. Specifically, for any set of coefficients g[k] k ∈ Γ we can expand 

the matrix X = T(g) as X = ∑k X, Ak Ak, where X, Ak = g[k]. Using these basis matrices, 

we define the following operators in the lifted domain:

AΘ(X) = ∑
k ∈ Θ

Ak, X Ak (9)

A⊥(X) = ℐ − ∑
k ∈ Γ

Ak, X Ak (10)

QΘ = Γ
Θ AΘ + A⊥

(11)

The constants in (11) are chosen so that E QΘ = ℐ. Using these definitions, we rewrite (7) 

as

minimizeX X * subject to QΘ(X) = QΘ(T(f)) (12)
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Several authors have shown that the performance of low-rank matrix recovery by nuclear 

norm minimization is dependent on the incoherence of the sampling basis with respect to the 

matrix to be to be recovered [2, 11]. Towards this end, we introduce two incoherence 

measures associated with T(f) defined solely in terms of the edge-set polynomial μ0. In the 

following, we set DΛ1 to be the 2-D Dirichlet kernel supported on Λ1, i.e., the function such 

that DΛ1[k] = 1 for all k ∈ Λ1 and zero otherwise. For any collection of N points P = {r1, …, 

rN} ⊂ [0, 1]2, we define the N × N Gram matrix G(P) by (G(P ))i, j = DΛ1 ri − rj .

Definition 2.—Let μ0 be a trigonometric polynomial bandlimited to Λ0 (see (3))), and set 
R = |Λ1| − |Λ1 : Λ0|. Define the incoherence measure ρ1 by

1
ρ1

= max
P ⊂ μ0 = 0

P = R

σmin[G(P )]
(13)

where σmin[G(P)] is the minimum singular value of G(P).

Put in words, among all possible arrangements of R points along the edge-set {μ0 = 0}, we 

seek the arrangement that gives the best conditioning of the matrix G(P), and call the 

resulting condition number ρ1. Intuitively, the optimal arrangement will maximize the 

minimum separation distance among the R points, and ρ1 can be thought of as a measure of 

this geometric property. In particular, having any edges that enclose a small area will give a 

high ρ1.

Additionally, our results rely on another incoherence measure related to properties of the 

gradient of μ0:

Definition 3.—Let μ0 be a trigonometric polynomial bandlimited to Λ0 (see (3)). 

Normalize μ0 by ∫[0, 1]2 ∇μ0(r) 2dr = 1. Define the incoherence measure ρ2 by

1
ρ2

=

minγ ∈ BΛ1
γ 2 = 1

∫[0, 1]2|γ(r) |2 ∇μ0(r) 2dr

∇μ0 1
2

(14)

where BΛ1 denotes the space of all trigonometric polynomials bandlimited to Λ1, and 

∇μ0 1 = ∑k ∈ Λ0 |∇μ0[k]|.

Note that ρ2 will be large when |∇μ0| has several zeros, or equivalently, when μ0 has several 

critical points. Since μ0 must contain a critical point in every region defined by the 

complement of the edge-set, ρ2 will be large when the image has several distinct regions.

Now we state our main result:

Theorem 4.—Let f be specified by (1), whose edge-set is described by the zero-set of the 
trigonometric polynomial μ0 bandlimited to Λ0 (see (3)) with associated incoherence 
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measures ρ1 and ρ2. Let Θ ⊂ Γ be an index set drawn uniformly at random within Γ. Then 
there exists a universal constant c > 0 such that the solution to (12) is exact (X = T (f)) with 
probability exceeding 1 − |Γ|−2, provided

|Θ | > cρ1ρ2Rcslog4 |Γ | . (15)

where R = rank R = rank T(f) and cs = |Γ|/|Λ1|.

Following the approach in [2], we can prove this result by constructing an approximate dual 

certificate using the well-known golfing scheme of [11]. The adaptation of the proof in [2] to 

the measurement operator (11) is straightforward, and these details are omitted for brevity. 

The essential difference of the above result and [2] is the characterization of the incoherency 

measures. The approach in [2] relies on an explicit low-rank factorization of the lifted matrix 

in terms of Vandermonde-like matricies, which is not available in our setting. Instead, we 

characterize the row and column spaces of the matrix and use it to prove the above result.

2.3. Row and column spaces of T(f) and incoherence

Define PU and PV  to be the orthogonal projections onto the column space and row space of 

T(f), respectively, i.e., if T(f) = UΣV * is the rank-R singular value decomposition then 

PUX = UU * X, PV X = XVV *. One can show it is possible to construct an approximate dual 

certificate with high probability [2, 11], provided we can uniformly bound the norms of the 

projections PUAk and PV Ak. The following proposition shows these norms can be 

controlled by the incoherence measures introduced in (13) and (14):

Proposition 5.—Consider T(f) of rank R corresponding to a piecewise constant function f 
whose edge set coincides with the zero set of μ0, let ρ1 and ρ2 be the incoherency measures 
of μ0, and set cs = |Γ|/|Λ1|. Then we have

max
k ∈ Γ

{ PUAk F
2 , PV Ak F

2 } ≤ ρ1ρ2Rcs
|Γ| . (16)

The proof relies on the following basis representations for the row and column spaces of 

T(f):

Lemma 6.—Choose any N ≥ |Λ1| + |Λ0| − |Λ1 : Λ0| points {r1, …, rN} ⊂ {μ0 = 0}, and 

define B to be the collection of filters {h1, …, hN} where each hi ∈ ℂ|Λ| are the Fourier 

coefficients of the translated Dirichlet kernel DΛ1 r − ri . Then there exists a subset of 

R = rank T(f) elements from B that is a basis for the row space of T(f).

Lemma 7.—Let BR = di i = 1
R  be any basis of the row space of T(f), and set 

∇μ0 = cx, cy ∈ ℂ2|Λ0|. Then BL = di ∗ cx, di ∗ cy i = 1
R  is a basis of the column space of 

T(f).
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3. EXPERIMENTS

In Fig. 3 we demonstrate the recovery of a synthetic piecewise constant phantom [12] (181 × 

181 sampling grid, single channel) from 20-fold variable density random Fourier samples 

using the structured low-rank matrix completion approach (7). We solve (7) using a singular 

value thresholding approach proposed in [6]. The filter size was set to 33 × 25. Compared 

with total variation (TV) minimization, the proposed structured low-rank approach more 

accurately recovers the original piecewise constant regions.

Additionally, in Fig. 4 we demonstrate the structured low-rank approach on the recovery real 

MR data (255×255 sampling grid with 4 receiver coils, coil-compressed to a single channel) 

from 2-fold uniform random undersampling, using a filter size of 45 × 45. Due to the 

problem size, the formulation (7) is difficult to solve via singular value thresholding. Instead, 

we make use of the recently proposed GIRAF algorithm [10] which solves an approximated 

version of (7). The result shows similar benefit over a TV regularized recovery in its ability 

to preserve fine details and strong edges.

4. DISCUSSION AND CONCLUSION

We derived a performance guarantee for the recovery of piecewise constant images from 

non-uniform Fourier samples by a structured matrix completion. This was achieved by 

adapting results in [2] to the case of a low-rank multifold Toeplitz structure with an 

additional weighting scheme. We also define new incoherence measures that rely only on 

properties of the minimal annihilating polynomial whose zero-set encodes the edges of the 

image.

While in the present work we only consider noiseless ideal samples, in future work we 

intend to derive guarantees for robust recovery in the presence of noise and model-

mismatch. Additionally, it would be interesting to adapt our results to a wider variety of 

sampling distributions, and to identify the optimal sampling strategy for signals belonging to 

our image model.
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Fig. 1. 
Annihilation of a piecewise constant function in the spatial (top) and Fourier (bottom) 

domain.
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Fig. 2. 
Fourier domain support sets used in constructing the structured matrix T(f). The grid Γ 

represent a rectangular sampling window in ℤ2 (index (0, 0) marked in black). (left) Θ is a 

collection of uniform random sampling locations. (right) Λ0 is the Fourier support of the 

minimal annihilating polynomial, Λ1 is the assumed filter size used in constructing T(f), 
and Λ2 is the set of valid convolution locations satisfying Λ1 ∗ Λ2 = Γ. Note that T(f) has 

dimensions 2|Λ2| × |Λ1|.
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Fig. 3. 
Recovery of synthetic MRI data from 20-fold variable density undersampling.
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Fig. 4. 
Recovery of real MRI data from 2-fold random uniform undersampling. Error images shown 

below.
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